
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Gergely Kocsis and Ferenc Kun
Department of Theoretical Physics, University of Debrecen H-4010

Debrecen, P.O.Box: 5
Hungary

1. Introduction

Socio-economic and complex physical systems share several important features. Both are
composed of a large number of interacting components where in most of the cases the precise
form of the interaction is not known. In spite of this microscopic complexity, on the macro
level such a state emerges which can be described in terms of a few parameters. Due to
the collective behavior of the constituents of the system a universal macroscopic behavior
emerges which does not depend anymore on the microscopic details of the system Helbing
(2009). Technological development of socio-economic systems exhibits such universal aspects:
irrespective of the field of economy, type of industry, technologies always evolve through
cycles of birth, selection, disappearance and birth of the successor technology. The selection
is made by the market which tests the capabilities of a technology and when it proves to be
insufficient under the new circumstances, it is substituted by a newly born technology. The
cyclic development of technologies gives rise to a logistic growth which can be described by
only two parameters. Specific features of a given technology determine solely the value of the
two parameters Rogers (1962).
During the last three decades efficient theories and models have been developed in statistical
physics to describe the emergent behavior of complex systems. Methods have been worked
out which can grasp the transition from microscopic complexity to the universal macroscopic
behavior Helbing (2009); Sornette (2000). The theory of phase transitions, the renormalization
group theory, the concept of self-organized criticality, dynamic critical phenomena and
stochastic processes, and the theory of networks have been proven to be successful for
complex system resulting in multitude of application in socio-dynamics as well Castellano
et al. (2009); Gilbert (2008); Mahajan & Peterson (1985).
Cellular automata (CA) have been introduced in the field of socio-dynamics as an efficient
approach for bottom-up models where individuals (agents) are the basic units of the system.
Agents are described by a set of attributes, furthermore, they interact with each other and their
social environment. For the diffusion of innovations the most important feature is that agents
make decisions based on the influence they receive through word-of-mouth communications
with their social partners and through some external information source (mass media). Recent
investigations have shown that decision making in agent based models can be well described
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by a set of rules and can be efficiently implemented in the framework of cellular automata
Gilbert (2008); Kocsis & Kun (2008); Kun et al. (2007).
In this chapter we provide an overview of cellular automata modeling approaches to
socio-economic systems with emphasis on the spreading of innovations. After summarizing
the basic ingredients of CA we focus on the recent developments in the computer modeling
of socio-economic systems. We outline the philosophy of bottom-up approaches of agent
based models and describe typical set of CA rules which have been proven successful during
the past years in the field. As a specific example, we present in details cellular automata
for the spreading of those type of technological innovations whose usage requires so-called
compatibility. These are for instance telecommunication technologies such as mobile phones,
where a broad spectrum of mobile phone devices are offered by the market with widely
different technological levels. Communication between two individuals, however, is the
easiest when they use phones with nearly identical technological levels, since only in this
situation they are able to benefit from capabilities such as MMS or Video messaging. We
analyze the model analytically then set up CA rules of the model and present results of large
scale computer simulations. The chapter is closed by an outlook summarizing possible future
perspectives of the field.

2. Bottom-up approaches for the diffusion of innovations

Since Johann Louis von Neumann introduced it in order to study living biological systems
in 1948 von Neumann (1948), cellular automata modeling has found a broad range of
applications in the field of complex systems. The most widespread definition of cellular
automata is that a CA is a finite number of finite state cells on a grid, which can change their
state in discrete time steps according to the present state of their neighborhood. Usually the
cells are placed on a square lattice with periodic boundary conditions such that each cell is
affected only by its 4 (von Neumann neighborhood) or 8 (Moore neighborhood) neighbors.
Classically the cells can hold two different states represented by 0 and 1. The update of
cells’ state is usually performed in a parallel way at the same time for each cell. The way
how the state is changed defines the CA rules. Many eye-catching classical CA rules have
became famous in the past, with more or less practical usage Wolfram (2002). Based on
von Neumann’s basic mathematical concepts, CA models became the basis of the so called
simulation games in the 1970s. The most famous example of such games is John Horton
Conway’s ”Game of Life” Gardner (1970). In spite of the successful applications of CA in these
games, they gained popularity only in the 1980s through the work of Stephen Wolfram, who
gave an extensive classification of CA as mathematical models for self-organizing statistical
systems Wolfram (2002). Wolfram applied cellular automata to a huge number of scientific
areas e.g. biology, physics, sociology, etc.
The use of cellular automata in the field of diffusion phenomena tracks back to these times
as well Grassberger (1984), however, the effective power of CA in modeling diffusion could
only be revealed after the revolutionary growth of computing power in the 1990s. By the
end of the century CA simulation of diffusion models became an elementary tool in the
field, and till today, in most of the cases CA based simulations represent the basic numerical
methods in order to validate the analytical predictions of diffusion models. In order to observe
the headway of CA modeling in a more specific field, one can take the case of diffusion of
innovations, which has a history going back to the 1960s, but has an ever increasing popularity
nowadays as well Guardiola et al. (2002); Helbing et al. (2005); Llas et al. (2003). The first
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edition of Everett M. Rogers’ pioneering book in 1962 used to be called as the starting point
of innovation diffusion related research Rogers (1962). Currently the book is at its fifth edition
updated and extended with up to date results and case studies. Besides Rogers’ book one can
get an interesting insight into the past and present of innovation diffusion from numerous
recapitulatory papers of Mahajan Mahajan & Peterson (1985) or from the work of Castellano
et. al. Castellano et al. (2009).
In his book, Rogers defines diffusion of an innovation as the process by which that innovation
”is communicated through certain channels over time among the members of a social system”.
As a definition of innovation it says ”innovation is an idea, practice, or object that is perceived
as new by an individual or other unit of adoption” Rogers (1962). These definitions show
that innovation diffusion gathers all the processes where something new spreads over a social
system.
Cellular automata have successfully been applied to investigate the diffusion of innovations
in socio-economic systems. CA approaches in socio-dynamics reflect the bottom-up modeling
philosophy, i.e. agents are introduced which represent individuals of the society Gilbert (2008).
Agents have to be characterized by a well-defined finite set of variables which in principle
should be measurable in sociometric sense. The variables are defined such that they describe
up to some extent the rational and irrational (emotional) aspects of agents’ behavior from the
viewpoint of the scope of the model (for instance, opinion formation before political election
or spread of technologies on the market after new inventions are introduced).
Such agent-based models are definitely disordered in the sense that the variables describing
agents must have broad variations in the system. The distribution of agents’ properties should
again reflect some general tendencies in the society based on sociological surveys.
The interaction of agents is rather complex, certainly much more complicated than the
interaction of particles in any physical systems. In general, it is very difficult, therefore,
to cast the interaction law in a closed mathematical form. For the sake of simplicity, two
limiting cases can be formulated: (i) absolutely rational agent where the interaction means
taking a well-defined decision based on the surroundings. Such an interaction-decision rule
implies a deterministic time evolution of extended sociodynamic systems starting from an
initially disordered state. (ii) absolutely irrational agent whose decision is perfectly random,
the interacting partners can only affect the degree of randomness of the change of agents’
variables compared to the preceding state. Bounded rationality is a decision mechanism which
lies between the two extreme cases discussed above. Obviously, this is much more realistic but
addresses serious mathematical problems to represent a decision mechanism which captures
both deterministic (rational) and probabilistic (irrational or emotional) aspects.
Time evolution of the system is obtained by prescribing an appropriate dynamics of the
system. The “dynamics” can be formulated in terms of decision rules according to which
agents can change their state as time elapses. An important point of such agent-based model
constructions of sociodynamics is if the dynamic rule is deterministic where disorder enters
only through the disordered initial state of agents’ properties. Such deterministic dynamics
can be formulated in terms of cellular automata. The other limiting case is the stochastic
dynamics similar to the dynamics of finite temperature systems in physics. Such dynamics
can be implemented in the form of Monte Carlo simulations such as importance sampling
with the Metropolis algorithm Gilbert (2008).
In this Chapter we present a study of the spreading of innovations in socio-economic
systems using a bottom-up approach as described above which is implemented in a cellular
automata framework. We focus on those technologies where the practical value, the usability
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or advantages of the technology for the user depends on the number of social partners already
using the technology. Telecommunication technologies are of that kind, since a mobile phone
is rather useless if there is nobody to call with. The CA rules of the model are based on the
cost minimization requirements, i.e. agents can change their technological level if it provides
reduction of the communication costs. As a key ingredient we assume that the mechanism of
spreading is the copying, i.e. agents purchase products of technologies copying the product
of one of their interacting partners. After presenting the details of the model construction we
analytically investigate simplified cases then we present results of realistic cellular automata
simulations for both regular lattices and complex network topologies of social contacts.

