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1. Introduction

3-D audio systems, which provide a listener with 3-D sound illusion at arbitrary locations,
are an important part of immersive interfaces. 3-D audio systems can use headphones or
loudspeakers to present the 3-D sound. A main limitation of producing 3-D sound through
loudspeakers is distortion caused by room acoustics. Various methods of designing inverse
filters that can equalize the room response have been suggested. One of the common
problems of the previous methods is the restriction on the listener to sit in a relatively
narrow equalization zone. The problems were mainly caused by the fact that equalization
was conducted by controlling sound pressure at discrete points, and the points were not ideal
locations to obtain global control of the pressure field.
Most inverse filtering approaches are based on the cost function defined by using acoustic
pressure. These inverse filtering systems typically minimize the squared acoustic pressure
at a control point using the least square (LS) optimization Nelson et al. (1992)Nelson et al.
(1995)Kirkeby et al. (1998). These systems, however, often produce distortions such as
boosting at certain frequencies in the vicinity of the control point, because the room transfer
function (RTF), being defined in an acoustic pressure field, changes drastically with variation
in source and receiver positions inside a space. Thus, a listener’s slight movement easily
harms the inverse filtering performance. To overcome the problem of distortion, an alternative
equalization method called joint LS Abe et al. (1997)Ward (2000), was presented, in which a
sum of the squared pressures at several control points is minimized. A major disadvantage
of this approach is that global control over control points can be partly effective, sometimes;
it is not guaranteed. Recently, the filters for crosstalk cancellation were designed using the
minimax optimization Rao et al. (2007). The minimax approach is known to provide better
channel separation in low-frequency than LS approach with marginal improvement Rao et al.
(2007). But it still inherits the distortion problems mentioned previously, since it is also based
on acoustic pressure at the control point.
Another approach to the problem of room transfer function (RTF) variations with source and
receiver position is equalization via a vector quantization (VQ) method Mourjopoulos (1994),
in which an inverse filter is updated during operation using an RTF codebook generated
by using the VQ method. Although the inverse filtering using VQ methods can resolve the
problems of previous methods by making them effective for all possible source and receiver
positions inside the enclosure, the method needs large sets of off-line measurements of RTFs
to make the RTF codebook and additional tracking modules to find receiver positions.
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In this chapter, we present an alternative approach to the problem of room equalization.
This approach utilizes a new performance function based on energy density. The idea of
energy density control has been developed in the field of active noise control for the global
attenuation of broadband noise fields Sommerfeldt & Nashif (1994). It was proven that the
energy density control system outperforms the squared pressure system since the former
system is capable of observing more modes of the pressure field in an enclosure than the
latter. More specifically, if the magnitude of the potential energy in the form of pressure
density associated with a particular mode goes to zero at a control point, the kinetic energy
in the form of particle velocity will approach a maximum. Thus the algorithm is useful in
widening the control zones. We will begin with reviewing the previous approaches to provide
robust inverse filtering and their problems. Later, details of the energy density control will be
described in application, such as in room equalization.

2. Inverse filtering for multichannel sound reproduction system

When a sound source generates a sound field in a room, a large number of echoes build up and
then slowly decay as the sound is absorbed by the walls and the air, creating reverberation.
It is a desirable property of auditoriums to the extent that it helps to overcome the inverse
square law dropoff of sound intensity in the enclosure. However, if it is excessive, it makes the
sounds run together with loss of articulation - the sound becomes muddy. In addition, they
are also undesirable when reproducing a desired sound field in a room. A digital equalization
filter can be used to compensate for deficiencies in a loudspeaker-room frequency response
for sound reproduction systems. In order to design a sound reproduction system of this kind,
one essentially has to invert the transfer function of the reproduction environment.

