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1. Introduction

The Internet is playing an important role in information retrieval, exchange, and applications.
Internet-based control, a new type of control systems, is characterized as globally remote
monitoring and adjustment of plants over the Internet. In recent years, Internet-based
control systems have gained considerable attention in science and engineering [1-6], since
they provide a new and convenient unified framework for system control and practical
applications. Examples include intelligent home environments, windmill and solar power
stations, small-scale hydroelectric power stations, and other highly geographically distributed
devices, as well as tele-manufacturing, tele-surgery, and tele-control of spacecrafts.
Internet-based control is an interesting and challenging topic. One of the major challenges
in Internet-based control systems is how to deal with the Internet transmission delay. The
existing approaches of overcoming network transmission delay mainly focus on designing
a model based time-delay compensator or a state observer to reduce the effect of the
transmission delay. Being distinct from the existing approaches, literatures (7–9) have been
investigating the overcoming of the Internet time-delay from the control system architecture
angle, including introducing a tolerant time to the fixed sampling interval to potentially
maximize the possibility of succeeding the transmission on time. Most recently, a dual-rate
control scheme for Internet-based control systems has been proposed in literature (10). A
two-level hierarchy was used in the dual-rate control scheme. At the lower level a local
controller which is implemented to control the plant at a higher frequency to stabilize the
plant and guarantee the plant being under control even the network communication is lost
for a long time. At the higher level a remote controller is employed to remotely regulate the
desirable reference at a lower frequency to reduce the communication load and increase the
possibility of receiving data over the Internet on time. The local and the remote controller are
composed of some modes, which mode is enabled due to the time and state of the network.
The mode may changes at instant time k, k ∈ {N+} and at each instant time only one mode
of the controller is enabled. A typical dual-rate control scheme is demonstrated in a process
control rig (7; 8) and has shown a great potential to over Internet time-delay and bring this
new generation of control systems into industries. However, since the time-delay is variable
and the uncertainty of the process parameters is unavoidable, a dual-rate Internet-based
control system may be unstable for certain control intervals. The interest in the stability of
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networked control systems have grown in recent years due to its theoretical and practical
significance [11-21], but to our knowledge there are very few reports dealing with the robust
passive control for such kind of Internet-based control systems. The robust passive control
problem for time-delay systems was dealt with in (24; 25). This motivates the present passivity
investigation of multi-rate Internet-based switching control systems with time-delay and
uncertainties.
In this paper, we study the modelling and robust passive control for Internet-based switching
control systems with multi-rate scheme, time-delay, and uncertainties. The controller is
switching between some modes due to the time and state of the network, either different time
or the state changing may cause the controller changes its mode and the mode may changes at
each instant time. Based on remote control and local control strategy, a new class of multi-rate
switching control model with time-delay is formulated. Some new robust passive properties
of such systems under arbitrary switching are investigated. An example is given to illustrate
the effectiveness of the theoretical results.
Notation: Through the paper I denotes identity matrix of appropriate order, and ∗ represents
the elements below the main diagonal of a symmetric block matrix. The superscript ⊤
represents the transpose. L2[0, ∞) refers to the space of square summable infinite vector
sequences. The notation X > 0(≥, <,≤ 0) denotes a symmetric positive definite (positive
semi-definite, negative, negative semi-definite) matrix X. Matrices, if not explicitly stated, are
assumed to have compatible dimensions. Let N = {1, 2, · · · } and N+ = {0, 1, 2, · · · } denote
the sets of positive integer and nonnegative integer, respectively.

2. Problem formulation

A typical multi-rate control structure with remote controller and local controller can be shown
as Fig. 1. The control architrave gives a discrete dynamical system, where plant is in circle
with broken line, x(k) ∈ Rn is the system state, z(k) ∈ Rq is the output, and ω(k) ∈ Rp is
the exogenous input, which is assumed to belong to L2[0, ∞), r(k) is the input and for the
passivity analysis one can let r(k) = 0, u1(k) and u2(k) are the output of remote control
and local control, respectively. A1, B1, B2 and C are parameter matrices of the model with
appropriate dimensions, K2i and K1j are control gain switching matrices where the switching
rules are given by i(k) = s(x(k), k) and j(k) = σ(x(k), k), and i ∈ {1, 2, · · · , N1}, j ∈
{1, 2, · · · , N2}, N1, N2 ∈ N, which imply that the switching controllers have N1 and N2 modes,
respectively. τ1 and τ2 are time-delays caused by communication delay in systems.
For the system given by Fig. 1, it is assumed that, the sampling interval of remote controller is
the m multiple of local controller with m being positive integer, and the switching device
SW1 closes only at the instant time k = nm, n ∈ N+, and otherwise, it switches off.
Correspondingly, remote controller u1(k) updates its state at k = nm, n ∈ N+ only, and
otherwise, it keeps invariable. Also, it is assumed that the benchmark of discrete systems is
the same as local controller. In this case, the system can be described by the following discrete
system with time-delay