3. Model for the spreading of technologies in socio-economic systems

Technological evolution of socio-economic systems is composed of two phenomena Mahajan
& Peterson (1985); Rogers (1962); Weidlich (2000): (i) New products, ideas, working methods,
emerge as a result of innovations which are then used by the market. (ii) Successful technologies
spread in the system resulting in an overall technological progress. One of the key components
of this spreading of successful technologies is the copying, i.e. members of the system adopt
technologies used by other individuals according to certain decision mechanisms. Decision
making is usually based on a cost-benefit balance so that a technology gets adopted by a large
number of individuals if the upgrading provides enough benefits Rogers (1962).
In the present work we focus on the spreading process assuming that several technologies
coexist in the system providing alternative solutions for the same practical problem. We
introduce a simple agent-based model of the spreading process restricting the investigations
to technologies where “networking” plays a crucial role Rogers (1962), i.e. the technology is
used for communication/interaction where a certain compatibility is required. In real life it
can be often seen that in some cases less advanced technologies rule the market and they still
proliferate even if a new, somehow better technology appears. On the other hand if a large
enough number of users start to use a new technology sooner or later the whole community
follows them making the older technology disappear. The focus of our study is on finding
answers to the questions of what specific criteria have to be fulfilled in order to make a
technology successful in the market.

3.1 Cost of communication

In our model we represent the socio-economic system by a set of agents which posses products
that may be of different technological levels and use it to cooperate with each other. The
technological level of the products (e.g. a mobile phone or any device which can be used
for communicating with others) is described by a real variable τ in such a way that more
advanced technologies are characterized by a higher value of τ. The technology held by
an agent is used for communication/interaction between its social contacts. It is easy to
understand that communication is the easiest if the interacting partners have devices with
nearly the same technological level. The usage of devices of highly different technological
levels may cause difficulties in the interaction which result in additional costs. As a more
specific example let us consider the case of SMS communication. Old mobile phones of lower
technological level could send SMS messages only with a maximal length of 160 characters,
however, for the new ones the allowed length is three times larger. Sending a long message
between an old phone and a new one is possible, of course, because we only have to split
our text into three parts, but naturally this procedure makes communication much more
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Fig. 1. Demonstration of the basic ideas of the model construction. Agents use different level
technologies (mobile phones) to communicate with each other. The different capabilities of
the devices (SMS, MMS, video-phone) induce difficulties, i.e. communication is the easiest
between devices of the same technological level (this is indicated by the black lines between
agents). The height of the colored rectangle indicates the “technological level” of the device
of the corresponding agent.

difficult and uncomfortable. In the opposite direction we have to notice that our message
will be automatically split up into pieces. Agents using mobile phones are presented in Fig.
1. This simple example clearly illustrates that the source of difficulties is the difference in the
technological levels of the devices used for communication and they would not occur if the
two partners would use equally advanced technologies. It has to be emphasized that in our
modeling approach cost does not only mean the money one has to pay for the services or for
the device, but it covers all types of difficulties (including also financial ones) that can affect
the quality of the communication (e.g. time, convenience etc.) Kocsis & Kun (2008); Kun et al.
(2007).
Based on the above arguments it is reasonable to assume that the cost C induced by the
communication of agents i and j is a monotonic function of the difference of the technological
levels |τi − τj|. For the purpose of the explicit mathematical analysis we consider the most
simple functional form and cast the cost of cooperation into the following form Kun et al.
(2007)

C(i → j) = a|τi − τj|. (1)