2.1 Previous approaches

2.1.1 Equalization based on joint LS optimization

Fig. 1 shows the general form of the inverse filtering network for controlling L points where
hp,ml(n), m = 1, · · · , M, l = 1, · · · , L, n = 0, · · · , Nh − 1, represents Nh × 1 the acoustic
impulse response vector of the path from the mth loudspeaker to the lth control point. To
measure the acoustic impulse responses, in general, microphones are located at the control
points and a test signal is radiated through loudspeakers. Thus, the impulse responses are
obtained in the acoustic pressure field. Given the impulse responses, the objective of designing
an equalization system is to find FIR filters wm(n), n = 0, · · · , Nw − 1, such that the recorded
signals are reproduced perfectly at the control points by making the equalized response as
close as possible to the desired one.
The equalized response between the desired and actual impulse responses at the lth control
point from M sources can be expressed as

d̂p,l(n) =
M

∑
m=1

Nh+Nw−2

∑
k=0

wm(k)hp,ml(n − k), n = 0, · · · , Nh + Nw − 1. (1)

This can be written in a matrix form as

d̂p,l =
[

Hp,1l Hp,2l · · · Hp,Ml
]

⎡

⎢

⎢

⎢

⎣

w1
w2

...
wM

⎤

⎥

⎥

⎥

⎦

, (2)
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Fig. 1. Block diagram of the inverse filtering network.

where d̂p,l = [d̂p,l(0) d̂p,l(1) · · · d̂p,l(Nh + Nw − 2)]T is an (Nh + Nw − 1) × 1 equalized

response vector, wm = [wm(0) wm(1) · · · wm(Nw − 1)]T is an Nw × 1 weight vector of the
equalization filter, and the matrix Hp,ml is an (Nh + Nw − 1)× Nw convolution matrix defined
using the acoustic impulse response as follows:

Hp,ml =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

hp,ml(0) 0
...

. . .
...

hp,ml(Nh − 1)
. . . hp,ml(0)

...
. . .

...
0 hp,ml(Nh − 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3)

Thus, the equalized response for M sound channels and L control points can be stacked as

⎡

⎢

⎢

⎢

⎢

⎣

d̂p,1

d̂p,2

...

d̂p,L

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

Hp,11 Hp,21 · · · Hp,M1

Hp,12 Hp,22 · · · Hp,M2

...
...

. . .
...

Hp,1L Hp,2L · · · Hp,ML

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

w1
w2

...
wM

⎤

⎥

⎥

⎥

⎦

(4)

or, more compactly as

d̂p = Hpw. (5)

The vector of error between the desired and actual impulse responses at the L control points
can now be represented as

ep = dp − Hpw (6)
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where dp = [dT
p,1 d

T
p,2 · · · d

T
p,L]

T represent the desired impulse responses. Finally, an optimal

weight vector can be obtained by minimizing the error between the desired and actual impulse
responses. In an LS sense, the equalization filters are designed using a cost function:

JSP(w) =
∥

∥dp − Hpw
∥

∥

2
(7)

where ‖ · ‖2 denotes the vector 2-norm. The optimum set of coefficients in this case is given by

wSP,o = H
+
p dp (8)

where + denotes pseudo inverse, so that H+
p =

(

HT
p Hp

)−1
HT

p . Because the equalization

filters in this case jointly minimize the sum of squared errors at the multiple control points,
it is referred to as the joint LS method Ward (2000)Abe et al. (1997). Note that, for L = 1,
the design method reduces to LS method Nelson et al. (1992)Nelson et al. (1995)Kirkeby et al.
(1998).
The optimization method based on squared pressure is widely used because it guarantees to
have a unique global minimum. However, it is found that the equalized response away from
the error sensor position can be worse than the unequalized response in such a design method
Elliott & Nelson (1989).

2.1.2 Equalization based on minimax optimization

An alternative approach to the design of equalization filters is to use minimax optimization
techniques. Now, the cost function becomes

JPM(w) =
∥

∥dp − Hpw
∥

∥

∞
(9)

where ‖ · ‖∞ denotes the L∞ norm. It was originally proposed to design crosstalk cancellation
filters Sturm (1999) but it can be applicable for designing equalization filters. The second-order
cone programming (SOCP) approach can be used to design equalization filters in the minimax
sense. The SOCP provides the optimization problem can be solved using interior point solvers
such as the Self-Dual-Minimization (SeDuMi) toolbox of MATLAB Sturm (1999).
According to the results in Sturm (1999), the minimax approach gives better channel
separation at low frequencies than the LS method. The same can be expected when it is
used for the design of equalization filters, but it is also easily harmed by the movement
of the listener’s changes in location since this method inherits the robustness problem of
equalization in the pressure field.

