
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



1 

An Interactive Method to Dynamically  
Create Transition Rules in a Land-use  

Cellular Automata Model 

Hasbani, J.-G., N. Wijesekara and D.J. Marceau 
Department of Geomatics Engineering,  

University of Calgary  
Canada  

1. Introduction 

Cellular automata (CA) models are increasingly applied to simulate a wide range of spatio-

temporal phenomena, including urban traffic (Sun and Wang, 2007), fire propagation 

(Ohgai et al., 2007), and insect infestation (Bone et al. 2006), but most importantly urban 

development (Almeida et al., 2008; Benenson and Torrens, 2004; Clarke et al., 1997; Santé et 

al., 2010; Shen et al., 2009; Van Vliet et al., 2009), and land-use changes (Ménard and 

Marceau, 2007; Moreno et al., 2010; Soares-Filho et al., 2002; Sui and Zeng, 2001). CA models 

are particularly suitable for land-use change modeling for several reasons. They are 

explicitly spatial and can be constrained in various ways to reflect local tendencies (Jenerette 

and Wu, 2001; Li and Yeh, 2000). It is also possible to specify for each simulated time step 

the quantity of land that should change from one land use to another (Jantz and Goetz, 

2005). Information from a-spatial models, like a population growth model, can be integrated 

into the CA model to spatially allocate the land-use changes (White et al., 1997). A stochastic 

factor can also be included in the model to take into account some degree of unpredictability 

in the system (Moreno et al., 2009). As a consequence, CA models are often designed to test 

what-if scenarios and policies in urban and regional planning (Erlien et al., 2006; Jantz et al., 

2003; Li and Yeh, 2004).  

However, a challenge when implementing a CA model is its calibration. Calibration 

involves finding the parameters of the transition rules and the numerical values of these 

parameters so that the rules closely correspond to the dynamics of the system under 

investigation. This process is complicated due to the large number of combinations involved 

when several cell states, state transitions, parameters, and parameter values are being 

considered (Li and Yeh, 2002a; Shan et al., 2008). In addition, such combinations do not 

necessarily yield unique solutions (Verburg et al., 2004). Since there is no obvious way of 

finding which parameter should or should not be included in the model, the transition rules 

are often based on the modeler’s intuitive understanding of the driving factors affecting the 

system (Wu, 2002).  

Statistical techniques, such as logistic and multiple regressions (Fang et al., 2005; Sui and 

Zeng, 2001; Wu, 2002), principal component analysis (Li and Yeh, 2002a), and multivariate 
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analysis of variance (Lau and Kam, 2005) have been proposed for CA calibration. 

Computational intelligence techniques have also been tested, including artificial neural 

network (Li and Yeh, 2002b; Pijanowski et al., 2002), genetic algorithm (Shan et al., 2008), and 

data mining (Wang et al., 2010). Other methods involve the systematic testing of parameters 

(Jantz and Goetz, 2005; Jantz et al., 2003) and iterative calibration to achieve reasonable 

goodness-of-fit (Straatman et al., 2004). While these approaches might provide satisfactory 

simulation results, they often leave the modeler with little control on the mathematical 

equations used to determine the transition rules and the difficulty of understanding the 

geographical meaning of these rules (Verburg et al., 2004). 

This paper describes a semi-automated, interactive method that was designed and 

implemented to dynamically create transition rules and calibrate a land-use CA model. The 

proposed method combines the benefits of conditional and mathematical rules and is 

adaptable in terms of number of land-use classes, and spatial and temporal scale of the input 

data. It allows the modeler to acquire information about the importance of the factors 

associated to historical land-use changes within the study area and to interactively select the 

parameter values required for the model calibration. A detailed description of the steps 

involved in the CA calibration is provided. The CA model is then used to answer the 

following questions: a) how sensitive is the model to the conditions involved in the 

calibration, including the cell size, neighborhood configuration, parameter values and 

external driving factors? b) what is the performance of the model, in terms of presence and 

location, in simulating land-use changes using the transition rules identified by the 

proposed calibration method?  

2. Methodology 

The study area is the dynamic eastern portion of the Elbow River watershed, located in 

southern Alberta, Canada, that covers an area of about 600 km2 (Figure 1). The area is 

experiencing considerable pressure for land-use development due to the booming of the 

Alberta economy and its proximity to the City of Calgary, a fast growing city of one million 

inhabitants. About 5% of the watershed lies within the City of Calgary; 10% lies within the 

Tsuu T’ina nation, 20% within the municipal district of Rocky View, and the remaining 65% 

within the Kananaskis country. The study area is covered by about 48% of forest, 40% of 

agriculture and grassland, and 10% of built-up areas. 