Equation (1) expresses that having products of different technological levels (having different
values of τ) incurs cost, while interaction with devices of the same technological level is
cost free. This crude assumption describes a socio-economic system which favors the local
communities being at the same technological level. Producers fabricate and introduce new
communication devices on the market with the goal to provide solutions of possible problems,
difficulties customers may have. This generic tendency of technological development can be
captured in the model by setting appropriate values for the multiplication factor a of the cost

341Cellular Automata Modelling of the Diffusion of Innovations

www.intechopen.com



function Eq. (1). Hence, we assume that the value of a depends on the relative technological
level of interacting agents as

a =

{

a1, if τi > τj

a2, if τi < τj
where a1 < a2 (2)

which clearly favors the higher technological level of users. As a result of the condition
a1 < a2 using a more advanced technology than the surroundings τi > τj implies lower
costs compared to the opposite case. Note that as a result of this condition the cost function
is not symmetric with respect to agents i and j. This property of C is expressed by the arrow
→ in the argument so that C(i → j) defines the cost of agent i arising due to the cooperation
with agent j which is not equal to the cost of agent j, i.e. C(i → j) �= C(j → i). Knowing
the cost of interaction between communication partners we can now define the total cost of
a given agent in the model system. If agent i has n collaborating partners with technological
levels τ1, τ2, . . . , τn, the total cost of its collaboration can be obtained by summing up the cost
function Eq. (1) over all connections

C(i) =
n

∑
j=1

C(i → j). (3)

3.2 Time evolution

In order to reduce their costs, agents are assumed to be able to change their technological
level which results in a non-trivial time evolution of the system. Our approach focuses on
the spreading of technologies so that agents do not invent new products, the possible level
of technologies are determined by the initialization of agents’ characteristics. The driving
force of evolution in the system is the tendency that agents try to optimize the cost of
their communication reducing the value of C. To achieve this goal, however, they can only
adopt/copy technologies choosing the one of their interacting partners

Ct+1(i) = min{C(τ ∈ {τt
i , τt

1, τt
2, . . . , τt

n}}, (4)

where the copy is always executed if it provides cost reduction Ct+1(i) < Ct(i).
It is assumed in the model, that adopting a technology does not induce costs, i.e. no money
is required to buy the new products, thus agents can change their technological level anytime
if the change provides cost reduction in the future. The financial status of agents, the amount
of money, statistics of income in the society do not play any role in the present setup of the
model system but of course it can easily be implemented. This rejection-adoption process
based on local cost minimization results in the spreading of the adopted technologies while
the rejected ones disappear from the system. Our model emphasizes that the key component
of the spreading of innovations is the copying with the aim of ensuring compatibility and
hence, reduction of the difficulties (cost of communication). Note that in the model there is no
intrinsic advantage of using more advanced technologies, the cost is the same independently
of the technological level when consensus has been reached Kocsis & Kun (2008); Kun et al.
(2007).
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3.3 Topology of social contacts

For agent based socio-dynamics models it is a crucial point to implement a realistic
representation of agents’ social contacts. We apply the Watts-Strogatz rewiring algorithm
Watts & Strogatz (1998) to generate complex networks in order to mimic the topological
features of the social contacts in real social systems Kocsis & Kun (2008). We start the process
with a square lattice of agents with periodic boundary conditions. The rewiring process is
performed such that we take every edge on the lattice and remove it with a probability p. After
that the connection is re-established between two agents selected randomly with a uniform
distribution.

(a)

2 3 4 5 6 7 8
10

-3

10
-2

10
-1

1

n

ρ
(n

)

p = 0.05
p = 0.1
p = 0.2
p = 0.4

(b)

Fig. 2. (a) Complex networks of agents with long range connections are obtained by rewiring a square
lattice. The color of the nodes corresponds to the number of their connections (lighter blue stands for a
higher degree). (b) Degree distribution ρ(n) of rewired square lattices for different rewiring probabilities
p. Increasing the value of p the distribution gets broders but the position of the maximum does not
change.

The rewiring procedure is illustrated by Fig. 2(a). The rewiring process has the consequence
that degrees different from 4 occur in the social network with a certain probability and the
topology of the system is changed from short ranged (p = 0) to random graphs (p → 1) with
long range connections Watts & Strogatz (1998). The distribution ρ of the degree of agents n,
i.e. the number of connections of the agents, can be determined analytically as the convolution
of a binomial and a Poissonian distribution Albert & Barabasi (2002)

ρ(n) =
min(n−k,k)

∑
s=0

(

k

s

)

(1 − p)s pk−s (pk)n−k−s

(n − k − s)!
e−pk, (5)

where k denotes the half of the average degree and n is the observed degree. The weights of
the binomial and Poissonian components are in a linear relation to the rewiring probability
p. Fig. 2(b) illustrates degree distributions of rewired square lattices, generated with the
Watts-Strogatz method using various values of the rewiring probability p. It can be observed
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that with the increase of p, however the average degree remains constant 〈n〉 = 4,
the distribution ρ(n) gets broader, increasing the polydispersity of social contacts. The
Watts-Strogatz type complex networks have been proven to be very useful in studying social
phenomena Watts (1999). For the spreading of technological development the main limitation
we face is that the network has a static structure, it does not evolve during the diffusion
process. However, this frozen structure allows us to make an efficient cellular automata
implementation of the system.

4. Analytical investigation of the model

In order to understand the decision making mechanism, how agents select the technology
to adopt, and to reveal which features of the system determine the success of technologies
on the market, it is useful to study simplified configurations by analytical calculations. First
we analyze the ideal case when all agents communicate with each other irrespective of their
spatial distance then we consider isolated local communities of relatively small size. We work
out a master equation approach which reveals interesting fixed points in the parameter space
of the system governing the long term time evolution of technological levels and the overall
technological progress of the system.