2.1.3 Equalization by vector quantization (VQ)

All-pole modeling of room responses can achieve reduction in the room transfer function
(RTF) and the resulting equalizer order Mourjopoulos & Paraskevas (1991). According to this
method, the all-pole model of the RTF with coefficients, ak, k = 1, 2, · · · , K, is defined as

Hap(z) =
G

1 +
K
∑

k=1
akz−k

(10)

where G is an arbitrary gain constant, K is the model order. And the following equation is the
all-pole RTF equalizer’s impulse response when G = 1:

w(n) = Z−1

[

1

Hap(z)

]

. (11)
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It is clear that an all-pole RTF equalizer will not achieve perfect equalization, because the
all-pole model succeeds in representing poles of RTF, which correspond to resonances of
RTF. This method, however, can achieve a required reduction in the equalizer order at some
expense of its performance Toole & Olive (1988) and be used as the first stage of RTF
processing at a second stage VQ . The use of vector quantization (VQ) can optimally classify
such responses, obtained at different source and receiver positions Mourjopoulos (1994). Fig.
2 shows a block diagram for application of a VQ equalizer. By using the VQ method, the
extremely large set of possible RTFs inside the enclosure will be classified into a smaller
number of groups, so that a three-dimensional codebook of RTFs can be established, which can
be used for equalizer design. During equalizer operation, the coefficients for equalization will
be downloaded into the equalizer when it is detected that the listener is moving into a location.
The combination of all-pole RTF modeling and the VQ method can solve the problems of
the previous methods by making them effective for all possible source and receiver positions
inside the enclosure.

Fig. 2. Block diagram for application of VQ equalizer Mourjopoulos (1994).

2.2 Practical problems

As stated previously, most room equalization research is based on the cost function defined
by using acoustic pressure and these equalization systems typically minimize the squared
acoustic pressure at a control point using LS optimization Nelson et al. (1992)Nelson et al.
(1995)Kirkeby et al. (1998)Abe et al. (1997)Ward (2000)Mourjopoulos (1994)Elliott & Nelson
(1989). However, by controlling the acoustic pressure, the observability problem that leads
to performance degradation happens. This is due to the magnitude of potential energy in
the form of pressure associated with a particular mode goes to zero at the control point.
Previous studies have shown that the geometry of the loudspeakers have a significant effect
on the robustness of the inverse filtering Ward & Elko (1999). At certain frequencies, the sound
signal arriving from the contralateral loudspeaker is delayed by approximately a half-period
when compared with the signal coming from the ipsilateral loudspeaker. In a typical stereo
setup with loudspeaker angle of 30◦ relative to the listener, the difference of the propagation
path lengths between one loudspeaker and two listening points corresponding to the ear
positions is 80 − 100mm. Thus, in such a setup, one of the frequencies being involved in the
signal cancellation is 1700Hz which corresponds to 190mm wavelength. At such frequencies,
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the inverse filtering based on pressure control is associated with numerical problems that
seriously impair the robustness of the control system. In Ward & Elko (1999), the effect of
loudspeaker position on the robustness of crosstalk cancellers was analyzed and a simple
expression for determining the optimum loudspeaker positions was derived.
On the other hand, the VQ method requires previous large sets of off-line measurements
of RTFs in order to design the enclosure’s codebook and an additional tracking module is
necessary to deal with the listener’s movement. In Gardner (1997), Gardner employed a
head tracking module using a camera in order to solve the performance degradation of the
binaural synthesizer and the crosstalk canceller being caused by head movement. Fig. 3 shows
a head-tracked 3-D loudspeaker audio system. The binaural synthesis block is to synthesize
the ear signals corresponding to the target scene by appropriately encoding directional cues,
and the crosstalk cancellation network delivers these signals to the listener without distortions
by inverting the acoustic impulse response of the path from loudspeakers to the listener. When
the listener moves away from the listening point, the crosstalk canceller and the binaural
synthesis module are steered to the location of the tracked listener with the help of the head
tracker module. In such a way, the 3-D audio system can preserve the 3-D illusion over a large
listening area.