The historical land-use maps required for the CA calibration and validation were generated 

from Landsat Thematic Mapper imagery acquired during the summers of 1985, 1992, 1996, 

2001, 2006 and 2010 at the spatial resolution of 30 m. Seven dominant classes were 

identified, namely evergreen, deciduous, agriculture, rangeland and parkland, built-up 

areas, water and clear-cut. Field verification was conducted for the years 2006 and 2010 and 

ancillary data along with expert knowledge were used to verify the classification results. A 

computer program was developed and applied to identify and correct minor spatial-

temporal inconsistencies due to classification and georeference errors in the historical land-

use maps. 

A graph of the historical land-use trends reveals a decrease in the forested areas, a slight 

increase in parkland/rangeland, a sharper increase of built-up areas while agriculture 

slightly fluctuates, mostly from 2002 (Figure 2). 

www.intechopen.com



An Interactive Method to Dynamically Create Transition Rules  
in a Land-use Cellular Automata Model   

 

5 

 

 

Fig. 1. Location of the study area; the dashed line represents the western limit of the study 
area 

  

 

Fig. 2. Historical land-use trends in the study area 

The historical land-use maps also indicate that a considerable amount of land-use transition 
occurred in the study area during the period considered (Table 1). 
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From To Land-use transition (%) Total (%) 

Evergreen 6.23

Deciduous 6.41

Rangeland/Parkland 

Agriculture 

1.83

14.47 

Evergreen 11.40

Deciduous 17.88

Agriculture 65.97

Rangeland/Parkland 

Built-up 

2.91

98.16 

Agriculture Rangeland 
/Parkland 

43.52 43.52 

Table 1. Amount of land-use transitions observed in the historical maps from 1985 to 2010. 
e.g. 14.47% is the percentage of agriculture increase in 2010 from the existing area of 
agriculture in 1985 and 6.23%, 6.41%, 1.83% are the contributing portions to this increase 
from each land-use transition to agriculture 

2.1 Model implementation  

The CA model was written in IDL version 6.3 from ITT Visual Information Solutions 
(ITTVIS, 2007). IDL is an array-oriented interpreted language based on optimized C 
routines. As a consequence, an operation on an array can be performed at a speed 
unreachable by a traditional for-loop going through each element of an array. IDL also 
offers the advantages of being a multiplatform language, of having internal functions 
dealing with spatial data, and of being linked to ENVI, a remote sensing image analysis 
software.  
The model implementation includes three main steps: 1) the definition of the cell size, 
neighborhood configuration, and driving factors, 2) the transition rule extraction and the 
model calibration, and 3) the simulation procedure. 

2.1.1 Cell size, neighborhood configuration, and driving factors selection 

Several studies have shown that the cell size and neighborhood configuration have an 
impact on the outcomes of raster-based CA models and should not be arbitrarily chosen 
(Chen and Mynett, 2003; Kocabas and Dragicevic, 2006; Ménard and Marceau, 2005; Moreno 
et al., 2009; Pan et al., 2010; Samat, 2006; Benenson, 2007). To guide the selection of the cell 
size, an examination of the historical land-use maps was done, which revealed that most 
land-use changes were occurring over four or more contiguous pixels. To reduce 
computation time while maintaining the desired level of spatial details for the study, the 
land-use maps were resampled at the resolution of 60 and 100 m using the nearest neighbor 
algorithm available in ArcGIS 9.1 (ESRI, 2005). 
The neighborhood was designed to approximate a circle around a center cell. This decision 
was made in order to reduce spatial distortions, when compared to an extended Moore 
neighborhood, as every cell located at a given distance from the center cell is considered in 
the neighborhood (Li and Yeh, 2002b). The modeler can choose the desired number and size 
of concentric neighborhood rings around a cell. The different rings are all exclusive; a cell 
can only be located in a single ring, and there is no gap between two rings (Figure 3). Within 
each ring, the influence of the neighboring cells on the central cell is constant but this 
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influence is different between rings. Consequently, the continuous distance function used in 
most CA models to represent the influence of neighborhood cells has been replaced by a 
discrete distance function. This approach has the main advantage of greatly simplifying the 
definition of the cells’ influence as there is only one influence per ring. Moreover, these 
influences are dynamically found in the historical data and are not hard coded in the model, 
which allows the use of historical data at a different scale without changing the model. 
 

