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1. Introduction  

A demand for the miniaturization and reducing the total moment of inertia which allows to 
shorten the response time of the whole system is evident in modern drives system. 
However, reducing the size of the mechanical elements may result in disclosure of the finite 
stiffness of the drive shaft, which can lead to the occurrence of torsional vibrations. This 
problem is common in rolling-mill drives, belt-conveyors, paper machines, robotic-arm 
drives including space manipulators, servo-drives and throttle systems (Itoh et al., 2004, 
Hace et al., 2005 , Ferretti et al. 2005, Sugiura & Hori, Y., 1996, Szabat & Orłowska-Kowalska, 
2007, O’Sullivan at al. 2007, Ryvkin et al., 2003 , Wang & Frayman, 2004, Vasak & Peric, 
2009, Vukosovic & Stojic, 1998). 
To improve performances of the classical control structure with the PI controller, the 
additional feedback loop from one selected mechanical state variable can be used. The 
additional feedback allows setting the desired value of the damping coefficient, but the free 
value of the resonant frequency cannot be achieved simultaneously (Szabat & Orłowska-
Kowalska, 2007). According to the literature, the application of the additional feedback from 
the shaft torque is very common (Szabat & Orłowska-Kowalska, 2007). The design 
methodology of that system can be divided into two groups. In the first framework the shaft 
torque is treated as the disturbance. The simplest approach relies on feeding back the 
estimated shaft torque to the control structure, with the gain less than one. The more 
advanced methodology, called Resonance Ratio Control (RRC) is presented in (Hori et al.,  
1999). The system is said to have good damping ability when the ratio of the resonant to 
antiresonant frequency has a relatively big value (about 2). The second framework consists 
in the application of the modal theory. Parameters of the control structure are calculated by 
comparison of the characteristic equation of the whole system to the desired polynomial. To 
obtain a free design of the control structure parameters, i.e. the resonant frequency and the 
damping coefficient, the application of two feedbacks from different groups of mechanical 
state variables is necessary. The design methodology of this type of the systems is presented 
in (Szabat & Orłowska-Kowalska, 2007).  
The control structures presented so far are based on the classical cascade compensation 
schemes. Since the early 1960s a completely different approach to the analysis of the system 
dynamics has been developed – the state space methodology (Michels et al., 2006). The 
application of the state-space controller allows to place the system poles in an arbitrary 
position so theoretically it is possible to obtain any dynamic response of the system. The 
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suitable location of the closed-loop system poles becomes one of the basic problems of the 
state space controller application. In (Ji & Sul,, 1995) the selection of the system poles is 
realized through LQ approach. The authors emphasize the difficulty of the matrices 
selection in the case of the system parameter variation. The influence of the closed-loop 
location on the dynamic characteristics of the two-mass system is analyzed in (Qiao et al., 
2002), (Suh et al., 2001). In (Suh et al., 2001) it is stated that the location of the system poles in 
the real axes improve the performance of the drive system and makes it more robust against 
the parameter changes.  
In the case of the system with changeable parameters more advanced control concepts have 

been developed. In (Gu et al., 2005), (Itoh et al., 2004) the applications of the robust control 

theory based on the H∞ and μ-synthesis frameworks are presented. The implementation of 

the genetic algorithm to setting of the control structure parameters is shown in (Itoh et al., 

2004). The author reports good performance of the system despite the variation of the inertia 

of the load machine. The next approach consists in the application of the sliding-mode 

controller. For example, in paper (Erbatur et al., 1999) this method is applied to controlling 

the SCARA robot. A design of the control structure is based on the Lyapunov function. The 

similar approach is used in (Hace et al., 2005) where the conveyer drive is modelled as the 

two-mass system. The authors claim that the designed structure is robust to the parameter 

changes of the drive and external disturbances. Other application examples of the sliding-

mode control can be found in (Erenturk, 2008). The next two frameworks of control 

approach relies on the use of the adaptive control structure. In the first framework the 

controller parameters are adjusted on-line on the basis of the actual measurements. For 

instance in (Wang & Frayman, 2004) a dynamically generated fuzzy-neural network is used 

to damp torsional vibrations of the rolling-mill drive. In (Orlowska-Kowalska & Szabat, 

2008) two neuro-fuzzy structures working in the MRAS structure are compared. The 

experimental results show the robustness of the proposed concept against plant parameter 

variations. In the other framework changeable parameters of the plant are identified and 

then the controller is retuned in accordance with the currently identified parameters. The 

Kalman filter is applied in order to identify the changeable value of the inertia of the load 

machine (Szabat & Orlowska-Kowalska, 2008). This value is used to correct the parameters 

of the PI controller and two additional feedbacks. A similar approach is presented in 

(Hirovonen et al., 2006).  