4.1 Mean field versus local interaction

As a starting scenario let us assume that the system is composed of a large number of agents
which have randomly distributed technological levels in an interval τmin ≤ τ ≤ τmax with a
probability density p(τ) and distribution function P(τ) =

∫ τ

τmin
p(τ′)dτ′. If we assume infinite

range of interactions, all agents are connected with each other so the cost of interaction of an
agent of technological level τ can be cast into the form

C(τ) = a1

∫ τ

τmin

(τ − τ′)p(τ′)dτ′ + a2

∫ τmax

τ
(τ − τ′)p(τ′)dτ′ (6)

as a function of τ. In the next time step the agent will change its technological level from
τ to that τ∗, which minimizes the cost function Eq. (6), i.e. dC/dτ|τ∗ = 0. The technology
optimizing the cost can finally be obtained as the solution of the equation

P(τ∗) =
1

1 + 1/r
, (7)

where r = a2/a1 is the ratio of the two cost factors a1 and a2 and P is the cumulative
probability distribution of the technological levels of agents in the initial configuration. A
very interesting outcome of the above calculations is that the result does not depend on the
precise value of the cost factors a1 and a2 but only on the the relative amount of advantages
r = a2/a1 more advanced technologies provide with respect to the lower level ones. Since the
range of interaction is infinite, all agents make the same decision, thus after a single time step
all agents adopt the same technology τ∗ leading to the end of the evolution of the system. In
the special case of r = 1 (when a higher technological level does not provide any advantages),
the system adopts the median τ∗ = m of the initial distribution of technologies p(τ) Sornette
(2000). It is interesting to note that the optimal choice τ∗(r) is a monotonically increasing
function of r, however, the most advanced technology τmax is solely chosen in the limiting
case limr→∞τ∗(r) = τmax. At any finite value of r > 1 the large number of agents of low level
technologies can force the system to stay at a lower technological level which shows that for
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the overall technological progress of the system strongly connected social networks may be
disadvantageous.
As a next step let us focus on what happens in a more complex society at the level of small
sized local communities. We consider a finite community of n agents with technological levels
τ1 < τ2 < · · · < τn communicating with each other. The cost of collaboration between agent i
of technological level τi with the other n − 1 agents reads as

C(τi) = a1

i−1

∑
j=1

(τi − τj) + a2

n

∑
j=i+1

(τj − τi). (8)

In the next time step the agent decides to adopt that technology which minimizes the cost
function Eq. (8) among the n − 1 possibilities. Analytical calculations show again that this
decision is solely determined by the value of r, namely, the ith highest technological level is
adopted τ∗ = τi when r falls in the interval

i − 1
n − i + 1

< r <
i

n − i
f or 1 ≤ i < n, (9)

n − 1 < r f or i = n. (10)

It can be seen from the above equations that the limits of the sub-intervals of r to choose the ith
and n − (i− 1)th largest τ are symmetric with respect to r = 1. The most advanced technology
τ∗ = τn of the available ones is adopted only if r exceeds the number of interacting partners
r > n − 1. Of course, the actual value of τ∗ is not determined by the above equations, so
that in a system composed of a large number of local communities of agents with randomly
distributed τ values a complex time evolution emerges, which is locally governed by the
equations Eq. (9) and Eq. (10).

4.2 Master equation approach

As the next step of complexity let us examine the case where only two products are present
in the system with different technological levels τ0 < τ1 but social contacts have a realistic
topology characterized by the degree distribution function ρ Eq. (5). For simplicity we set the
technological levels to τ0 = 0 and τ1 = 1 without loss of generality. At the beginning t = 0
let the fraction of agents having products of the two technological levels be φ0

t=0 and φ1
t=0 =

1 − φ0
t=0, respectively. Our goal is to work out a master equation approach to determine the

long term time evolution of the system varying the ratio of cost factors r in a broad range and
the topology of social contacts controlled by the value of the rewiring probability p. Since only
two technological levels are present in the system comprehensive description can be given by
determining the time dependence of the fraction of agents φ0

t and φ1
t .

We assume that members of local communities are randomly scattered all over the system
with a perfect mixing. The assumption implies that any clusterization of agents according to
their technological level is omitted in the approach so that no spatial correlations can arise at
this level of description. When an agent of technological level τ0 communicates with its social
partners, from the cost function Eq. (3) presented in Section 3., we can derive the minimum
number k of neighbors having technological level τ1 that make the agent switch to the other
technological level τ1

k > n
1

1 + r
≡ nph, (11)
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where ph denotes the minimal fraction of neighbors holding technologies of τ1 = 1 necessary
to induce the transition. Based on Eq. (11) we can determine the transition probability p0→1

t
that an agent, with technological level τ0 changes to τ1 at time t

p0→1
t =

∞

∑
n

ρn

n

∑
k=⌈nph⌉

(

n

k

)

(1 − φ0
t=0)

k(φ0
t=0)

n−k. (12)

Here ρn denotes the degree distribution of the underlying topology and ⌈.⌉ represents the
ceiling function, i.e. the nearest integer being greater or equal. In the above equation Eq. (12)
we used the assumption that in every time step the system starts from a totally random state
and just the values of φ0

t and φ1
t are changing over time.

In the opposite case we wish to derive the probability that a given agent will change its
technological level from τ1 = 1 to τ0 = 0. The analytical form in this case barely differs
from the previous one due to the symmetric nature of the cost factor r presented in Eq. (2). In
order to obtain this probability we only have to change the limits of the second sum of Eq. (12)

p1→0
t =

∞

∑
n

ρn

k=⌈nph⌉−1

∑
0

(

n

k

)

(1 − φ0
t=0)

k(φ0
t=0)

n−k. (13)

Note that in this special case of the model the equality p1→0
t = 1 − p0→1

t holds since there are
only two technological levels presents in the system. Knowing the fraction of technological
levels φ0

t and φ1
t and the transition probabilities p0→1

t and p1→0
t at time t we can obtain discrete

evolution equations for the fractions of technological levels

φ0
t+1 = φ0

t + p1→0
t (1 − φ0

t )− p0→1
t φ0

t , (14)

φ1
t+1 = 1 − φ0

t+1 = φ1
t + p0→1

t (1 − φ1
t )− p1→0

t φ1
t . (15)

After specifying the initial fractions φ0
t=0 and φ1

t=0 and the cost parameter r we can follow the
evolution of the system by iterating Eqs. (14,15). The above master equations have also the
advantage that the most important features of the time evolution can be extracted by analytic
means.

