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Control of a Simple Constrained MIMO System 
with Steady-state Optimization 

František Dušek and Daniel Honc 
University of Pardubice 

Czech Republic 

1. Introduction     

This chapter covers two issues (along many others) relating to complex systems control. The 
main theme is connected with control of Multi-Input Multi-Output (MIMO) systems. If the 
controlled system has more inputs than outputs (further labelled as MI+MO) there exist 
many combinations of the inputs for one combination of the outputs. We are able to reach 
desired system outputs (the main control aim) with many input combinations. This situation 
is very interesting from practical point of view. Usually optimal inputs combination exists – 
from some point of view. This combination leads for example to minimum energy 
consumption, maximum production efficiency or minimum machinery load etc. In practice 
the set of possible inputs combination is reduced because of constrains and the best feasible 
combination lies very often on constrain. It would be suitable to extend the controller design 
to include supplementary demand simultaneously with the fulfilment of the main control 
aim – to ensure best feasible input combination, too. The common advanced controller like 
LQ controller has no problem with MIMO system which has different number of inputs and 
outputs in contrary to standard controllers designed as decentralized control. However the 
constrains respecting within the standard LQ controller design is not possible. Another 
advanced controller – Model Predictive Controller (MPC) allows constrains handling 
(Camacho & Bordons, 1999), (Maciejowski, 2002), (Rossiter, 2003) but the standard controller 
design doesn’t solve which combination of inputs will occur in the steady-state in case of 
system with more inputs than outputs. 
One possibility how to achieve optimal inputs combination is to formulate one term of the 
cost function connected with inputs penalization as a deviation from ideal inputs 
combination. This approach is used e.g. in (Novák, 2009) but according to the opinion of 
authors this approach isn’t as universal as following proposal. We have suggested adding 
another term into the cost function of predictive controller – terminal state in a form of the 
deviation from desired terminal state. The desired terminal state is chosen that it 
corresponds to feasible optimal inputs combination and a value of the set-point at the end of 
the control horizon. Authors call this technique Steady-state optimization because the 
influence of the terminal state deviation comes to light namely in steady-state when the 
main control aim (desired output combination) is or has been already fulfilled - see also 
(Dušek & Honc, 2009). The controller ensures both main and supplementary control aims – 
achievement of desired outputs and inputs moving to an optimal combination. An 
incorporation of the terminal state into the cost function has also another advantage. The 

www.intechopen.com



 Robust Control, Theory and Applications 

 

604 

addition of the terminal state into the cost function is one of the possibilities how to ensure 
closed-loop stability (Mayne et al., 2000). In (Bitmead et al., 1990) it is proposed using the 
quadratic form xtTPxt, as a terminal cost function where vector xt is state at the end of control 
horizon (terminal state) and the matrix P is terminal value of the Riccati difference equation. 
We propose incorporate the terminal cost function in the form of desired (xw) and 
terminated state (xt) deviation – (xw- xt)TQx(xw- xt) (see Chapter 4.2). The determination of a 
desired state based on the controlled system steady-state gain matrix is shown for the case 
of general MIMO system in the article (Dušek & Honc, 2008b) and in detail in (Dušek & 
Honc, 2008a in Czech). The computation of desired state for the case of MI+MO systems is 
described in Chapter 4.3. 
Suggested technique is applied on the thermostatic bath control. The idealized thermostatic 
bath (see sketch in Fig. 1) is an example of one of the simplest real constrained system with 
more inputs than outputs. On this example it is possible to demonstrate another problem we 
can meet by the control of complex systems – in some cases an advanced controller 
improves control quality only slightly in comparison with very simple controller. The 
problem usually arises when one property of the controlled system is dominant. In that case 
a simple controller respecting the dominant feature can provide satisfactory control. But 
situation can change dramatically if some specific (or additional) information about the 
system is available or additional control demands are formulated. Manipulated variables 
asymmetric constraints are dominant feature of controlled system in our case. Very simple 
on-off controller based on knowledge of constrains provides similar control quality (from 
performance measures and control costs points of view) as the sophisticated MPC controller 
even based on full knowledge of MIMO system dynamic. This holds for the case that we do 
not know nor do not use information about future reference signal course in MPC controller 
design. Simple controller do not allow to use such information on the contrary to advanced 
controller – predictive controller respecting constrains and using future reference course 
knowledge. 