 

Fig. 3. Illustration of the neighborhood configuration used in the study corresponding to 
rings of 5, 9 and 17 cells  

While testing all the possible combinations of cell size (60 m and 100 m) and neighborhood 
configuration was beyond the scope of this study, several combinations were tested to 
identify which ones provide the best simulation outcomes. Details regarding the sensitivity 
analysis that was conducted are provided in Section 2.1.3.  
Land-use changes are complex spatial processes resulting from the interactions of socio-
economic (e.g., population growth), biophysical (e.g., slope and soil quality), and geographic 
(e.g., proximity and accessibility to services) factors operating at different spatial and temporal 
scales (Liu and Phinn, 2003; Verburg et al., 2004). In this study, in addition to the influence of 
the cells located within local and extended neighborhoods as previously described, four 
external factors were considered as parameters in the transition rules, namely the distance to 
Calgary city center, the distance to a main road, the distance to a main river, and the ground 
slope. Such factors are commonly quoted in the literature as influencing land-use changes 
(Fang et al., 2005; Li and Yeh, 2002b; Pijanowski et al., 2002; Wu, 2002). The aforementioned 
distances were calculated for each cell and each historical year using the Euclidian distance 
tool available in ArcGIS 9.1 (ESRI, 2006). The resulting distance files were stored as raster 
images of the same resolution and extent as the land-use maps.  

2.1.2 Rule extraction and model calibration 

The transition rule extraction and the model calibration include the following steps (Figure 
4). First, the set of historical land-use maps along with the maps corresponding to the 
driving factors are read and the number of cells of a particular state in the neighborhood of 
each central cell is computed. For each type of land-use change, all the cells that have 
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changed state in the historical land-use maps are identified. Frequency histograms are built 
to display the percentage of cells that have changed from one state to another when 
considering a particular driving factor and the cell state in the neighborhood. This provides 
quantitative information regarding the importance of each driving factor and neighborhood 
composition (i.e. state of the cells within the neighborhood) as being related to historical 
land-use changes within the study area. These histograms are interpreted by the modeler 
who identifies the ranges of values of each driving factor and neighborhood composition to 
be included in the conditional transition rules. This information is then automatically 
translated into mathematical transition rules.  
 

Historical 

land-use maps

Count cells in the 

neighborhood of each cell

Load driving 

factors

Mathematical transition 

rules are extracted from 

the historical data

Mathematical transition 

rules are extracted from 

the historical data

User visually identifies the 

ranges of values for the 

conditional transition rules

User visually identifies the 

ranges of values for the 

conditional transition rules

Display frequency 

histograms

Display frequency 

histograms

 

Fig. 4. Procedure for the extraction of the transition rules 

Figure 5 provides an example of such a frequency histogram. The total number of Evergreen 
cells in the study area compared to the number of Evergreen cells that have changed to 
Built-up areas is first displayed to show the relative contribution of the later in the study 
area (Figure 5a). A detailed representation and analysis of the proportion of cells that have 
changed from Evergreen to Built-up areas when considering their distance to a main road 
(Figure 5b) reveals that 8% of these cells were located between 150 and 180 m of a main road 
while 98% of the cells were within 1250 m of a main road. At 1250 m, there is an inflexion 
point on the cumulative occurrence curve, expressing that this distance is critical for 
interpreting the influence of a main road on this land-use change. The further a cell was 
located from a main road, the less often it changed from Evergreen to Built-up area.  
A graphical interface was designed to facilitate the interpretation of the frequency 
histograms and to allow a modeler to interactively select the ranges of values to be used for 
defining the conditional transition rules of the CA model (Figure 6). Each histogram can be 
displayed, allowing the modeler to change the bin size and to zoom in and out. By clicking 
on the histogram, the modeler identifies the ranges of values (minimum and maximum) for 
each neighborhood configuration, driving factor and cell state within that neighborhood. 
These values are stored in a table (Table 2) and further used to determine the conditional 
transition rules. An example of such a rule defined from Table 2 is: 

If   distance to a main road is between 0 and 427 m 
and  number of evergreen cells within the first neighborhood ring is between 0 and 17 
and   number of built-up cells within the second neighborhood ring is between 0 and 14 
and   number of agriculture cells within the third neighborhood ring is between 0 and 
168 
then the central Evergreen cell might change from Evergreen to Built-up area.     

All possible transition rules are created by combining the identified ranges of values from 
the histograms.  
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a)  

b)  

Fig. 5. a) Frequency histogram comparing the total number of Evergreen cells located at a 
certain distance from a main road (A), with the number of Evergreen cells that have changed 
from Evergreen to Built-up areas when considering their distance to a main road (B); b) 
Frequency histogram displaying the percentage of cells that have changed from Evergreen to 
Built-up areas when considering their distance to a main road; the dashed curve represents the 
cumulative occurrence of the cells located at a certain distance from a main road 

www.intechopen.com



 Cellular Automata - Simplicity Behind Complexity 

 

10 

 

Fig. 6. Frequency histogram displaying the percentage of cells that have changed from 
Evergreen to Built-up when considering the number of Built-up cells within 300 m of these 
cells and graphical interface designed for the selection of the range of values to be 
considered in the conditional transition rules  

 

Cell state Distance to 
a main road 

(m) 

Number of 
Evergreen cells 
located within 

the first 
neighborhood 

ring [0 to 300) m 

Number of Built-
up cells located 

within the second 
neighborhood 

ring [300 to 540) 
m 

Number of 
Agriculture 
cells located 
within the 

third 
neighborhood 

ring [540 to 
1020) m 

….. 