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x(k + 1) = A1 x(k) + B2 u2(k) + Eω(k),

u2(k) = B1 u1(k − τ2)− K2i x(k),

z(k) = C x(k) + Dω(k),

(1)
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Fig. 1. Multi-rate network control loop with time-delays

where remote controller u1(k − τ2) is given by

{

u1(k − τ2)=r(k − τ2)− K1j x(k − τ1 − τ2), k = nm,

u1(k − τ2)=r(nm − τ2)− K1j x(nm − τ1 − τ2), k ∈ {nm + 1, · · · , nm + m − 1},
(2)

with i ∈ {1, 2, · · · , N1}, j ∈ {1, 2, · · · , N2}, k, n ∈ N+ and N1, N2 ∈ N. Moreover, it follows
from (1) and (2) that, for k = nm,

{

x(k + 1)=(A1−B2K2i) x(k) − B2 B1 K1j x(k − τ1 − τ2) + B2 B1 r(k − τ2) + Eω(k),

z(k) =C x(k) + Dω(k),
(3)

and for k ∈ {nm + 1, · · · , nm + m − 1},

{

x(k + 1)=(A1 − B2K2i) x(k) − B2 B1 K1j x(nm − τ1 − τ2) + B2 B1 r(nm − τ2) + Eω(k),

z(k) =C x(k) + Dω(k).
(4)

For the passivity analysis, one can let r(k) = 0, and then the system (3) and (4) become

⎧

⎪

⎨

⎪

⎩

x(k + 1)=(A1 − B2K2i) x(k) − B2 B1 K1j x(k − τ) + Eω(k), k = nm,

x(k + 1)=(A1 − B2K2i) x(k) − B2 B1 K1j x(nm − τ) + Eω(k), k ∈ {nm + 1, · · · , nm + m − 1},

z(k) =C x(k) + Dω(k),
(5)

where τ = τ1 + τ2 > 0, k ∈ N+, n ∈ N+, m > 0 is a positive integer.
Obviously, if define Ai = A1 − B2K2i, Bj = −B2B1K1j, then the controlled system (5) becomes

⎧

⎨

⎩

x(k + 1) = Aix(k) + Bjx(k − τ) + Eω(k), k = nm,

x(k + 1) = Aix(t) + Bjx(nm − τ) + Eω(k), k ∈ {nm + 1, · · · , nm + m − 1},

z(k) = C x(k) + Dω(k),

(6)
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where A1, B1, B2, C, D, E are matrices with appropriate dimensions, K1j and K2i are mode gain
matrices of the remote controller and local controller. At each instant time k, there is only
one mode of each controller is enabled. τ = τ1 + τ2 > 0 and m > 0 are integers, k ∈ N+,
n = 0, 1, 2, · · · .
Furthermore, note that, as k = nm + s with s = 0, 1, · · · , m − 1, and nm − τ = k − (τ + s) then
(6) can be rewritten as

{

x(k + 1) = Ai x(k) + Bj x(k − h) + Eω(k),

z(k) = C x(k) + Dω(k),
(7)

with 0 ≤ τ ≤ h ≤ τ + m− 1. Accordingly, for the case of time-varying structured uncertainties
(7) becomes

{

x(k + 1)=(Ai + ∆A(k)) x(k) + (Bj + ∆B(k)) x(k − h) + (E + ∆E)ω(k),

z(k) =C x(k) + Dω(k),
(8)

with 0 ≤ τ ≤ h ≤ τ + m − 1, and ∆A(k), ∆B(k) and ∆E being structured uncertainties, and
are assumed to have the form of

∆A(k) = D1F(k)Ea, ∆B(k) = D1F(k)Eb, ∆E(k) = D1F(k)Ee, (9)

where D1, Ea, Eb and Ee are known constant real matrices with appropriate dimensions. It is
assumed that

F⊤(k)F(k) ≤ I, ∀k. (10)

In what follows, the the passive control for the hybrid model (7) and (8) are first studied, and
then, an example of systems (8) is investigated.