4.2.1 Stable and instable fixed points

In order to reveal the long term time evolution of the system it is crucial to investigate the
fixed points of the master equations Eqs. (14,15). Fixed points of the evolving fractions of
technological levels τ are defined by the condition φτ

t+1 = φτ
t , i.e. the fixed point is reached

when a frozen state is attained. Here the technological level τ can be 0 or 1. Our goal is to
identify well defined regimes of initial fractions φ0

t=0 and φ1
t=0 for different values of the cost

factor r starting from which the system can converge to different final states. For simplicity,
let us consider first Eq. (15) and analise the case when all agents have n = 4 social contacts.
Applying the fixed point condition at t = 0, it can easily be seen that the iteration equation Eq.
(15) has either two or three fixed points depending on the value of r. For the parameter ranges
r < 1/3 and r > 3 there are two fixed points, a stable and unstable one which characterize
homogeneous final states of the system where only one of the technologies survives

φ1
c1 = 0, and φ1

c2 = 1. (16)
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Fig. 3. (a) The function φ1
t+1(φ

1
t ) for a square lattice of agents where the number of

interacting partners is fixed n = 4 for all agents. Three curves are presented which are typical
for the corresponding ranges of the cost factor r. For the red curve obtained for r = 1.4
iterations of Eq. (15) are presented starting from two different initial conditions φ1

0 = 0.23
and φ1

0 = 0.25. Following the dashed lines it can be observed that the system evolves into
homogeneous final states. Note that the closer we start to the fix point, the longer it takes for
the system to reach the final homogeneous state represented by the two stable fixed points.
(b) The relaxation time tr as a function of the initial fraction φ1

t=0. Approaching the unstable
fixed point φ1

c3 = 0.232 the relaxation time tr diverges.

Analytical and numerical calculations showed that for r < 1/3 the first fixed point is
stable while the other one is unstable. The result implies that the success of the lower level
technology is guaranteed in the system since the range of attraction of the stable fixed point
φ1

c1 = 0 is the interval φ1
0 ∈ [0, 1). In this range of the cost factor r the system always converges

to the homogeneous state φ1
t = 0, i.e. the higher level technology disappears from the system

irrespective of the initial fractions except for the case φ1
0 = 1. For r > 3 the fixed points are the

same given by Eq. (16), however, their stability features change, namely, φ1
c1 = 1 is stable with

the range of attraction φ1
0 ∈ (0, 1]. This implies again the convergence to a homogeneous final

state where now the lower level technology completely disappears and the system experiences
technological progress.
It is very interesting to note that for the parameter ranges 1/3 < r < 1 and 1 < r < 3
the system has three fixed points: two fixed points characterize the homogeneous final states
given by Eq. (16) as discussed above, however, they are both stable in these ranges of r. The
third fixed point φ1

c3 can be determined from the iteration equation by considering

φ1
t=0 = φ1

t=0 + p0→1
0 (1 − φ1

t=0)− p1→0
0 φ1

t=0. (17)

Rearranging Eq. (17) leads to

p0→1
0 (1 − φ1

t=0) = p1→0
0 φ1

t=0 (18)
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and since p0→1
0 = 1 − p1→0

0 holds, it follows that

p0→1
0 (1 − φ1

t=0) = (1 − p0→1
0 )φ1

t=0, (19)

which then yields
p0→1

0 = φ1
t=0. (20)

The final expression Eq. (20) implies that the fractions of the two technological levels will keep
unchanged during the whole time evolution of the system if the probability that an agent with
technological level τ0 = 0 changes to technological level τ1 = 1 equals to the initial fraction
of agents of technological level τ1 = 1. The numerical solution of Eq. (20) gives the third fixed
point φ1

c3 = 0.768 and φ1
c3 = 0.232 for 1/3 < r < 1 and 1 < r < 3, respectively. The third fixed

point proved to be unstable, i.e. the state characterized by φ1
c3 is only attained by the system if

the initial condition is set as φ1
t=0 = φ1

c3. From any other initial state the system converges to
one of the two stable fixed points where only one of the technologies survives.
The iterations of the dynamic equation Eq. (15) are illustrated in Fig. 3(a) for two different
initial values of φ1

t=0 with the cost parameter r = 1.4 assuming that all agents have 4
interacting partners. The third fixed point φ1

c3 can be identified as the intersection of the curve
of φ1

t+1(φ
1
t ) and of the straight line with slope 1. It can be observed that iterations starting on

the left side of the fixed point φ1
0 < φ1

c3 always converge to the final state of φ1
t = 0 leading to

disappearance of the corresponding technology. However, iterations starting at a high enough
initial fraction φ1

0 > φ1
c3 lead to the final dominance of the higher level technology φ1

t = 1. The
results demonstrate that the two fixed points φ1

c1 = 0 and φ1
c2 = 1 are stable and their ranges

of attraction are the intervals [0, φ1
c3) and (φ1

c3, 1], respectively.
A very important outcome of the master equation analysis is that starting from a random
configuration of two competing technologies the dynamics of the system leads to a
homogeneous final state where only one of the technologies survives. However, depending
on the value of the starting fractions of technologies the evolution process can even take
a very long time. Figure 3(b) presents the relaxation time tr, i.e. the time needed to reach
the homogeneous final state as a function of the initial fraction φ1

t=0. It can be observed that
approaching the third fixed point the relaxation time tr diverges tr → ∞, which demonstrates
that the inhomogeneous state of competing technologies can have a very long lifetime. This
feature of the model describes the natural phenomenon that the competition of products on
the market is much more tense and takes longer if the presence of products is balanced. The
initial fraction can be controlled by the advertising activities of the producers.
It is a very interesting question to investigate how the complex topology of social contacts
affects the spreading of technologies. Complex networks of agents generated by the
Watts-Strogats method can be captured in the framework of the master equation approach
by inserting the degree distribution Eq. (5) into the generic expression of the transition
probabilities Eq. (12). In Figure 4 we present the value of the unstable fixed point φ1

c3 in the
range of the cost factor 1 < r < 3 varying the rewiring probability p of the network in the
interval [0, 1]. The rewiring method was applied to a square lattice so that in the figure p = 0
represents the regular square lattice, while in the limit p → 1 a random graph is obtained. It
can be observed that for p = 0 the value of the fixed point does not depend on r in the range
considered (see also the above analysis). However, as the rewiring probability increases, i.e.
as the degree distribution gets broader, two important changes appear: φ1

c3 has a continuous
dependence on the value of p, and the interval of r splits up into several sub-intervals inside
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Fig. 4. The unstable fixed point of the system φ1
c3 as a function of the rewiring probability p in

the range of the cost factor 1 < r < 3. The polidispersity of the number of connections makes
the system more sensitive to advantages provided by more advanced technologies. The
numbers on the surface plot provide the interval limits of r inside which φ1

c3 is constant.

which φ1
c3 has different values. This simple master equation analysis demonstrates that the

topology of social contacts may have a strong effect on the spreading process of technologies
in social systems. More details on the effect of the underlying social network will be revealed
by cellular automata simulations in the next section.