2. Problem formulation, solution fundamentals 

In the following text we will show two different control designs for an ideal thermostatic 
bath. It is possible to describe controlled system behaviour by continues dynamical fourth 
order mathematical model with four inputs (three are manipulated and constrained) and 
one controlled output. The model derivation is based on first principle approach (energy 
conservation law) and a few simplified assumptions. Model parameters are chosen so that 
the model behaviour is realistic for needs of simulated control experiments. The continuous-
time model is numerically transformed into discrete-time state space form for chosen 
sample time. 
The aim of the control is to follow as good as possible a reference signal with respecting the 
manipulated variable constrains with minimum control cost – energy consumption. Two 
very different controllers have been designed. The first one is a couple of very simple 
discrete-time on-off controllers based on system specific feature – two asymmetrically 
constrained manipulated inputs. The second one is an advanced discrete-time predictive 
controller with quadratic cost function, finite horizon and banded constrains based on a 
discrete-time linear state space MI+MO model (TISO – system with two manipulated inputs 
and one controlled output). The controller cost function is supplemented by a quadratic 
terminal cost function of the desired and actual terminal state deviation – ensuring steady-
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state optimization. An addition of a desired terminal state into controller cost function 
allows including the demand on minimal energy cost. The minimisation of cost function is 
made by quadratic programming. The behaviour of both controllers is demonstrated on 
simulated discrete-time control experiments with continuous-time model of ideal 
thermostatic bath. Results of simulated controls by on-off controller and proposed 
predictive controller are discussed. Control responses of the predictive controller without 
knowledge of future course of the reference signal (only an actual set-point is known) and 
when the future course is known are compared too. All the computations, results evaluation 
and visualisation have been made in MATLAB environment. 

3. Controlled system 

The controlled system is the ideal thermostatic bath which principal sketch is drawn in Fig. 
1. Similar real devices are used for controlled heating or cooling of some element. This 
device is one of the simplest real systems with more inputs then outputs. It is represented by 
a partially isolated vessel filled with water (denoted C) and placed element D – its 
temperature TD is controlled. It is possible to increase the water temperature TC with electric 
heating (denoted A). Heating power E is controlled continuously. Cooling helix (denoted B) 
is used to decrease water temperature - water flows with flow-rate Q through a pipe. Inlet 
temperature TB0 must be lower than a placed element desired temperature TD. Temperature 
TC is affected also by ambient temperature To (heating exchange with surroundings because 
of imperfect isolation). Ambient temperature To can cool down the bath if To < TC or heat it if 
To > TC. 
 

TO

E

TD

TC

TB0

Q

TB

Q

TA

TB

 

Fig. 1. Thermostatic bath scheme 

An ambient temperature To is supposed to be constant. A cooling water flow-rate must be 
within the range 0 ≤ Q ≤ Qmax, cooling water input temperature TB0min ≤ TB0 ≤ TB0max and 
heating power 0 ≤ E ≤ Emax. These asymmetrical constrain lead to special actuating of inputs 
– it is possible to increase or decrease the state variables only with the particular input. 
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3.1 Derivation of mathematical model of the plant 

The thermostatic bath can be divided into four parts (thermal capacities) according to the 
scheme in Fig. 1. The state of every part is approximated by “characteristic or average” 
temperature. The introduction of characteristic temperatures leads to the essential 
simplification of a process description and hence partial differential equations using is not 
necessary. Based on the energy balance of every part the whole system can be described 
under another simplified assumptions (ideal mixing, constant heat transfer coefficients etc.) 
with a four ordinary differential equations – mathematical model of the plant. The model 
has eight time depending variables – four input variables (cooling water flow-rate Q with 
input temperature TB0, heating power E, ambient temperature T0) and four state variables 
(characteristic temperature of the heating element TA, cooling water characteristic 
temperature TB, water characteristic temperature TC and placed element characteristic 
temperature TD). 
If we put together thermal balances mentioned above and introduce simplified assumptions 
we get relatively simple dynamic mathematical model of the thermostatic bath as a set of 
four ordinary differential equations written as 

 E = αASAC(TA-TC) + mAcAdTA/dt (1a) 

 QcBTB0 + αBSBC(TC-TB) = QcBTB + mBcBdTB/dt (1b) 

 αASAC(TA-TC) = αBSBC(TC-TB) + αCSC0 (TC-To) + αDSDC (TC-TD) + mCcCdTC/dt (1c) 