The Model Predictive Control (MPC) is one of the few techniques (apart from PI/PID 

techniques) which are frequently applied to industry (Maciejowski 2002, Cychowski 2009). 

The MPC algorithm adapts to the current operation point of the process generating an 

optimal control signal. It is able to directly take into consideration the input and output 

constraints of the system which is not easy in a control structure using classical structures. 

Nevertheless, the real time implementations of the MPC are traditionally limited to objects 

with relatively large time constants (Maciejowski 2002, Cychowski 2009). The application of 

MPC to industrial processes characterized by fast dynamics, such as those of electrical 

drives, is complicated by the formidable real-time computational complexity often 

necessitating the use of high-performance computers and complex software. The state-of-

the-art of currently employed predictive control methods in the power electronics and 

motion control sector is given in (Kennel et al, 2008). Still, there are few works which report 

the application of the MPC in the control structure of a two-mass system (Cychowski et al. 

2009).  
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The main contribution of this paper is the design and real-time validation of an explicit 
model predictive controller for a two-mass elastic drive system which is robust to the 
parameter changes. The explicit version of the MPC algorithm presented here does not 
involve complex optimization to be performed in a control unit but requires only a 
piecewise linear function evaluation which can be realized through a simple look-up table 
approach. This problem is computationally far more attractive than the standard 
optimization-based MPC and enables the application of complex constrained control 
algorithms to demanding systems with sampling in the mili/micro second scale. In addition 
to low complexity, the proposed MPC controller respects the inherent electromagnetic 
(input) and shaft (output) torque constraints while guaranteeing optimal closed-loop 
performance. This safety feature is crucial for many two-mass drive applications as violating 
the shaft ultimate tensile strength may result in damage of the shaft and ultimately in the 
failure of the entire drive system. Contrary to the previous works of the authors (Cychowski 
et al. 2009), where the system was working under nominal condition, in the present paper 
the issues related to the robust control of the drive system with elastic joint are presented.   
This paper is divided into seven sections. After an introduction, the mathematical model of 
the two-mass drive system and utilized control structure are described. In section III the 
idea of the MPC is presented. Then the whole investigated control structure is described. 
The simulation results are demonstrated in sections V. After a short description of the 
laboratory set-up, the experimental results are presented in section VI. Conclusions are 
presented at the end of the paper. 

2. The mathematical model of the two-mass system and the control structure 

In technical papers there exist many mathematical models, which can be used for the 

analysis of the plant with elastic couplings. In many cases the drive system can be modelled 

as a two-mass system, where the first mass represents the moment of inertia of the drive and 

the second mass refers to the moment of inertia of the load side. The mechanical coupling is 

treated as an inertia free. The internal damping of the shaft is sometimes also taken into 

consideration. Such a system is described by the following state equation (Szabat & 

Orlowska-Kowalska, 2007) (with non-linear friction neglected): 
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(1)

 

where: Ω1- motor speed, Ω2- load speed, Me– motor torque, Ms– shaft (torsional) torque, ML– 
load torque, J1 – inertia of the motor, J2– inertia of the load machine, Kc– stiffness coefficient, 
D – internal damping of the shaft. 
The schematic diagram of the two-mass system is presented in Fig. 1 
The described model is valid for the system in which the moment of inertia of the shaft is 
much smaller than the moment of the inertia of the motor and the load side. In other cases a 
more extended model should be used, such as the Rayleigh model of the elastic coupling or 
even a model with distributed parameters. The suitable choice of the mathematical model is 
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a compromise between the accuracy and calculation complexity. As can be concluded from 
the literature, nearly in all cases the simplest shaft-inertia-free model has been used. 
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Fig. 1. The schematic diagram of the two-mass system 
 

To simplify the comparison of the dynamical performances of the drive systems of different 

power, the mathematical model (1) is expressed in per unit system, using the following 

notation of new state variables: 
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where: ΩN – nominal speed of the motor, MN – nominal torque of the motor, ω1, ω2 – motor 

and load speeds, me, ms, mL – electromagnetic, shaft and load torques in per unit system.  