Evergreen 0 to 427 0 to 17 0 to 14 0 to 168  

 428 to 1408 18 to 50 15 to 59 169 to 258  

  51 to 74 60 to 92 259 to 377  

Table 2. Ranges of values identified from the frequency histogram to be used for 
determining the conditional transition rules 

To convert the conditional rules into mathematical rules, the mean and standard deviation 
of the previously defined ranges of values are computed. These values become the 
coefficients of the parameters of the mathematical transition rules. In this model, the 
coefficients of each transition rule do not lead to a probability of change, but rather to a 
Resemblance Index (RI) that quantitatively describes the similarity between the 
neighborhood content of a cell at the time of the simulation and the neighborhood contents 
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that have been used to generate the values of the parameters of the transition rule. If they 
are very similar, it is likely that the cell should change state for the corresponding type of 
land use. RI is inspired by the Minimum Distance to Class Mean remote sensing image 
classification algorithm (Richards, 2006). This algorithm calculates the mean point in the 
parameter space for pixels of known classes and then assigns unknown pixels to the class 
that is arithmetically closest. It is computed for every transition rule using Equation 1. 

 ∑
n - x

RI =
=1 σ

im i

i
i

 (1) 

where m is the number of layers (corresponding to the number of driving factors plus the 
number of land-use classes multiplied by the number of neighborhood rings), ni is the value 

in layer i, xi  is the mean value for layer i in the transition rule and σ i  is the standard 

deviation for layer i in the transition rule. If the standard deviation is zero for layer i, then 

n - x
= 0

σ

ii

i

 if n =xii or otherwise equals positive infinity. Accordingly, RI
+∈ ℜ  and the 

smaller RI is, the more similar is the cell neighborhood configuration to the ones used to 
define the transition rule. The mathematical rules offer greater flexibility compared to the 
conditional rules as they reflect significant values for each type of land-use change and are 
more adaptable to the neighborhood composition than the conditional rules identified from 
specific observations in the historical dataset. 
Table 3 presents some values representing the coefficients of the conditional and 
mathematical rules, respectively for three neighborhood configurations. The Min and Max 
columns are associated to the conditional transition rule, while the Mean and Standard 
deviation columns are related to the mathematical transition rule. An example of a 
mathematical rule defined from these values is,  
 

D. main road - 259.38 D. city center - 6 272.57
RI(rule1, Evergreen to Agriculture) = + + 

173.05 1 568.91

D. river - 3 465.61 Ground slope - 3.23 N0_Water - 0.17 N0_Evergreen - 10.71
+ + + +

310.77 1.79 0.44 5.25

N

{ }

0_Deciduous - 3.13 N0_Agriculture - 81.84 N0_Rangeland / Parkland - 0.04
+ + + 

3.42 5.75 0.29

N0_Built - up - 0.08 N1_Water - 0.44
+ 0 if N0_Clear - cut = 0;  otherwise + + 

0.35 0.86

N1_Evergreen - 19.24 N1_Deci
+ 

10.0

∞

{ }

duous - 4.75 N1_Agriculture - 170.93
+ + 

3.9 11.51

N1_Rangeland / Parkland - 0.28 N1_Built - up - 0.33
+ + 0 if N1_Clear - cut = 0;  otherwise + 

0.86 0.63
∞
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N2_Water - 1.46 N2_Evergreen - 86.53 N2_Deciduous - 14.53
+ + + 

1.94 43.49 12.15

N2_Agriculture - 573.8 N2_Rangeland / Parkland - 1.51 N2_Built - up - 2.13
+ + + 

44.90 3.76 4.15

N2_Clear - cut - 0.02

0.14

 

 

where Nx_LandUse is the number of cells of the corresponding land use within 
neighborhood rings of a cell. All the transition rules are stored in a file, so multiple 
simulations can be performed without re-calibrating the model. 
 