 αDSDC (TC-TD) = mDcDdTD/dt (1d) 

where  
To  is ambient temperature, 
E(t) is heating power in the range 0 ≤ E ≤ Emax (increases temperature of A), 
Q(t) is flow-rate of the cooling water in the range 0 ≤ Q ≤ Qmax (decreases temperature of 

B), 
TB0(t) is input temperature of the cooling water in the range TB0min ≤ TB0 ≤ TB0max 

(decreases temperature of B), 
Tx(t) is characteristic temperature (state variables TA … TD), 
mx is mass of individual part, 
cx is specific heat capacity of individual part, 
Sxy is heat transfer area between two adjacent parts and 
αx is heat transfer coefficient. 
Parameters given in Table 1 are used in following simulation experiments. 
 

 units heating A cooling B water C element D 
mx kg 0.3 0.1567 4.0 8.93 
cx J·kg-1·K-1 452 4180 4180 383 
Sxy m2 0.0095 0.065 0.24 0.06 
αx J·m-2·s-1·K-1 750 500 5 500 

Table 1. Process model parameters 

The graphs in Fig. 2 demonstrate the basic dynamic behaviour of the system with 
parameters according to Table 1. In this figure it is depicted the temperature response of 
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placed element TD (upper graph) to 10 minutes wide pulse of maximal heating power E 
(middle graph) and 10 minutes wide pulse of minimal cooling water temperature TB0 (lower 
graph). The experiment starts from a system steady-state when all temperatures are the 
same and equal to the ambient temperature T0. This steady-state corresponds to heating 
power equal zero and cooling water temperature equal to ambient temperature. The 
constant cooling water flow-rate is 0.5 litres per minute. From graphs it is evident that 
maximal heating is more powerful than maximal cooling. 
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Fig. 2. Output variable response to inputs changes 

3.2 Continuous-time mathematical model in a standard form 

From the control point of view the system has three manipulated variables (Q, TB0, E), one 
measured disturbance (T0), four state variables (TA, TB, TC and TD) and one controlled 
variable (TD). To get linear system suitable for the control design we choose only the input 
temperature TB0 and heating power E as manipulated variables. The dynamic of input 
temperature TB0 refrigerating is neglected to simplify the thermostatic bath description. The 
cooling water flow-rate Q is supposed to be constant. This “non practical” choice is made 
due to simplification of predictive controller design – to avoid problem with nonlinear 
system control design. For needs of this text it isn’t important whether the manipulated 
variable is cooling water flow-rate or temperature. 
The equations (1a) – (1d) can be rewritten in a matrix form of standard continuous-time state 
space model as 
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 dx/dt = Acx + Bcu (2a) 

 y = Ccx (2b) 

Integral part of the process description is information about the manipulated variables 
constrains.  

 0 ≤ E ≤ Emax (2c) 

  TB0min ≤ TB0 ≤ TB0max (2d) 

where  
x(t) is vector of state variables TA, TB, TC and TD, 

x(t) = [TA(t), TB(t), TC(t), TD(t)]T 

u(t) is vector of inputs E, TB0 and T0, 

u(t) = [E(t), TB0(t), T0(t)]T 

y(t) is output variable TD and 
Ac, Bc, Cc  are matrices of continuous-time state space model parameters (see Eq. 2e) 
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 (2e) 

The continuous-time mathematical model (2) with parameters given by Table 1 was used in 
simulation control experiments as a plant (process) model. 

3.3 Discrete-time mathematical model for MPC control design 

A standard predictive controller design is based on a discrete-time linear time invariant 
(LTI) process model. If we suppose constant cooling water flow-rate Q than the matrices Ac 
and Bc in (2e) are constant (time invariant) for given values of thermostatic bath parameters. 
Now we can transform the linear continues-time model (2) into equivalent linear discrete-
time state space model (3) or an input-output model under the “zero order hold” 
assumption - that the value of inputs between two equidistant sample times are constant. 
We get the values of discrete-time state space model matrices A, B and C for given sample 
time T numerically (in MATLAB with function c2d) 
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 x(k +1) = Ax(k) + Bu(k) (3a) 

 y(k) = Cx(k) (3b) 

 umin ≤ u(k) ≤ umax (3c) 
where  
x(k) is vector of sampled state variables TA, TB, TC and TD, 

 x(k) = [TA(k), TB(k), TC(k), TD(k)]T 

u(k) is vector of discrete-time inputs E, TB0 and T0, 

u(k) = [E(k), TB0(k), T0(k)]T 

umin =[0, TB0min, T0]T 

umax =[Emax, TB0max, T0]T 

y(k) is sampled output variable TD and 
A, B, C are discrete-time model parameters (matrices). 