The mechanical time constant of the motor – T1 and the load machine – T2 are thus given as: 
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The stiffness time constant – Tc and internal damping of the shaft – d can be calculated as 

follows: 
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Taking into account the equations (3)-(5) the state equation of the two-mass system in per-

unit value is represented as: 
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 (5) 

 

Usually, due to its small value the internal damping of the shaft d is neglected in the 

analysis of the two-mass drive system as in eq. (5).  
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3. Model predictive control and its explicit formulation 

In model predictive control, an explicit model of the plant is used to predict the effect of 
future actions of the manipulated variables on the process output. In the recent literature, 
the following linear discrete-time state-space model is typically employed [14] 

 
( 1) ( ) ( )

( ) ( )

x k Ax k Bu k

y k Cx k

+ = +
=

 (6) 

where x(k), u(k) and y(k) denote the system state, input and output vectors, respectively. Let 
yk represent the value of the output vector at a future time k, given an input sequence uk, and 
initial state x0 of the system. At each time step k, the MPC algorithm solves the following 
optimization problem: 
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where Q ≥ 0 and R > 0 are the weighting matrices, Np and Nc denote the prediction and 
control horizon, respectively and umin, umax, ymin, and ymax are the input and output 
constraints of the system.  
The MPC algorithm based on optimization problem can be implemented in two ways. The 
traditional approach relies on solving the optimization problem on-line for a given x(k) in a 
receding-horizon fashion. This means that, at the current time k, only the first element 
control signal uk of the optimal input sequence is actually implemented to the plant and the 
rest of the control moves are discarded. At the next time step, the whole procedure is 
repeated for the new measured or estimated output y(k+1) (Maciejowski 2002, Cychowski 
2009). This strategy can be computationally demanding for systems requiring fast sampling 
or low-performance computers and hence greatly restricting the scope of applicability to 
systems with relatively slow dynamics. In the second approach, the problem (7) is first 
solved off-line for all possible state realizations within some compact set Xf  using multi-
parametric programming (Maciejowski 2002, Cychowski 2009). Specifically, by treating the 
state vector x(k) as a parameter vector, it can be shown that the parameter space Xf can be 
subdivided into characteristic regions, where the optimizer is given as an explicit function of 
the parameters. This profile is a piecewise affine state feedback law: 

 ( ) ,r r rU x K x g x P= + ∀ ∈   (8) 

where Pr are polyhedral sets defined as: 

 { }| , 1,...n
r r r rP x H x d r N= ∈ℜ ≤ =  (9) 
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and Nr denotes the total number of polyhedral regions in the partition. Algorithms for the 
construction of a polyhedral partition of the state space and computation of a PWA control 
law are given in (Maciejowski 2002, Cychowski 2009). In its simplest form, the PWA control 
law (8)–(9) can be evaluated by searching for a region containing current state x in its 
interior and applying the affine control law associated with this region. More efficient search 
strategies which offer a logarithmic-type complexity with respect to the total number of 
regions Nr in the partition have also been developed (Cychowski, 2009, Kvasnica et al. 2004, 
Tøndel et al. 2003, Spjøtvold et al. 2006). Nonetheless, the implementation of the explicit 
MPC control law can often be several orders of magnitude more efficient than solving the 
optimization problem (7) directly. This gain in efficiency is crucial for demanding 
applications with fast dynamics or high sampling rates in the milli/micro second range, 
such as the drive system considered in this paper.  

4. MPC-based control structure 

A typical electrical drive system is composed of a power converter-fed motor coupled to a 
mechanical system, a microprocessor-based controllers, current, rotor speed and/or position 
sensors used as feedback signals. Typically, cascade speed control structure containing two 
major control loops is used, as presented in Fig 2.  
The inner control loop performs a motor torque regulation and consists of the power 
converter, electromagnetic part of the motor, current sensor and respective current or torque 
controller. As this control loop is designed to provide sufficiently fast torque control, it can 
be approximated by an equivalent first order term with small time constant. If the control is 
ensured, the driven machine could be an AC or DC motor, with no difference in the outer 
speed control loop. The outer loop consists of the mechanical part of the motor, speed 
sensor, speed controller, and is cascaded to the inner loop. It provides speed control 
according to the reference value (Szabat & Orlowska-Kowalska, 2007). 
 