Neighborhood ring Layer Min Max Mean StdDev 

Cell state Evergreen 

Dist. to main road 0.0 780 259.38 173.05 

Dist. to city center 2473.86 8696.48 6272.57 1568.91 

Dist. to river 2979.53 4048.11 3465.61 310.77 

Cell 
attributes 

Ground Slope 0.0 7.29 3.23 1.79 

Nb cells state Water  0.0 2.0 0.18 0.44 

Nb cells state Evergreen 0.0 19.0 10.71 5.25 

Nb cells state Deciduous 0.00 11.00 3.13 3.43 

Nb cells state Agriculture 66.00 93.00 81.84 5.76 

Nb cells state Rangeland/Parkland 0.00 2.00 0.04 0.30 

Nb cells state Built-up 0.00 2.00 0.09 0.36 

[0-300) m 
 

Nb cells state Clear-cut 0.00 0.00 0.00 0.00 

Nb cells state Water  0.00 3.00 0.44 0.87 

Nb cells state Evergreen 0.00 32.00 19.24 10.00 

Nb cells state Deciduous 0.00 16.00 4.76 3.91 

Nb cells state Agriculture 151.00 192.00 170.93 11.52 

Nb cells state Rangeland/Parkland 0.00 4.00 0.29 0.87 

Nb cells state Built-up 0.00 3.00 0.33 0.64 

[300-540) m 
 

Nb cells state Clear-cut 0.00 0.00 0.00 0.00 

Nb cells state Water  0.00 6.00 1.47 1.95 

Nb cells state Evergreen 2.00 205.00 86.53 43.49 

Nb cells state Deciduous 1.00 51.00 14.53 12.16 

Nb cells state Agriculture 430.00 656.00 573.80 44.91 

Nb cells state Rangeland/Parkland 0.00 14.00 1.51 3.76 

Nb cells state Built-up 0.00 24.00 2.13 4.15 

[540-1020) m 
 

Nb cells state Clear-cut 0.00 1.00 0.02 0.15 

Table 3. Example of data used to establish the conditional and mathematical transition rules 
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2.1.3 Simulation procedure 

The simulation procedure includes these main steps. 

• The mathematical transition rules previously defined and a land-use map 
corresponding to the beginning of the simulation are read. 

• For each time step, the neighborhood configuration of every cell is read and the level of 
correspondence with the parameters of the transition rules is computed. 

• With respect to the user-specified constraints and to the influence of each rule, the cells 
that change state do it according to the rule having the highest level of correspondence. 

• To decide which cell should be associated to each type of land-use change, the model 
recursively sorts the type of land-use changes and for each of them selects the cell 
having the smallest RI value. Once the required number of cells associated to each type 
of land-use change is met or when no more cells can be assigned, the model writes the 
new land-use map and updates the statistics that correspond to the percentage of cells 
associated to each rule and each type of change. 

• If the numbers of cells associated to each rule and each type of land-use change is 
different than the numbers found from the historical data and previous time steps, a 
correction is applied at the next time step. For example, if 200 cells are to change from 
Agriculture to Built-up area but only 150 of them can according to their neighborhood 
configuration, 50 additional cells will be set to change at the next time step.  

Table 4 lists the land-use transitions that were considered during the simulations.  
 

From To 

Evergreen Agriculture 

Deciduous Agriculture 

Evergreen Built-up 

Deciduous Built-up 

Agriculture Built-up 

Rangeland/Parkland Built-up 

Rangeland/Parkland Agriculture 

Agriculture Rangeland/Parkland 

Table 4. Land-use transitions considered during the simulations 

Two sets of simulations were run. The first set was to test the model under various 

conditions. A sensitivity analysis to the cell size and neighborhood configuration was first 

carried out, followed by a sensitivity of the model to different ranges of values selected from 

the frequency histograms. Several ways of grouping the data values extracted from the 

histograms were tested for the calibration of the CA model: 1) the most dominant ranges of 

values ignoring flat areas, 2) the most dominant range of values concentrated around the 

mode, 3) the most dominant range of values dispersed away from the mode, and 4) the 

whole range of values of the histogram. Finally, to assess the importance of the selection of 

the external driving factors, simulations were conducted using four factors and different 

combinations of only three external factors. 

In each case, the CA was calibrated using the land-use maps of 1985 to 2001, simulations 

were performed from 2001 to 2006, and the simulated map of 2006 was compared to the 

reference map of the same year using two similarity measures based on Kappa coefficients. 

The first measure is the standard Kappa coefficient, which expresses the percentage of 
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agreement between two maps including both quantity and location information (Hagen, 

2003; Pan et al., 2010; Visser and de Nijs, 2006). Three statistics were calculated, respectively 

referred to as Kappa, Kloc and Khisto. Khisto measures the quantitative similarity between 

two compared maps, while Kloc measures the similarity of the spatial allocation of 

categories between the maps. Kappa represents the general level of spatial agreement 

between two maps and is the product of Kloc and Khisto.  

A drawback of the standard Kappa statistics is that they tend to over-estimate the agreement 

between a simulated map and a reference map because they do not take into account the 

percentage of cells that do not change state during the simulation period. In addition, they 

rely on a stochastic model of random allocation based on the sizes of the classes being 

compared to express the expected agreement. When simulating with a CA model, land-use 

allocation is not totally random since it depends on the initial conditions of the simulation. 