3.4 Prediction equations in matrix form 

If we use cost function in a general matrix form then it is suitable to formulate future process 
output directly in a matrix form and not in the original iterative form (3a). Because we will also 
need a state prediction at the end of the prediction horizon we will formulate the state 
prediction equation for N sample step ahead, too. Based on knowledge of the actual state x(k) 
and a vector of future inputs uN we can write these two prediction matrix equations as 

 yN = Syxx(k)+ SyuuN (4a) 

 x(k+N) = Sxxx(k)+ SxuuN (4b) 
where  

yN is vector of future output TD at time k, k+1, …, k+N-1, 

yN =[TD(k+1), TD(k+2),…, TD(k+N)] T 

x(k) is vector of state variables TA, TB, TC and TD at time k, 
uN is vector of future inputs E, TB0 and T0 at time k, k+1, …, k+N-1, 

   uN =[uT(k), uT(k+1),…, uT(k+N-1)] T and 

Sxx, Sxu, Syx, Sxu are constant matrices depending on the process matrices A, B and C 
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4. Control design 

The main control objectives are to follow the reference signal, to respect manipulated 
variables constrains and at the same time to minimize energy costs for heating and 
refrigerating of the cooling water (we do not consider dynamics of the cooling water input 
temperature). It is evident that the set-point of steady-state output temperature is reachable 
with many combinations of heating power and cooling water temperature. The system has 
different overall energy consumption for each combination. From energy consumption point 
of view the ideal combination in steady-state is when heating power equals to zero and 
temperature of cooling water equals to surrounding temperature. This ideal combination 
with zero energy cost is feasible only in the situation that desired temperature is equal to 
surrounding temperature. Because of the imperfect thermostat insulation it is necessary 
either permanently to heat or to cool in all other cases. Hence if it is necessary to heat then 
refrigeration must be off and vice versa. This idea is the principle of the simplest on-off 
controller without any tuneable parameters described in Chapter 4.1. Based on this idea it is 
also possible to design many other simple controllers with some solution for the system 
with more inputs than outputs. Well known is for example the technique called split range 
in which the output of a controller is split into two or more manipulated variables. 
But these solutions are made ad hoc. More systematic and general way is to use MIMO 
controller. Such a controller based on principles of model predictive control is described in 
Chapter 4.2.   

4.1 On-off controller 

It is possible to control the thermostatic bath with objectives and conditions mentioned 
above by an on-off controller (to switch between minimal and maximal cooling water input 
temperature and heating power according to the sign of the control error). This approach 
uses only one dominant characteristic – asymmetrical manipulated variable actuating. The 
control error performance measure is comparable with a sophisticated predictive controller 
without using any information about the future set-point. This strategy uses the only 
information about manipulated variables constraints (Emax, TB0min, TB0,max), actual value of 
output variable TD and actual value of set point w at discrete time k and there are no 
tuneable controller parameters. The resulting very simple thermostatic bath on-of controller 
is given by (5)  

 e = w(k) - TD(k) (5a) 

 if e<0 then {E=Emax TB0=TB0,max} else {E=0 TB0=TB0,min} (5b) 

where  

w(k) is an actual set-point – desired value of output TD at time k, 
e is an actual control error, 
E is actual heating power and 
TB0 is actual cooling water input temperature. 
Such a very primitive strategy has interesting features. It is a feedback control with a huge 
feedback gain and closed loop stability is ensured by respecting the constraints. It is simple 
variant of adaptive control approach called in literature as Self-Oscillating Adaptive 
Systems (Åström & Wittenmark, 1995). Big feedback gain causes controller insensitivity to 
changing of process properties (Wellstead & Zarrop, 1991) and we can suppose operation 
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without problems even in case when the cooling water flow-rate is used as a manipulated 
variable – in case of nonlinear system. The disadvantage is permanent control variables 
switching between minimal and maximal values and thereby permanently alternating of the 
controlled variable in the steady-state. The control quality and control costs are worse than 
in case of controller with continuous output – see Fig. 3.  