Fig. 3. Block diagram of head-tracked 3-D loudspeaker audio system.

3. Robust inverse filtering for multichannel sound reproduction system

Acoustic energy density function is defined using acoustic pressure and particle velocity.
By controlling acoustic energy density, the observability problems that often limit the
performance when controlling the pressure field are effectively overcome. To control acoustic
energy density, however, a velocity sensor or equivalent estimation method is required.

3.1 Acoustic energy density

The time-averaged acoustic energy density at a point in space, x = (x, y, z), is defined as

ξ(x) =
1

4ρc2
|p(x)|2 +

ρ

4
|�v(x)|2 (12)
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where ρ is the ambient fluid density, c is the acoustic wave speed, p(x) is the acoustic pressure,
and �v(x) = (vx(x), vy(x), vz(x)) is the acoustic velocity vector. Note that acoustic energy
density consists of potential energy density in the form of pressure and kinetic energy density
in the form of particle velocity. Thus, it can be said that systems based on the squared pressures
use only half of the acoustic information. Minimizing the sum of the squared pressure, which
is part of the potential energy, at discrete points in space may significantly increase both
the kinetic energy at those points as well as the total energy in the enclosure. The squared
pressure system therefore often yields only local control. On the other hand, minimizing the
sum of the total energy density at discrete points can yield improved equalization over a wide
area covered by the control points since the energy has been definitely reduced at least at the
specified points in space Parkins et al. (2000).
As previously mentioned, the acoustic pressure-based control inherently suffers from the
observability problem that limits performance. One way of overcoming this problem is to
control the acoustic energy density that is expected to provide robust equalization due to
fairly uniform distribution of acoustic energy density.

Fig. 4. Block diagram of the inverse filtering based on energy density control.

3.2 Equalization based on energy density control

Fig. 4 shows a block diagram of the inverse filtering system with L control points. The acoustic
impulse responses in the velocity field at the lth control point due to M sources are described
as

d̂vx,l(n) =
M

∑
m=1

Nh+Nw−2

∑
k=0

wm(k)hvx ,ml(n − k), (13)

d̂vy,l(n) =
M

∑
m=1

Nh+Nw−2

∑
k=0

wm(k)hvy ,ml(n − k), (14)
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d̂vz,l(n) =
M

∑
m=1

Nh+Nw−2

∑
k=0

wm(k)hvz ,ml(n − k), (15)

where the subscript vx, vy, and vz refer to the x, y, and z-directional components of velocity,

respectively. Let d̂T
v,l and Hv,ml, respectively, denote the 3× 1 velocity vector and 3(Nh + Nw −

1) × Nw convolution matrix as given by

d̂
T
v,l =

[

d̂vx,l(n) d̂vy,l(n) d̂vz,l(n)
]T

, (16)

Hv,ml =

⎡

⎣

Hvx,ml
Hvy,ml

Hvz ,ml

⎤

⎦ . (17)

The elements Hvx,ml , Hvy,ml , and Hvz,ml are matrices defined similarly to Eq. (3). Now, the

equalized velocity response at the control point l can be written as

d̂
T
v,l =

[

Hv,1l Hv,2l · · · Hv,Ml

]

⎡

⎢

⎢

⎢

⎣

w1
w2

...
wM

⎤

⎥

⎥

⎥

⎦

. (18)

The equalized velocity responses can be stacked in a matrix as

⎡

⎢

⎢

⎢

⎣

d̂v,1

d̂v,2
...

d̂v,L

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

Hv,11 Hv,21 · · · Hv,M1
Hv,12 Hv,22 · · · Hv,M2

...
...

. . .
...