To compensate for these limitations, Van Vliet et al. (2010) introduced a coefficient of 

agreement called Kappa simulation that applies a more appropriate stochastic model of 

random allocation of class transitions that takes into account the information contained in 

the initial land-use map and the proportion of cells that does not change state over the 

simulation period. Three statistics were again calculated: Ksimulation that expresses the 

agreement between the simulated land-use map and the reference map, Ktransition that 

captures the agreement in terms of quantity of land-use transitions, and Ktransloc that 

measures the agreement between the two maps in terms of location of transition. Values of 

these coefficients vary from -1 to 1, the former value indicating a perfect disagreement 

between the two maps compared while the later indicating a perfect agreement. The 

standard and Kappa simulation coefficients were calculated using the Map Comparison Kit 

developed by the Research Institute for Knowledge System (RIKS BV, 2010). 

To carry out a validation test, a simulation was conducted using the best combination of 

conditions described above from 2001 to 2006 and to 2010. A comparison was performed 

between the simulated maps and the reference maps for the years 2006 and 2010. An 

additional simulation was conducted from 1985 to 2010 to illustrate how the simulated land 

uses change over the whole period of time compared to the changes observed in the 

reference maps.  

In all these simulations, a local constraint was applied to forbid built-up cells within the 

Tsuu T’ina nation. For the validation test where simulations were conducted from 2001 to 

2010 and from 1985 to 2010, and where the selection of external driving factors was tested, a 

global constraint was also applied to restrict the number of built-up cells at each iteration 

based on an average estimated from the historical population trends. 

3. Results 

3.1 Sensitivity analyses 

Table 5 presents the coefficients of agreement obtained when using a cell size of 60 m and 

100 m, respectively. As expected, the values of the standard Kappa statistics tend to be high. 

They are also very similar and do not allow a discrimination among the results. However, 

the values of Ksim, Ktransloc and Ktransition all reveal that the simulation results obtained 

with 60 m are in higher agreement with the reference map than the results achieved using a 

cell size of 100 m.     
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The Ksim coefficient also shows that the choice of neighborhood configuration affects the 
simulation outcomes. Using only two rings in the neighborhood definition considerably 
reduces the performance of the model, while the best outcome is achieved when using three 
rings of respectively 5, 9 and 17 cells. This indicates that an extended neighborhood that 
covers a distance up to 1020 m is more appropriate in this study area to capture the zone of 
influence on central cells.  
   

Cell 
size 

Standard 
Kappa 

Kloc Khisto Ksim Ktransloc Ktransition 

60 m 0.853 0.875 0.975 0.047 0.085 0.551 

100 m 0.850 0.873 0.974 0.043 0.078 0.546 

Table 5. Kappa coefficients of agreement obtained when using a cell size of 60 m and 100 m 
 

Neighborhood 
Configuration 

Standard 
Kappa 

Kappa 
simulation 

3-5 0.845 0.015 

3-5-15 0.850 0.037 

5-9-14 0.852 0.044 

5-9-15 0.852 0.045 

5-9-16 0.853 0.046 

5-9-17 0.853 0.047 

5-12-17 0.852 0.045 

6-9-15 0.849 0.031 

6-14-18 0.852 0.043 

6-14-19 0.852 0.045 

7-10-15 0.852 0.042 

7-10-16 0.852 0.044 

7-10-17 0.852 0.044 

7-13-17 0.850 0.034 

7-14-18 0.852 0.043 

7-14-19 0.852 0.044 

7-14-20 0.852 0.045 

7-15-19 0.852 0.043 

8-12 0.847 0.024 

8-15-19 0.852 0.042 

Table 6. Kappa coefficients of agreement obtained when using different neighborhood 
configurations  

The way ranges of values are selected from the frequency histograms to build the transition 
rules also affects the simulation outcomes (Table 7). The best results are achieved when the 
values are concentrated around the mode (Ksim = 0.069) compared to progressively more 
dispersed ranges of values (Ksim = 0.047 and 0.045). The worse result is achieved when a 
single range of values covering the whole histogram is selected (Ksim = 0.041). 
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Selection of 
parameter 

values Kappa KLocation KHisto
Kappa 

simulation KTransLoc KTransition 
Most dominant 
ranges of values

0.853 0.875 0.975 0.047 0.085 0.551 

Values 
dispersed from 
the mode 

0.853 0.875 0.975 0.045 0.081 0.551 

Values 
concentrated 
around the 
mode 

0.857 0.879 0.975 0.069 0.126 0.551 

One group of 
values 

0.852 0.874 0.975 0.041 0.074 0.551 

Table 7. Kappa coefficients of agreement obtained when using different grouping of values 
from the frequency histograms for the definition of the transition rules  

Simulation outcomes are also influenced by the number and selection of external driving 

factors (Table 8). Using four factors generates the highest agreement with the reference map 

both in terms of overall agreement (0.058) and location (0.140). The best combination of 

three factors includes distance to main road, distance to city center and distance to river, 

which were expected to play a major role in the increase of built-up areas. Ground slope also 

appears to be an important factor as revealed by the coefficients of agreement that are 

slightly lower than the ones obtained with the previous three factors. It can be observed that 

the amount of land-use transitions remains the same with the different combinations of 

factors; however, their spatial distribution changes as indicated by Ktransloc.  