5. Cellular automata simulations

To be able to carry out analytical investigations of the model system in the previous section,
serious simplifications had to be applied. The advantage of the approach is that interesting
characteristic quantities could be obtained in closed analytic forms, important global features
could be revealed, however, the results are limited either by the range of interaction,
simplified topology of social contacts, bimodal distribution of initial technological levels, or
by neglecting any spatial correlation (clusterization) of agents according to their technological
levels. In order to analyze the time evolution and spatial structure of the model system in its
entire complexity, we perform computer simulations using cellular automata techniques. As
a first case we consider a set of agents organized on a square lattice of size L × L with nearest
neighbor interactions. Initially agents have randomly distributed technological levels between
0 and 1 with uniform distribution

p0(τ) = 1, and P0(τ) = τ, f or 0 ≤ τ ≤ 1. (21)

In our simulations we assume periodic boundary conditions, thus all agents of the lattice have
four interacting partners. The rejection-adaptation dynamics based on the cost minimization
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Fig. 5. Illustration of the update rule of cellular automata. (a) presents the current
configuration of an agent with its 4 interacting partners. The value of the technological level
τ and of the two cost factors a1 and a2 are given. (b) demonstrates that the agent in the
middle has 4 possibilities to copy the technology of one of its social partners. The agent will
choose the one which provides the lowest cost C = 0.7. (c) The final configuration after
decision making. The color of the squares represents the technological level which also
corresponds to the color code of Fig. 1.

results in a non-trivial time evolution of the system which is followed by computer
simulations treating the system locally as a cellular automaton. In the simulations parallel
update is used, i.e. all agents try to minimize their costs in each time step assuming that their
interacting partners keep fixed. This parallel dynamics is one of the sources of the complex
behavior of the system.
If at time t the technological level of agent i which has n neighbors with technological levels
τ1, τ2, . . . , τn is τ, the CA rule to get its technological level in time t + 1 reads as

τt+1
i = τj, (22)

where j denotes the neighboring agent whose technological level is the most worthy to copy
for agent i, i.e.

C′(i, j) = min{C′(i, 1), C′(i, 2), . . . , C′(i, n)}, (23)

where C′(i, j) is the cost of agent i assuming that its technological level has been replaced with
the technological level of neighbor j. The update rule of our cellular automata is illustrated in
Fig. 5 on a square lattice. Snapshots of the cellular automata time evolution of the evolving
system are presented in Fig. 6 for a square lattice of size L = 100.
Applying the analytical results of Eq. (9) and Eq. (10) for the specific case of n = 4, the agents
will always copy the first, second, third or fourth highest τ of their local interacting partners
when the value of the parameter r falls in the intervals 0 < r < 1/3, 1/3 < r < 1, 1 < r < 3,
3 < r, respectively. (Note that the behavior of the system is symmetric with respect to r =
1.) Since the dynamics of the system governed by the cost minimization mechanism favors
local communities to have products of the same technological level, the agents tend to form
clusters with equal τ at any value of r. A very interesting special case is r = 1.0, when being
more advanced than the surroundings does not provide any advantages, it can be seen in
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Fig. 6. Snapshots of CA simulations of the model on a square lattice of size L = 100 for
different values of the cost factor: r = 1 (top), r = 2 (middle), and r = 4 (bottom). The color
code represents the actual technological level of the agents. The numbers indicate the time
step in which the snapshot was taken.

Fig. 6(top row) that the system evolves into a frozen cluster structure. The technological level
τ of these clusters covers practically the entire available range, i.e. the [0, 1] interval, with a
non-trivial distribution. The clustering implies that communities of low level technologies can
survive in the presence of highly advanced ones (see Fig. 6(top)). At 1 < r < 3, where more
advanced technologies are favored by the agents (locally the second largest τ), the cellular
automata simulation of the system converges into an almost completely homogeneous state
of a relatively high technological level (see Fig. 6(middle) where the specific case of r = 2 is
plotted). In the simulations, initially clusters of agents with identical τ grow and finally the
entire system evolves into a homogeneous state with all agents adopting the same technology.
Since locally the agents choose the second highest τ to adopt, both very low and very high
level technologies disappear during the evolution. The colors also illustrate that the limiting
value of τ adopted by almost all agents is smaller than the highest available value τmax = 1,
namely, it falls between 0.8 and 1. It follows from Eq. (10) that to reach the most advanced
technologies, r has to surpass the threshold value r = 3 in the case of constant n = 4 number
of neighbors. This regime is illustrated in Fig. 6(bottom) for the specific case of r = 4, where the
light color in the last snapshots indicates that the most advanced technology τmax = 1 spraw
onto the entire lattice.
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5.1 Distribution of technological levels in cellular automata – extreme order statistics

In order to give a quantitative characterization of the time evolution of the cellular automata
on a square lattice, we determined the distribution pt(τ) of technological levels τ, and the
mean

〈

τt
〉

of technological levels at different times t

〈

τt
〉

=
1
N

N

∑
i=1

τt
i , (24)

where N denotes the total number of agents.

b) c)a)

Fig. 7. Probability distribution of technological levels p(τ) obtained at different time values
for three different values of the cost factor r. (a) For the case of r = 1 the rescaled plot of the
distributions is presented, i.e. the distributions obtained at different times are rescaled by the
mean

〈

τt
〉

and by the standard deviation σt of the distributions. The master curve obtained
perfectly agrees with the standard Gaussian. (b) For r = 2 when the second largest
technological level is favored locally by agents, the distributions converge to a highly peaked
functional form. (c) In the range r > 3 agents always select the most advanced technology,
hence, the distributions can be very well described by extreme order statistics represented by
the continuous lines.