4.2 Predictive controller 

Predictive controller design is open methodology and it allows incorporating many of 
control demands and other information. The control objective is formulated as a 
minimization of a discrete-time cost function that is constrained. It means that the 
dependencies given by the process model have to be respected. From math point of view it 
is a task of finding constrained extreme. If the cost function is quadratic with finite horizons, 
process model is linear and variables are unconstrained then the analytic solution of the cost 
function minimization exists in a form of matrix equations. If inputs, outputs or states are 
linearly constrained then it is possible to solve arising task numerically with quadratic 
programming techniques. 
We formulate the discrete-time quadratic cost function on finite horizon of length N steps 
(both predictive and control horizon) in matrix form (6a) and inputs constrains (6b) as 

 
,0

( , , ; ) ( ) ( )
( ) ( )

T T T
N N w N N N N x

N N N N N N w

J N N N

N k N

Δ = + Δ Δ +Δ Δ
= − = +Δ Δ = − +
u w x e Qe u R u x Q x

e w y u u u x x x
 (6a) 

 ,min ,maxN N N≤ ≤u u u  (6b) 

where  
yN is vector of predicted process outputs (see Eq. 4a), 
wN is vector of future reference signal, 
uN is vector of future process inputs, 
uN,0 is vector of supposed (known) future process inputs, 
ΔuN is vector of computed deviations from supposed process inputs 
 (this vector contains only the manipulated inputs), 
xw is desired terminal state (see Chapter 4.3), 
x(k+N) is predicted terminal state (see Eq. 4b), 
N is length of control and prediction horizon (number of samples), 
Q, Qx, R are square weighting matrices and 
uN,min, uN,max are vectors of input constrains. 
The cost function (6a) is composed of three parts. All parts are quadratic function of 
adequate deviations. The first two parts are functions of the all points over the whole 
horizon and the last part is a function of the last point of horizon only. The first part is a 
function of control error (the deviation between output and reference signal). It ensures a 
satisfaction of the main control aim – following the reference signal as close as possible.  
The second part is a function of manipulated variables and ensures that the main control 
aim isn’t fulfilled at any cost – infinite or very large values of manipulated variables. The 
disadvantage of standard form (without deviations) is arising of a steady-state control error. 
We use this term in a form of deviations of inputs from supposed future inputs. The 
deviation decreases a steady-state control error and incorporating of supposed course of 
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inputs uN,0 allows involving known unmanipulated inputs or disturbances (ambient 
temperature in our case). Supposed inputs can be also used for optimization of inputs 
values combination in case of MI+MO systems – similar way as in (Novák, 2009). 
The third part is the deviation of a desired and actual state at the end of horizon (terminal 
state). Adding a terminal cost function ensures closed-loop stability (Mayne et al., 2000) but 
also leads to arising of a steady-state control error. Proposal of a terminal cost function in 
the quadratic form was made by (Bitmead et al., 1990). We propose the quadratic terminal 
cost function of desired and terminal state deviation. The deviation decreases a steady-state 
control error and desired terminal state allows taking into account additional control 
requirement. We use the desired state to steady-state optimization in case of MI+MO systems. 
The desired state computation for MI+MO system is described in following chapter 4.3. 
If we use prediction equations (4a), (4b) to eliminate process output yN and terminal state 
x(k+N) then the cost function (6a) and constraints (6b) can be rewritten into form 

 

{ },0 ,0

( ) 2

( ) ( )

T T T T T
N N N N k k N N N k N

T T
yu yu xu x xu

T T
yu N yx yu N xu x w xx xu N

J c c

k k

Δ = Δ Δ + Δ + Δ + = Δ Δ + Δ +

= + +
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u u M u u m m u u M u m u

M R S QS S Q S

m S Q w S x S u S Q x S x S u

 (7a) 

 ,min ,0 ,max ,0N N N N N− ≤ Δ ≤ −u u u u u  (7b) 

The minimization of (7a) regarding to ΔuN without constrains (7b) is possible in explicit 
form (7c) on condition that the matrix M is positive definite and symmetric. 

  1
N

−Δ = −u M m  (7c) 

The minimization of (7a) with constrains (7b) is a task of quadratic programming. In both 
cases we get a vector of future manipulated inputs deviation ΔuN that in combination of 
supposed inputs uN,0 gives vector of optimal process inputs uN. The calculated value of 
optimal inputs depends on actual state x(k), future course of reference signal wN , desired 
terminal state xw and supposed future inputs uN,0. If the actual state isn’t measured, then a 
state estimator based on state space model (3a), (3b) can be used. If the future course of 
reference signal isn’t known then the actual set point is used as a future course of constant 
reference signal. The calculation of desired terminal state is described in next chapter. The 
vector of supposed inputs uN,0 can be constructed from actual values of inputs which are 
supposed to be constant in the future or if we know the future course of some inputs (as 
known future disturbances) then we can add this information in corresponding part of uN,0. 
We apply only the control actions of the first member u(k) from the optimal vector uN and 
the minimization is repeated in the next sample time.  