Hv,1L Hv,2L · · · Hv,ML

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

w1
w2

...
wM

⎤

⎥

⎥

⎥

⎦

(19)

or
d̂v = Hvw. (20)

Now, the vector of error between the desired and equalized responses in the velocity field at
the L control points is given as

ev = dv − Hvw (21)

where dv = [dT
v,1 dT

v,2 · · · dT
v,L]

T represent desired impulse responses in velocity fields. Using

Eqs. (6) and (21), the acoustic energy density at the control points is expressed as

ξ =
1

2ρc2

[

e
T
p ep + (ρc)2

e
T
v ev

]

. (22)

For controlling the energy density, the optimal weight vector is determined by the following
cost function:

JED(w) =

∥

∥

∥

∥

[

dp

(ρc) dv

]

−

[

Hpw

(ρc) Hvw

]∥

∥

∥

∥

2

. (23)

Note that the modified energy density, i.e. (2ρc2)ξ, is chosen as the cost function. The optimum
filter coefficients are then

wED,o =

[

Hp

(ρc)2
Hv

]+ [

dp

(ρc)2
dv

]

. (24)
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3.3 Velocity components estimation

As shown in Eq. (19), we need the x, y, and z-components of the acoustic velocity to implement
the energy density control method. To this end, we can use a particle velocity sensor such as
a laser vibrometer or velocity microphone. But a more convenient method of doing the same
is approximated estimation using two pressure sensors (microphones). In this method, it is
assumed that two microphones are highly phase-matched.
Euler’s equation in one dimension relates the gradient of the acoustic pressure to the
time-derivative of the acoustic velocity at a point as

ρ
∂vx(x, t)

∂t
= −

∂p(x, t)

∂x
. (25)

Thus, the acoustic velocity is obtained using

v̂x(x, t) = −
1

ρ

∫ t

−∞

∂p(x, t)

∂x
dt. (26)

By approximating the pressure gradient as the pressure difference in a small distance, Eq. (35)
can be approximated as

v̂x(x, t) ≈ −
1

ρ

∫ t

−∞

p2(t) − p1(t)

∆x
dt (27)

where p1(t) and p2(t) are the pressures measured by two closely spaced microphones with
a distance ∆x. Integration can be performed using a digital integrator Hodges et al. (1990)
expressed in a simple recursive form:

v̂x(n) = v̂x(n − 1) −
1

ρ∆x fs
[p2(n)− p1(n)] e−1/ fs (28)

where fs denotes the sampling frequency.

3.4 Robustness analysis

For ease of analysis, we define the transfer function (TF) between the mth loudspeaker and
the lth control point as Ward & Elko (1999)

Hp,ml(ω) = ej2πλ−1∆ml , (29)

where λ is the wavelength and ∆ml is the distance between the loudspeaker and the control
point. It should be noted that this model disregards both propagation attenuation and the
head shadow effect. Assuming a transaural system, the transfer functions between the two
loudspeakers and the two microphones are collectively expressed as

Hp(ω) =

[

Hp,11(ω) Hp,12(ω)
Hp,21(ω) Hp,22(ω)

]

. (30)

Then the robustness of the equalization system is reflected by the condition number of the
matrix Hp(ω) Ward & Elko (1999) defined as

cond
{

Hp(ω)
}

=
σmax

(

H
H
p (ω)Hp(ω)

)

σmin

(

H
H
p (ω)Hp(ω)

) , (31)
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where σmin(·) and σmax(·) denote the smallest and largest singular values, respectively.
Suppose that the TF matrix is acoustically symmetric so that Hp,11(ω) = Hp,22(ω) and

Hp,21(ω) = Hp,12(ω). We now have

H
H
p (ω)Hp(ω) = 2

∣

∣Hp,11(ω)
∣

∣

2
[

1 cos(2πλ−1∆)
cos(2πλ−1∆) 1

]

, (32)

where ∆ denotes the interaural path difference given by ∆11 − ∆12. Singular values can be
found from the following characteristic equation:

(1 − k)2 − cos2(2πλ−1∆) = 0. (33)