Figure 7(a) shows that for r = 1, when higher level technologies do not provide advantages
for agents, the distribution pt(τ) rapidly attains a Gaussian shape. In order to demonstrate
the validity of the Gaussian form, we present the rescaled distributions in the figure: the
distributions obtained at different times are rescaled by the average technological level

〈

τt
〉

of the corresponding state and by the standard deviation of the distribution σt so that pt(τ)σ
t

is plotted as a function of (τ −
〈

τt
〉

)/σt. The high quality data collapse that can be seen in Fig.
7(a) and the good quality fit with the standard Gaussian

g(x) = 1/
√

2πexp(−x2/2) (25)

demonstrate the validity of the Gaussian description of the evolution of the cellular automata.
The convergence to the Gaussian is very fast. In our test simulations after 30 − 40 iteration
steps the system completely forgot its initial uniform state and pt attained the Gaussian limit
distribution. This form implies that the fraction of agents having very high and very low
level technologies both decrease and agents tend to copy technologies in the vicinity of the
distribution mean. Consequently, the system does not have any technological progress, the
average technological level remains nearly constant during the time evolution, and

〈

τt
〉

→
0.5.
For the cost factor r > 1 agents locally prefer to adopt higher level technologies, namely, the
highest or the second highest τ value of the neighborhood will be adopted on the square lattice
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depending on the exact value of r. These local changes imply that the cellular automata rule
Eq. (23) gives rise to a more complex time evolution involving also extreme order statistics.
For 1 < r < 3 all the agents adopt the second highest available technology; hence, in a large
enough system the distribution of technological levels right after the first iteration step pt(τ)
can be described as the k = 3 rank extreme distribution Φk

M of M = 4 variables which are
all sampled from a uniform distribution. In general, the probability density function Φk

M(x)
of choosing the kth largest value among M realizations of the random variable x which has a
probability density p(x) and a distribution function P(x) can be cast into the form

Φk
M(x) =

M!
(k − 1)!(M − 1)!

P(x)k−1(1 − P(x))M−kp(x). (26)

It can be seen in Fig. 7(b) that by substituting the initial uniform distribution Eq. (21) into Eq.
(26) with the parameter setting M = 4 and k = 3, a perfect agreement is obtained between
our analytical predictions Φ3

4 and p1(τ) obtained from CA simulations. Unfortunately, at
higher iteration steps the distributions pt do not follow the functional form Eq. (26) when
we substitute Φk

M and the corresponding distribution function recursively on the right-hand
side. The reason is the overlap of the local neighborhoods of the lattice sites which modifies
the statistics of technological levels. By increasing the number of iterations, pt gets narrower
and converges to a sharply peaked function as the final homogeneous state is approached (see
Fig. 7(b) and Fig. 6). Consequently, the average value of the technological levels increases and
converges to a limit value which is lower than the available maximum τmax = 1. It has to be
emphasized that under this parameter settings the system exhibits considerable technological
progress due to the disappearance of low level technologies and to the proliferation of the
more advanced ones.
In the extreme case when the control parameter r becomes larger than 3, more advanced
technologies provide so much benefit that it is always advantageous for agents to adopt the
highest available technological level in the local neighborhood. Thus, pt(τ) rapidly converges
to a sharply peaked form the position of which approaches τmax = 1 through extreme
order distributions (see Fig. 7c). It is interesting to note that contrary to the previous case
of 1 < r < 3, in this regime r > 3 the distribution pt can be described by the extreme order
density function Φk

M Eq. (26) with k = M at any time t by taking into account that the size of
the neighborhood M increases as a function of time t. We found a recursive formula for the
time dependence of the parameter M

Mt+1 = M1 + 5 + 2(t − 1), with M1 = 4, (27)

which shows how information spreads in the system. The lines in Fig. 7(c) demonstrate
the excellent agreement of the above analytic prediction with the numerically obtained
distribution functions. Note that due to the symmetry of the system with respect to the
parameter value r = 1, the same holds also for r < 1/3 with Φ1

M, where the smallest value
(k = 1) of Mt variables given by Eq. (27) is selected. These results imply that the average
technological level in these regimes can easily be obtained analytically, i.e. the average of the
largest and of the smallest value of Mt variables with uniform distribution can be cast into the
form

〈τmax〉 =
Mt

Mt + 1
, 〈τmin〉 =

1
Mt + 1

. (28)

Substituting the recursive formula of Mt into Eq. (28) a perfect agreement is obtained with the
numerical results of

〈

τt
〉

Kun et al. (2007).
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6. Agents on complex networks

The success or failure of newly introduced technologies on the market can also depend on
the complexity of social contacts of users. This is especially valid for so-called networking
technologies where the practical value of the technology for an agent depends on the number
of social partners which already use the technology. Telecommunication technologies we are
also focusing on are prototypical examples where the topology of social contacts may play a
crucial role Mahajan & Peterson (1985); Rogers (1962).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

r

〈τ
〉 p=0

p=0.02

p=0.05

p=0.07

p=0.2

p=0.5

p=0.7

meanfield

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.65

0.7

0.75

0.8

0.85

0.9

0.95

p

〈τ
〉

r=1.4

r=1.7

r=2.4

(b)

Fig. 8. (a) Average technological level 〈τ〉 of the system obtained after long time evolution as
a function of r for several different values of the rewiring probability p. (b) 〈τ〉 as a function
of the rewiring probability p for three specific values of r. The presence of long range
connections can increase and even decrease the average technological level of the system
depending on the cost factor r.