4.3 Calculation of desired state 

The calculation of the desired state xw is a fundamental part of steady-state optimization. It 
is based on a non square steady-state gain matrix Z of a MI+MO system model (3)  

 y∞=Zu (8a) 

 Z=C(I-A)-1B (8b) 
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The calculation is described by equations (9a – 9d) and the solution is valid for steady state. 
The minimization of quadratic cost function (9a) represents the requirement of a minimal 
quadratic distance between ideal inputs values uideal and accessible inputs ũ. At the same 
time the equation (9b) has to be respected. This equation arising from (3) represents a 
requirement that accessible inputs ũ lead the system (in steady-state) to set-point at the end 
of horizon w(k+N). These two equations formulate a standard task of constrained extreme 
minimization. The solution of this task is a value of ũ which can be recalculated to desired 
state xw using the equation (9d).  

 ( ) ( )min T
ideal ideal

⎡ ⎤− −⎢ ⎥⎣ ⎦u
u u I u u

�
� �  (9a) 

 ( )k N= +Zu w�  (9b) 

 min max≤ ≤u u u�  (9c) 

 ( ) 1
w

−= −x I A Bu�  (9d) 

We can get the solution of unconstrained extreme task – by considering only equations (9a) 
and (9b) – in explicit form by Lagrange’s multipliers. If we rewrite (9a), (9b) into form of 
(10a) then we get the searched input ũ as part of the solution of matrix expression (10b) 

 ( ) ( ) ( ) 0T T
ideal ideal k N− − + − + =⎡ ⎤⎣ ⎦u u I u u Zu w λ� � �  (10a) 
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u uI Z

λ wZ

�
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In case of constrained inputs – by considering also equation (9c) - the problem is formulated 
as quadratic programming task and the searched input ũ has to be computed numerically. 

5. Simulated control experiments 

The simulated experiments demonstrate the discrete-time control of continuous-time 
MI+MO system (thermostatic bath) with simple on-off controller (5) and predictive 
controller without (7) and with steady-state optimization (8). Placed element temperature TD 
is controlled – responses of simulated reference signal tracking are depicted in Figures 3-5. 
The control by predictive controller is shown for two situations – without and with future 
reference signal course knowledge. All experiments are made under identical conditions 
and the control performance is evaluated by two measures. First measure Cquality (quality) 
represents a value of quadratic control error area and the second measure Ccost (cost) is price 
of total energy consumption for the heating Eheat and cooling Ecool. The energy consumption 
for refrigerating Ecool (cooling water temperature decreasing at chosen constant flow-rate) is 
supposed (for needs of following simulations) to be equivalent to energy consumption for 
cooling water heating about same temperature difference with efficiency ef=0.5 (50%). These 
two measures can be written as 
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where  
kprice is electric energy price per unit, 
T is a controller sample time, 
ef is efficiency of cooling and 
Ns is number of samples during experiment. 
The ideal thermostatic bath is simulated as a continuous-time system (Eq. 1) with 
parameters given in Table 1. All control experiments start from steady-state (x0, u0) and 
respect inputs variables ranges. Conditions and constrains are listed in Table 2. The input 
values u0 leading to the steady-state x0 are no optimal from energy consumption point of 
view. These values were chosen to show the influence of the steady-state optimization for 
case of predictive controller. 
 