 

Fig. 2. The classical cascade control structure of the two-mass system 

Such a classical structure in not effective enough in the case of the two-mass system. To 

improve the dynamical characteristics of the drive, the modification of the cascade structure 

is necessary. In this paper the structure with the MPC controller is considered which 

requires knowledge of all mechanical state variables of the drive. In the industrial 

applications, the direct measurement of the shaft torque ms and the load speed ω2 is very 

difficult. For that reason, in this paper the Kalman Filter (Szabat & Orlowska-Kowalska, 

2008) is used to provide the information about non-measurable mechanical state variables. 

Additionally, the load torque mL is also estimated and used in the MPC based control 

structure. In Fig. 3 the block diagram of the considered control structure is presented. 
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Fig. 3. The block diagram of the MPC-based control structure 

5. Simulation study 

In this section, the proposed single-loop explicit MPC control strategy for the drive system 

with an elastic coupling will be evaluated through simulations. A primary design objective 

for the MPC controller is to ensure that the load speed response follows the set-point with 

the desired dynamics. This needs to be achieved without generating excessive shaft torque 

responses and without violating the input and output constraints of the drive. The first two 

requirements can be addressed by defining the following auxiliary output variables: 

 1 1 refy ω ω= − 2 2 ry ω ω= − 3 s Ly m m= −  (10) 

where y1 and y2 account for tracking performance and y3 relates to load-shaft torque 

imbalance. Due to (8)-(10), the reference speed variable and the disturbance torque need to 

be directly incorporated into the drive system model. 

Decreasing the values of the cost function in the MPC algorithm leads to the minimization of 

the errors between the reference value of both speeds and reduce the torsional tension in the 

shaft. In order to calculate the values of the y1-y3, the original state vector of the system has 

to be extended by load torque mL and the reference speed ωr. Thus, the new model used in 

the MPC algorithm is described by the following state equation: 
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The dynamics of the reference value is described by the second order term: 
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where oω is a reference frequency and the ς is the damping coefficient of the reference 
model.  
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The task of the MPC controller is to bring the output variables to zero by manipulating mer 
while respecting the safety and physical limitations of the drive system, which in the 
analysed case are set as follows: 

 3 3erm− ≤ ≤ 1.5 1.5sm− ≤ ≤  (13) 

The selection of the prediction and control horizons is a compromise between the drive 

performance and computational complexity. In practice, Nc ≤ Np to avoid large 
computational burden for the standard MPC and large number of regions for the explicit 
MPC.  
The dynamic of the control system with MPC controller can be adjusted by the changes of 
the values of the Q matrix. In the current work only the elements located in the main 
diagonal of the matrix have been changed. The form of the matrix Q used in the study is 
presented below: 
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Taking into account (10) and (14) the cost function can be presented as follows: 
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The robustness of the MPC algorithm is ensured by the suitable selection of the elements of 
matrix in (14) with the help of the pattern search algorithm. The cost function used in the 
optimization algorithm is as follows:  
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where: e1- tracking terror of motor speed ω1, e2- tracking terror of load speed ω2, K1 – penalty 
coefficient for exceeds of the limit of the shaft torque, K2 - penalty coefficient for overshoot in 
the load speed, e3 – coefficient in the cost function responsible for minimization of the 
tracking error of the speed for the systems with a different value of the parameter T2. The 
terms of the (16) can be represented as in (17): 
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Penalty coefficient K1 and K2 can be expressed as (18): 
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The responses of the reference model used under simulation study are shown in Fig. 4. 

 

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

t [s]

ω
re

f  [
p
.u

]

 

 

G
1

G
2

 

Fig. 4. The responses of the reference models used in the study 

As can be concluded from Fig. 4, the settling times  for the utilized reference models are 0.2 

and 0.4s. These transients determine responses of the system. The pattern search algorithm 

is looking a one set of values in the matrix Q which enables the smallest difference between 

the speeds and the reference value for different value of the time constant of the load 

machine. The optimization algorithm has been working with the set value of the reference 

signal equal to 0.25 of the nominal speed in order to avoid the electromagnetic torque limit. 