By the definition of robustness, the equalization system will be the most robust when

cos(2πλ−1∆) = 0 (Hp(ω) is minimized) and the least robust when cos(2πλ−1∆) = ±1
(Hp(ω) is maximized) Ward & Elko (1999).
A similar analysis can be applied to acoustic energy density control. The composite transfer
function between the two loudspeakers and the two microphones in the pressure and velocity
fields becomes

Hed(ω) =

⎡

⎢

⎢

⎣

Hp,11(ω) Hp,21(ω)
(ρc)Hv,11(ω) (ρc)Hv,21(ω)
Hp,12(ω) Hp,22(ω)

(ρc)Hv,12(ω) (ρc)Hv,22(ω)

⎤

⎥

⎥

⎦

, (34)

where Hv,ml(ω) is the frequency-domain matrix corresponding to Hv,ml. Note that the

pressure and velocity at a point in space x = (x, y, z), −→v (x), and p(x) are related via

jωρ−→v (x) = −∇p(x), (35)

where ∇ represents a gradient. Using this relation, the velocity component for the x direction
can be written as

Hvx,ml(ω) =
1

ρc
·

∆xml

d
Hp,ml(ω), (36)

where d and ∆xml denote the distance and the x component of the displacement vector
between the mth loudspeaker and the lth control point, respectively. Note that the velocity
component for the y and z directions can be expressed similarly. Now we have

H
H
ed(ω)Hed(ω) = 2

[

2 Q cos(2πλ−1∆)
Q cos(2πλ−1∆) 2

]

, (37)

where

Q = 1 +
∆x11∆x12 + ∆y11∆y12 + ∆z11∆z12

d11(d11 + ∆)
. (38)

Singular values can be obtained from the following characteristic equation:

(2 − k)2 −
(

Q cos
(

2πλ−1∆
))2

= 0. (39)

From Eqs. (33) and (39), it can be noted that the maximum condition number of Hp(ω) equals

to infinity, while that of Hed(ω) is (2 + Q)/(2 − Q), when cos(2πλ−1∆) = ±1. Eq. (38) also
shows that the maximum condition number of the energy density field becomes smaller as ∆

increases because Q approaches to 1. Now, by comparing the maximum condition numbers,
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Fig. 5. The reciprocal of the condition number.

the robustness of the control system can be inferred. Fig. 5 shows the reciprocal condition
number for the case where the loudspeaker is symmetrically placed at a 1 m and 30◦ relative
to the head center. The reciprocal condition number of the pressure control approaches to
zero, but the energy density control has the reciprocal condition numbers that are relatively
significant for entire frequencies. Thus, it can be said that the equalization in the energy
density field is more robust than the equalization in the pressure field.

Fig. 6. Simulation environments. (a) Configuration for the simulation of a multichannel
sound reproduction system. (b) Control points in the simulations. l0 corresponds to the
center of the listener’s head.
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4. Performance Evaluation

We present simulation results to validate energy density control. First, the robustness of
an inverse filtering for multichannel sound reproduction system is evaluated by simulating
the acoustic responses around the control points corresponding to the listener’s ears. The
performance of the robustness is objectively described in terms of the spatial extent of the
equalization zone.

4.1 Simulation result

In this simulation, we assumed a multichannel sound reproduction system consisting of four
sound sources (M = 4) as shown in Fig. 6(a). Details of the control points are depicted in
Fig. 6(b). We assumed a free field radiation and the sampling frequency was 48 kHz. Impulse
responses from the loudspeakers to the control points were modeled using 256-tap FIR filters
(Nh = 256), and equalization filters were designed using 256-tap FIR filters (Nw = 256). The
conventional LS method was tried by jointly equalizing the acoustic pressure at l1, l2, l3, and l4
points, and the energy density control was optimized only for the l0 point. The delayed Dirac
delta function was used for the desired response, i.e., dp,l0

(n) = · · · = dp,l4
(n) = δ(n − n0).