 

Factor selection 
Standard 

Kappa 
Kloc Khisto Ksim KtransLoc Ktrans 

Dist. to main road 
Dist. to city center 
Dist. to river 
Ground Slope 

0.866 0.876 0.989 0.058 0.140 0.411 

Dist. to main road 
Dist. to city center 
Dist. to river 

0.864 0.874 0.989 0.042 0.102 0.411 

Dist. to main road 
Dist. to city center 
Ground Slope 

0.864 0.873 0.989 0.038 0.094 0.411 

Dist. to main road 
Dist. to river 
Ground Slope 

0.864 0.874 0.989 0.041 0.100 0.411 

Dist. to city center 
Dist. to river 
Ground Slope 

0.864 0.874 0.989 0.041 0.101 0.411 

Table 8. Kappa coefficients of agreement obtained when using four external driving factors 
compared to the combinations of only three factors  
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3.2 Results obtained with the best combination of conditions 

The Kappa coefficients of agreement obtained when running simulations from 2001 to 2006 

and to 2010 using the best combination of conditions are presented in Table 10. The 

agreement is higher for the year 2006 compared to the year 2010.  A more detailed analysis 

of the results provided by the per-class Kappa simulation coefficients for the years 2006 and 

2010 indicates that in terms of number of transition, the model achieves a relatively good 

agreement with the reference maps (values between 0.371 and 0.541), except for the class 

built-up where the values are slightly over 0.2 (Tables 11 and 12). The values obtained for 

Ktransloc are lower than those obtained for Ktransition indicating that the model is better at 

allocating the right amount of transition rather than their location.  

 

  Year 

 2006 2010 

Standard Kappa 0.869 0.782 

Kappa simulation 0.075 0.057 

Table 10. Overall Kappa coefficients of agreement obtained when running simulation from 
2001 to 2010 and comparing the results with the reference maps of 2006 and 2010  
 

  
Built-up 

Rangeland/ 
parkland 

Agriculture Deciduous Evergreen 

Standard 
Kappa 

0.816 0.669 0.860 0.906 0.947 

Kloc  0.817 0.684 0.865 0.917 0.948 

Khisto  0.999 0.978 0.994 0.988 0.999 

Kappa 
simulation 

0.009 0.140 0.096 0.084 0.065 

KtransLoc 0.045 0.259 0.178 0.165 0.174 

Ktransition 0.211 0.541 0.536 0.508 0.376 

Table 11. Per-class Kappa coefficients of agreement obtained when running simulation from 
2001 to 2006 and comparing the simulated map of 2006 with the reference map of 2006 
 

  
Built-up 

Rangeland/ 
parkland 

Agriculture Deciduous Evergreen 

Standard 
Kappa 

0.706 0.537 0.779 0.822 0.905 

Kloc  0.793 0.553 0.806 0.834 0.930 

Khisto  0.890 0.971 0.967 0.986 0.973 

Kappa 
simulation 

0.011 0.095 0.078 0.079 0.046 

KtransLoc 0.054 0.198 0.148 0.171 0.123 

Ktransition 0.204 0.483 0.530 0.460 0.371 

Table 12. Per-class Kappa coefficients of agreement obtained when running simulation from 
2001 to 2010 and comparing the simulated map of 2010 with the reference map of 2010  
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Fig. 7. Comparison of the reference map of 2010 (a) with the simulated map of the same year (b) 

A visual comparison of the 2010 reference and simulated maps shows an under-estimation 

of built-up cells by the model. This is mainly due to the considerable urban growth that 

occurred during the period 2006-2010 that is not accounted for in the global constraint of the 

model. The simulation of agricultural areas is affected by the above since most built-up cells 

in the reference map are located within the agricultural areas.  

Simulations run from 1985 to 2010 provide additional details and reveal that the CA model 

under-estimates the quantity of built-up areas (difference of 4.37% in 2010) and over-

estimates agriculture (difference of 5.73% in 2010) (Table 9). The proportion of 

rangeland/parkland simulated by the model does not differ greatly from the proportion 

observed in the reference maps. The under-estimation of deciduous can be explained by the 

fact that the CA model does not simulate the transition to this class.   