Transients of the state variables of the system working with the MPC algorithm for slower 
reference model are presented in Fig.5 . The parameters of the MPC controller are as follows: 
N=12, Nu=2, numbers of the regions: 121, while values in the matrix are diag(Q) = [8.89 0.15 
198.2]. The value of cost function in pattern search algorithm is F=1.22e-7.  
As can be concluded from the transients presented in Fig. 5, the system is working correctly. 

The load speed transients for different value of the load side inertia are close to the reference 

signal. The difference between the motor speed and the reference signal is slightly bigger 

than – between the reference and the load speed (which comes from the small value of the 

q11). The application of the load torque causes the speed drop which is eliminated quickly. 

Those drop is bigger  for the system with the smaller value of the load inertia significantly. 

During this disturbance the electromagnetic torque as well as the shaft torque reach the 

maximal allowed value for those states. In Fig. 5e the enlarged transients of the load speed 

errors are presented. It is clearly visible that during the start-up the drive with the biggest 

inertia has the biggest error.  
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In the work, a system with increased length of the control horizon has been investigated 

also. The increase of Nu from 2 to 3 allows to reduce the value of the cost function to 6.78e-8. 

However, at the same time the number of the controller regions goes up to 381. Due to the 

large computational complexity (significant in the experiment) the result related to this 

controller are not presented. 

Next the system with faster reference model has been tested. After the optimization 

procedure the following values of the matrix Q were set: diag(Q)= [17.22 0.40 398.15]. The 

transients of the tested system are presented in Fig.6. 

The drive systems with different inertia ratio have correct properties. The load speed 

transients cover the reference value almost perfectly. A much bigger difference exists in the 

transients of the motor speed. It comes from the small value of q11, as in the previous case. 

The torsional vibrations are not evident in the system transients. The biggest value of the 

electromagnetic as well as the shaft torque characterise the system with the biggest inertia. 

The application of the load torque causes the speed drop but the reaction of the system to 

the disturbance is very dynamic. The electromagnetic torque reaches its allowed limit (Fig. 

6a) in a short while.  
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Fig. 5. Transients of the drive system: electromagnetic torque (a), shaft torque (b), motor 

speed (c), load speed (d), load speed errors (e) for the system with slower reference model 

and the controller parameters N=12, Nu=2 
 

Finally, the system has been investigated for a bigger value of the reference speed and 

slower reference model. The values of the parameters of the matrix Q remain unchanged 
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(the same as for the ωref=0.25). The transients of the state variables of the system are 

presented in Fig. 7.  

As can be seen from Fig. 7, the increase of the value of the reference speed changes the 

working point of the drive. During the start-up the electromagnetic torque is limited in all 

cases. Because of this limitation the speeds of the drive cannot follow the reference value. 

The bigger error appears in the system with T2=2*T2 due to the biggest inertia value of the 

entire drive system. What is evident from the shaft torque transients is that its limitations 

are in general prevented. Some small exceeds, which come from the applied softening 

strategy, are visible. However, they are eliminated fast.  
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Fig. 6. Transients of the drive system: electromagnetic torque (a), shaft torque (b), motor 

speed (c), load speed (d), load speed errors (e) for the system with faster reference model 

and the controller parameters N=12, Nu=2 

The pattern search algorithm is not robust against local minimum. In order to eliminate this 

drawback the starting point of the algorithm has been selected many times. The best three 

solutions obtained for the three different starting points v1=[100 100 100]; v2=[10 10 10]; 

v3=[0.1 0.1 0.1] are presented in Tab. 1. 

Despite the fact that the value of the cost function is similar for three starting values, the 

finding points are different. However, the ratios between find values are similar in every 
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case. It confirms that the find solution is the global solution or very close to it. The 

parameters of the optimization procedure are presented in Fig. 8. 