Center The control point (cm)
frequency (0, 0) (0, 5) (2.5, 2.5) (5, 0) (5, 5)

500 Hz 0.06 -0.28 -0.13 -0.42 -0.28
1 kHz 0.30 -1.39 -0.60 -1.91 -3.55
2 kHz 1.26 -7.61 -2.76 -14.53 -10.25

Table 1. The error in dB for the pressure control system based on joint LS optimization at each
center frequency.

Center The control point (cm)
frequency (0, 0) (0, 5) (2.5, 2.5) (5, 0) (5, 5)

500 Hz 0.00 0.25 0.09 -0.21 0.03
1 kHz 0.00 0.25 0.06 -0.95 -0.76
2 kHz 0.00 0.25 -0.69 -4.50 -4.58

Table 2. The error in dB for the energy density control system at each center frequency.

We scanned the equalized responses in a 10 cm square region around the l0 position, and
results are shown in Fig. 7. Note that only the upper right square region was evaluated due
to the symmetry. For the energy density control, velocity x and y were used. Velocity z was
not used. As evident in Fig. 7, the energy density control shows a lower error level than the
joint LS-based squared pressure control over the entire region of interest except at the points
corresponding to l2 (2 cm, 0 cm) and l4 (0 cm, 2 cm), where the control microphones for the
joint LS control were located.
Next, an equalization error was measured as the difference between the desired and actual
responses defined by

C(dB) = 10 log

⎧
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Fig. 7. The spatial extent of equalization by controlling pressure based joint LS optimization
and energy density.
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where ωmin and ωmax denote the minimum and maximum frequency indices of interest,
respectively. In order to compare the robustness of equalization, we evaluated the pressure
level in the vicinity of the control points. The equalization errors are summarized in Tables
1 and 2. Results show that the energy density control has a significantly lower equalization
error than the joint LS-based squared pressure control, especially at 2 kHz where there are
7 ∼ 10 dB differences.

Fig. 8. A three-dimensional plot of the error surface for the pressure control (left column) and
the energy density control (right column) at different center frequencies.

Finally, three-dimensional contour plots of the equalization errors are presented in Fig. 8.
Fig. 8(a) and (d) show both methods have similar equalization performance at 1 kHz due
to the relatively long wavelength. However, Figs. 8 (a), (b), and (c) indicate that the error
of the pressure control rapidly increases as the frequency increased. On the other hand,
the energy density control provides a more stable equalization zone, which implies that the
energy density control can overcome the observability problem to some extent. Thus, it can
be concluded that the energy density control system can provide a wider zone of equalization
than the pressure control system.

4.2 Implementation consideration

It should be mentioned that it is necessary to have the acoustic velocity components
to implement the energy density control system. It has been demonstrated that the
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two-microphone approach yields performance which is comparable to that of ideal energy
density control in the field of the active noise control system Park & Sommerfeldt (1997). Thus,
it is expected that the energy density control being implemented using the two-microphone
approximation maintains the robustness of room equalization observed in the previous
simulations.
To examine this, we applied two microphone techniques, which were described in section 3.3,
to determine the acoustic velocity along an axis. By using Eq. (28), simulations were conducted
for the case of ∆x = 2cm to evaluate the performance of the two-sensor implementation.
Here, l0 and l2 are used for estimating the velocity component for x direction and l0 and l4
are used for estimating the velocity component for y direction; the velocity component for
z direction was not applied. The results obtained by using the ideal velocity signal and two
microphone technique are shown in Fig. 9. It can be concluded that the energy density system
employing the two microphone technique provides comparable performance to the control
system employing the ideal velocity sensor.

Fig. 9. The performance of the energy density control algorithm being implemented using the
two microphone technique.

5. Conclusion

In this chapter, a method of designing equalization filters based on acoustic energy density
was presented. In the proposed algorithm, the equalization filters are designed by minimizing
the difference between the desired and produced energy densities at the control points.
For the effective frequency range for the equalization, the energy density-based method
provides more robust performance than the conventional squared pressure-based method.
Theoretical analysis proves the robustness of the algorithm and simulation results showed
that the proposed energy density-based method provides more robust performance than the
conventional squared pressure-based method in terms of the spatial extent of the equalization
zone.
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