Input variables ranges and initial inputs u0 Steady-state x0, u0  
E [W] Q [kg·s-1] TB0 [°C] To [°C] TA [°C] 64.63 

umax 1000 0.5/60 25 25 TB [°C] 22.02 
u0 250 0.5/60 15 25 TC [°C] 29.54 
umin 0 0.5/60 5 25 TD [°C] = y0 29.54 

Table 2. Input variables and steady-state 

The on-off controller is realized as discrete-time system (with zero-order hold terms on the 
outputs with sample time T = 10 s). Its response is depicted in Fig. 3. The achieved values of 
control quality and costs measures in this experiment are used as a standard and marked as 
100%. The control quality is apparently bad (the output oscillates) but the computed control 
quality value is comparable with predictive controller without knowledge of future 
reference signal course. The on-off controller responds immediately to changes in reference 
signal with maximal values of heating or cooling and hence the output response is as quick 
as possible. In spite of the fact that the on-off controller ensures that the heating and cooling 
doesn’t actuate concurrently the energy consumption is high because of heating and cooling 
switching to their maximal values. 
Predictive controller with steady-state optimization and inputs constrains (6) is realized as a 
discrete-time system (with zero-order hold terms on the outputs with sample time T = 10 s). 
The control horizon is N = 60 samples (that is N×T = 600 s = 10 min). Control response of the 
predictive controller without future reference signal knowledge is depicted in Fig. 4. It 
means that the controller has information about actual value of set-point and the future 
reference signal is assumed to be constant and equal to set-point at current time. If the actual 
set-point changes then the constant future reference signal over the whole control horizon 
changes too. The values of control measures are relative to corresponding values achieved in 
control with on-off controller and expressed as percentages. 
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Fig. 3.  On-off controller 
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Fig. 4.  Predictive controller – without future reference signal knowledge 

www.intechopen.com



 Robust Control, Theory and Applications 

 

616 

The first 15 minutes of experiment depicted in the Fig. 4 demonstrates the steady-state 
optimization - the controller manipulates inputs without output change. The inputs achieve 
their optimal values after time corresponding to length of horizon (10 minutes). Because of 
the absent of a future reference signal knowledge the controller react only to actual set-
point. The control quality (97.6%) is comparable with on-off controller but the energy 
consumption is significantly better (33.3%). 
A control response of the predictive controller with steady-state optimization and with 
knowledge of the future reference signal is depicted in the Fig. 5. This experiment 
demonstrates best control approach from the point of control quality and energy 
consumption. The controller uses maximum of accessible information. Due to prediction 
horizon and future reference signal knowledge the controller can act before the actual set-
point change.  The time of advance controller reaction depends on both system dynamic and 
constrains. Hence it can be different when the set-point changes up and down. On this 
experiment we can also see that the control quality is preferred before control cost. There are 
parts of control where heating and cooling act simultaneously. We can see this in transient 
state only. This behaviour also depends on the choice of weighting matrices in the cost 
function (6a). 
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Fig. 5. Predictive controller – with future reference signal knowledge 

6. Conclusion 

Control design is often “made-to-measure problem” especially if one feature of the 
controlled process is dominant and therefore affecting control possibilities. Even quite 
sophisticated generally designed controller does not improve control quality compared to 
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simple solution respecting the dominant properties. This was illustrated on an example of a 
MI+MO system thermostatic bath – a system with two constrained inputs and one 
controlled output. If the set-point changes significantly the controller can not do anything 
else than to set both control variables on their appropriate limits because of constrains on 
heating and cooling. Control response of quite complicated predictive controller will be 
improved if additional information and requirements are implemented within the control 
design. Process dynamics knowledge including cross couplings, was fully used only if we 
considered known future reference signal. 
Another problem connected with systems with more inputs then outputs was illustrated on 
the mentioned example of MI+MO system. To solve the problem of indeterminate inputs 
combinations in case of MI+MO processes control we propose to add the “steady-state 
optimization” to controller design. Under the steady-state optimization we understand that 
we need to find such an inputs combination that is as close as possible to ideal process 
inputs and at the same time reaching the set-point in steady-state. We can observe the effect 
of the steady-state optimization during the first 15 minutes of the control response in Fig 4. 
The “ideal” desired input variables combination for the steady-state in our case is zero 
heating power and maximal cooling water input temperature – that is a combination with 
lowest energy cost. Future control error and terminal state error is minimized in every time 
instant as a result of the cost function form with respect to manipulated variables constrains. 
The effect of steady-state optimization is nice to see in steady-state but it takes effect 
continuously. 
To add the steady-state optimization to a predictive controller design we use the terminal 
cost function. The quadratic terminal cost function was originally introduced to ensure 
controller stability. We modified the criterion so that the deviation of a desired and the 
predicted terminal state is used instead the terminal state only. The computation of the 
desired terminal state is based on a desired input variables combination, value of set-point 
at the end of control horizon and no square steady-state gain matrix. The solution is 
formulated as a standard constrained extreme finding task where the inputs constraints can 
be included, too.  
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