In order to have a more quantitative understanding of this phenomenon in the framework
of our model, we implemented cellular automata simulations on a complex network of
agents obtained by the Watts-Strogatz method varying the value of the rewiring probability p
between 0 and 1 (see Section 3.3). The complexity of the underlying social network of agents
introduces two important features: (i) as the rewiring probability p increases, more and more
connections are established between remote agents introducing long range correlations in the
system and reducing the “diameter” of the network. (ii) The probability distribution of the
number of connections, i.e. the degree distribution of agents gets broader so that the number
of connections can span from 1 to high values. One of the outcomes of the master equation
approach was that the scatter of the degree makes the system more sensitive to the advantages
technologies provide so in CA simulations more interesting details can be expected.
To go beyond the limitations of the analytic approaches we carried out cellular automata
simulations on different topologies to determine the average technological level 〈τ〉 in the final
state of the time evolution when a frozen configuration is attained. The average technological
level of the final state 〈τ〉 is presented in Fig. 8(a) as a function of r for several different
values of the rewiring probability p. Note that the average technological level 〈τ〉 (r) is a
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monotonically increasing function of r for any value of the rewiring probability p. The plotted
functions are composed of distinct steps whose height and number are sensitive to the details
of the network topology. The steps are the consequence of the behavior described by Eq. (9),
i.e. the steps mark the interval borders for different degrees: e.g. for agents of n = 4 social
contacts we have 4 intervals – taking also into account the symmetric cases of r < 1 and
1 < r < 3 as well (see Eq. (9)) – which result in 3 steps. Increasing the rewiring probability p,
the degree distribution ρ(n) gets broader giving rise to an increase in the number of different
degrees in the network which then results in a higher number of steps of 〈τ〉 (r). It can be seen
in the degree distribution of a rewired lattice of rewiring probability p = 0.05 in Fig. 2(b) that
in this case the possible degrees of the network are n = 2, 3, 4, 5, 6. Using Eqs. (9) and (10) one
can determine the interval limits of r for each n value, from which the overall r limits of the
entire network can be obtained as 1/5, 1/4, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 4, 5. For comparison, in
Fig. 8(a) we also present the mean field solution Eq. (6) of the model obtained analytically for
the fully connected case, when all agents are connected with all others.
A very important outcome of the above calculations is that the degree polydispersity of agents’
social contacts makes the socio-economic system more sensitive to the details of the novel
technology, i.e. to the specific value of the cost factor r. It can be observed in Fig. 8(a) that
increasing the connectivity of the system, the presence of long range connections can increase
but can also decrease the average technological level attained in the final state depending on
the value of the cost factor r. For high enough cost factor r the long range contacts facilitate
the spreading of advanced technologies, while for lower r values the opposite effect occurs, i.e.
the dominance of low level technologies enhanced also by the long range contacts prevents
technological advancement. Figure 8(b) provides some quantitative insight into this effect,
where we present 〈τ〉 as a function of the rewiring probability p for three different values of r.
All the curves start from the same point at p = 0, since on a regular square lattice always the
third highest technology is selected when r falls in the interval 1 < r < 3. For increasing p the
curves converge to r dependent asymptotic values which can be both lower and higher than
the one at p = 0.

7. Discussion

In this chapter we presented an agent based model of the spreading of technological
advancements, where the technology is used for the interaction/communication of agents.
The model realizes a bottom-up approach to socio-economic systems which is especially
designed for a cellular automata reprezentation. Agents/cells of the model can represent
individuals or firms which use different level technologies to collaborate with each other.
Costs arise due to the incompatibility of technological levels measuring the degree of
difficulties in the usage of technologies. Agents can reduce their costs by adopting the
technologies of their interacting partners. We showed by analytic calculations and computer
simulations that the local adaptation-rejection mechanism of technologies results in a
complex time evolution accompanied by microscopic rearrangements of technologies with
the possibility of technological progress on the macro-level.
As a first step, simplified configurations of the model system were analyzed by analytical
calculations: A mean field approach was considered where each agent communicates with
all other agents. As to the next a master equation was derived which describes the discrete
time evolution of the system assuming no spatial correlation, i.e. no clustering of agents
according to their technological level. Already these simplified approaches revealed that the
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rejection-adoption rule of our cellular automata leads to a homogeneous final state whose
stability depends on the relative amount of advantages technologies provide for the users.
These results also reflected the phenomenon that competition in the market takes much longer
and it can be much more violent if the actors of the competition start from a nearly balanced
initial scenario.
The analysis of the model system in its entire complexity was carried out by cellular
automata simulations performed on a square lattice and on complex network topologies
of social contacts. Computer simulations revealed that agents tend to form clusters of
equal technological levels. If higher level technologies provide advantages for agents, the
system evolves to a homogeneous state but clusters show a power law size distribution for
intermediate times. The redistribution of technological levels involves extreme order statistics
leading to an overall technological progress of the system. We also demonstrated that the
topology of agents’ social contacts plays a crucial role in the spreading process leading to a
broad spectrum of novel behaviors. Analytical calculations and computer simulations showed
that long range connections on the social network can facilitate but it can also hinder the
diffusion of the advanced technology depending on the amount of advantages more advanced
technologies provide with respect to the low level ones.
Our model emphasizes the importance of copying in the spreading of technological
achievements and considers one of the simplest possible dynamical rule for the decision
mechanism. In the model calculations no innovation was considered, i.e., agents could
not improve their technological level by locally developing a new technology instead of
only taking over the technology of others. Compared to opinion spreading models like the
Sznajd-model Sznajd-Weron (2005); Sznajd-Weron & Sznajd (2000); Sznajd-Weron & Weron
(2002) and its variants A.T. Bernardes (2002); Stauffer (2002a;b), the main difference is that
in our case the technological level of agents is a continuous random variable; furthermore,
the decision making is not a simple majority rule but involves a minimization procedure.
Opinion of individuals can also be represented by a continuous real variable which makes
possible to study under which conditions consensus, polarization or fragmentation of the
system can occur. Such models show more similarities to our spreading model of technologies
Gandica et al. (2010); Gilbert (2008); Hegselmann & Krause (2002). It is interesting to note
that our model captures some of the key aspects of the spreading of telecommunication
technologies, where for instance mobile phones of different technological levels are used by
agents to communicate/interact with each other. In this case, for example, the incompatibility
of MMS-capable mobile phones with the older SMS ones may motivate the owner to reject or
adopt the dominating technology in his social neighborhood by taking into account the offers
of provider companies of the interacting partners.
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