 

Land-use 1985 1992 1996 2001 2006 2010 

Evergreen 36.87 35.80(-0.47) 35.47(-0.40) 35.15(0.19) 34.61(0.18) 34.19(1.34) 
Deciduous 14.08 12.67(-1.50) 12.19(-1.85) 11.68(-2.45) 10.93(-2.81) 10.33(-2.29) 
Agriculture 36.16 37.56(1.29) 38.12(2.03) 38.65(3.91) 39.43(3.82) 40.06(5.73) 
Rangeland 
/Parkland 

4.48 5.07(0.75) 5.04(0.77) 4.99(0.62) 5.14(0.75) 5.26(0.25) 

Built-up 6.12 6.61(-0.80) 6.90(-1.31) 7.25(-2.19) 7.60(-2.18) 7.88(-4.37) 

Table 9. Percentage of the study area covered by the main land uses in the simulation results 
from 1985 to 2010. The variation with the original land-use maps is shown in parentheses; a 
positive value indicates an over-estimation by the model while a negative value indicates 
the opposite.  

The fact that values of Kappa simulation and Ktransloc are sometimes relatively low might 
be explained by the large number of land-use transitions considered in this study and the 
difficulty of capturing the dynamics specific to each type of transition. To obtain a 
preliminary assessment of how the model would perform with a reduced number of land-
use classes and transitions, a simulation was run with aggregated land-use maps in which 
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the number of land-use classes was reduced to five (water, forest, agriculture, built-up, and 
Tsuu T’ina nation) and only four transitions were considered, namely forest to agriculture, 
forest to built-up, agriculture to forest, and agriculture to built-up. The model was calibrated 
over the period 1985-2001 and the simulation was run from 1985 to 2006 using three external 
driving factors (distance to Calgary city center, distance to a main road, distance to the main 
river). Higher values were obtained for the three Kappa simulation statistics calculated 
(Table 14), confirming that the simulation results could be improved by either reducing the 
number of land-use transitions in the model or improving the rules for some of the land-use 
transitions considered.  
 

 1992 1996 2001 2006 

Kappa 0.947 0.941 0.929 0.917 

KLocation 0.951 0.947 0.938 0.939 

KHisto 0.996 0.994 0.991 0.976 

Kappa 
Simulation 

0.304 0.262 0.251 0.227 

KTransLoc 0.429 0.377 0.336 0.341 

KTransition 0.709 0.695 0.747 0.665 

Table 14. Overall Kappa coefficients of agreement obtained when running simulation with a 
reduced number of land-use transitions. 

4. Conclusion 

While the potential of CA models is increasingly acknowledged for land-use change studies, 
their calibration and the evaluation of their performance remains a challenge. In this 
research, we developed a calibration method that allows the modeler to interactively obtain 
information about historical land-use changes and the factors associated to these changes in 
order to automatically derive conditional and mathematical transition rules. When testing 
the applicability of this model in a study area in southern Alberta, sensitivity analyses were 
conducted to evaluate the influence of various conditions involved in the calibration of the 
model, including the cell size, the neighborhood configuration, the selection of the 
parameter values, and the number of driving factors. These analyses indicate that the 
simulation outcomes are affected by the selection of these conditions and that there exist no 
method to a priori identify the most adequate combination. 
Sensitivity of raster-based CA models to cell size and neighborhood configuration has been 
recognized by several authors over the last years. One approach to overcome this sensitivity 
to scale is the implementation of object-based CA models with the inclusion of a dynamic 
neighborhood as proposed by Moreno et al. (2009, 2010) and others (Hamman et al., 2007). 
While such models are computationally intensive and the handling of the topology 
cumbersome, they appear as a promising approach to better capture the meaningful entities 
composing a landscape along with their evolution.  
The calibration technique described in this paper provides useful insights regarding the 
number and choice of external driving factors that should be considered in the calibration. 
When taking into account external factors in addition to the influence of the cells within 
extended neighborhoods, the number of possible combinations of factors becomes too high 
to be thoroughly evaluated by a simple sensitivity analysis. Other approaches based on data 
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mining techniques might be useful in this context to guide the selection of driving factors for 
the calibration of the model (Wang et al., in press). 
Kappa simulation is a recently proposed coefficient of agreement specifically adapted to the 
context of evaluating the performance of a CA model (Van Vliet et al., 2010). While 
additional studies are needed to fully assess the interpretation potential of this coefficient,           
it appears very useful in this study to capture differences in simulation results when the 
standard Kappa was not sensitive enough to provide discrimination. In particular, it 
indicates that the CA model generates a relatively high agreement in terms of amount of 
land-use transitions, while the agreement in terms of location is lower. The fact that the 
values of the coefficients increase when reducing the number of land-use transitions 
considered in the model also reveals that additional external driving factors might be 
necessary to fully capture the dynamics of the study area.   
When interpreting the values of these coefficients however, we must keep in mind that they 
inform on the agreement between two maps on a cell-by-cell basis, without considering a 
slight displacement that might occur among the cells being compared. In addition, the 
comparison is performed between two possible states of the area being studied, respectively 
generated by the model and from observations acquired at a specific moment in time. These 
two states might differ, which does not necessarily imply that the simulated outcomes are 
‘wrong’.  
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