 

V Iteration F Finding points 

v1 57 7.8784e-08 9188 184.0429 206948 

v2 51 7.9072e-08 930 24.1264 21898 

v3 60 8.7297e-08 17.2250 0.4017 398.10 

Table 1. Parameters related to the pattern search algorithm 
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Fig. 7. Transients of the drive system: electromagnetic torque (a), shaft torque (b), motor 
speed (c), load speed (d), load speed errors (e) for the system with faster reference model 
and the controller parameters N=12, Nu=2 and nominal value of the reference speed 

6. Experimental results    

All theoretical considerations have been confirmed experimentally in a laboratory set-up 

composed of a 0.5kW DC-motor driven by a static converter. The motor is coupled to a load 

machine by an elastic shaft (a steel shaft of 5mm diameter and 600mm length). The speed 
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and position of the driven and loading motors have been measured by incremental encoders 

(36000 pulses per rotation). The mechanical system has a natural frequency of 

approximately 9.5Hz, while the nominal parameters of the system are T1=203ms, T2=203ms, 

Tc =2.6ms. The picture of the experimental set-up is presented in Fig. 9.  

The control structure of the drive is shown in Fig. 3. The sampling time of the 

electromagnetic torque control as well as the estimator is 100μs in the experimental system. 

The outer speed control loop has the sampling time equal to 500 μs.  
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Fig. 8. The parameters of the pattern search algorithm: variation of the cost function (a,d,g), 
variation of the grid (b,e,h), found values of the parameters (c,f,i) for starting point v1 (a,b,c), 
v2 (d,e,f), v3 (g,h,i) 

In the experimental study the system with a slower reference model has been tested. In Fig. 

10 the transients of the motor speeds (a), shaft torques (b), load speed (c) as well as the 

tracking errors (c) for the drive system with nominal and twice bigger value of the load side 

inertia are presented. The system was tested for two inertia values of the loading machine. 

As can be concluded from the presented transients the drive system works correctly. The 

shape of the load speeds obtained for different inertia ratio almost perfectly covers the 

transients of the reference model (Fig. 10). Also the tracking errors between the motor 

speeds and the reference model are very small. Similarly as in the simulation study, the 

tracking error during the start-up is bigger for the system with a bigger value of inertia (Fig. 

10d). Contrary to this situation, the application of the load torque causes the bigger tracking 
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error in the system with smaller inertia. The transients of the shaft torque are presented in 

Fig. 10b. There are no limit exceeds in the shaft torque. 

 
 

  

                                      a)                                                                               b) 

Fig. 9. The mechanical part of the laboratory set-up (a) and the general view of the 

laboratory set-up (b)  
 

 

 

Fig. 10. Transients of the drive system: electromagnetic torque (a), shaft torque (b), motor 

speed (c), load speed (d), load speed errors (e) for the system with slower reference model 

and value of the reference speed ωref=0.25.  
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After the experiment presented above the system has been examined for nominal value of 

the reference speed. The drive transients are presented in Fig. 11. As in the previous case, 

the drive system is working in a stable way. For nominal parameters the motor and the load 

speeds follow the reference value without noticeable errors (Fig. 11a, c). It steams from the 

fact that the shaft torque reaches its maximal limits only for a short time (Fig. 11b). During 

this time the tracking error increases. Then, when the system is below the limit the tracking 

error goes to zero. The transients of speeds for the system with a bigger value of inertia do 

not follow the reference value during the start-up because of the limitation of the 

electromagnetic and shaft torque set in the system. Enlarging the value of these limits will 

allow to follow the reference system without the error. However, at the same time the 

mechanical stress could damage the whole drive system. 

 

 

Fig. 11. Transients of the drive system: electromagnetic torque (a), shaft torque (b), motor 

speed (c), load speed (d), load speed errors (e) for the system with slower reference model 

and value of the reference speed wr=0.25.  

7. Conclusion 

In order to damp the torsional vibrations, which could destroy the mechanical coupling 

between the driven and loading machine, the control structure with MPC is applied. The 

coefficients used in MPC are set using the optimization method in order to make the system 

robust against the changes of the load side inertia. The constraints of the electromagnetic 

and shaft torques are included during the design of the control algorithm.  
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As can be concluded from the presented results, the drive system works correctly despite 

parameter variations. The set control constraints of the shaft torque are not validated. It 

means that the control structure based on the MPC can ensure safe work in a drive system 

with uncertain or changeable parameters. 

The future work will be devoted to designing of an adaptive MPC control. A part of its work 

will be the design methodology of a robust Kalman filter used to estimate the mechanical 

parameters of the drive.  
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