3. Passivity analysis

On the basis of models (7) and (8), consider the following discrete-time nominal switching
system with time-delay:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x(k + 1) = Aix(k) + Bjx(k − h) + Eω(k) ,

z(k) = Cx(k) + Dω(k),
x(k) = φ(k), k ∈ [−h, 0],
i(k) = s(x(k), k),
j(k) = σ(x(k), k),

(11)

where s and σ are switching rules, i ∈ {1, · · · , N1}, j ∈ {1, · · · , N2}, N1, N2 ∈ N, Ai, Bj ∈ Rn×n

are ith and jth switching matrices of system (11), h ∈ N is the time delay, and φ(·) is the initial
condition.
For the case of structured uncertainties, it can be described by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x(k + 1) = Ai(k)x(k) + Bj(k)x(k − h) + E(k)ω(k) ,

z(k) = Cx(k) + Dω(k),
x(k) = φ(k), k ∈ [−h, 0],
i(k) = s(x(k), k),
j(k) = σ(x(k), k),

(12)
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where Ai(k) = Ai + ∆A(k), Bj(k) = Bj + ∆B(k), E(k) = E + ∆E(k), and it is assumed that
(9) and (10) are satisfied. Our problem is to test whether system (11) and (12) are passive with
the switching controllers. To this end, we introduce the following fact and related definition
of passivity.
Lemma 1 (22). The following inequality holds for any a ∈ Rna , b ∈ Rnb , N ∈ Rna×nb , X ∈
Rna×na , Y ∈ Rna×nb , and Z ∈ Rnb×nb :

− 2a⊤Nb ≤

[

a
b

]⊤ [

X Y − N
∗ Z

] [

a
b

]

, (13)

where

[

X Y
∗ Z

]

≥ 0.

Lemma 2 (23). Given matrices Q = Q⊤, H, E and R = R⊤
> 0 of appropriate dimensions,

Q + HFE + E⊤F⊤H⊤
< 0 (14)

holds for all F satisfying F⊤F ≤ R, if and only if there exists some λ > 0 such that

Q + λHH⊤ + λ−1E⊤RE < 0. (15)

Definition 1 (26) The dynamical system (11) is called passive if there exists a scalar β such that

k f

∑
k=0

ω⊤(k)z(k) ≥ β, ∀ω ∈ L2[0, ∞), ∀k f ∈ N,

where β is some constant which depends on the initial condition of system.
In the sequel, we provide condition under which a class of discrete-time switching dynamical
systems with time-delay and uncertainties can be guaranteed to be passive.
System (11) can be recast as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

y(k)= x(k + 1) − x(k),

0 = (Ai + Bj− I)x(k)− y(k)−Bj

k−1
∑

l=k−h
y(l) + Eω(k),

z(k)= Cx(k) + Dω(k),
x(k)= φ(k), k ∈ [−h, 0]
i(k) = s(x(k), k),
j(k) = σ(x(k), k).

(16)

It is noted that (11) is completely equivalent to (16).
Theorem 1. System (11) is passive under arbitrary switching rules s and σ, if there exist
matrices P1 > 0, P2, P3, W1, W2, W3, M1, M2, S1 > 0, S2 > 0 such that the following LMIs hold

Λ =

⎡

⎢

⎢

⎣

Q1 Q2 P⊤
2 Bj − M1 P⊤

2 E − C

∗ Q3 P⊤
3 Bj − M2 P⊤

3 E

∗ ∗ −S2 0

∗ ∗ ∗ −(D + D⊤)

⎤

⎥

⎥

⎦

< 0, (17)

and
[

W M

M⊤ S1

]

≥ 0, (18)
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for i ∈ {1, · · · , N1}, j ∈ {1, · · · , N2}, N1, N2 ∈ N, where

Q1 = P⊤
2 (Ai − I) + (Ai − I)⊤P2 + hW1 + M1 + M⊤

1 + S2,

Q2 = (Ai − I)⊤P3 + P⊤
1 − P⊤

2 + hW2 + M⊤
2 ,

Q3 = −P3 − P⊤
3 + hW3 + P1 + hS1,

W =

[

W1 W2

∗ W3

]

, M =

[

M1

M2

]

.

Proof. Construct Lyapunov function as

V(k)=x⊤(k)P1x(k) +
0

∑
θ=−h+1

k−1

∑
l=k−1+θ

y⊤(l)S1y(l) +
k−1

∑
l=k−h

x⊤(l)S2x(l),

then
∆V(k) = V(k + 1)− V(k)

= 2x⊤(k)P1y(k) + x⊤(k)S2x(k) + y⊤(k)(P1 + hS1)y(k)

−x⊤(k − h)S2x(k − h) −
k−1
∑

l=k−h
y⊤(l)S1y(l),

(19)

where

2x⊤(k)P1y(k)=2η⊤(k)P⊤{

[

y(k)
(Ai + Bj − I)x(k) − y(k) + Eω(k)

]

−
k−1

∑
l=k−h

[

0
Bj

]

y(l)}, (20)

with η⊤(k) =
[

x⊤(k) y⊤(k)
]

, P =

[

P1 0
P2 P3

]

, and

2η⊤(k)P⊤

[

y(k)
(Ai + Bj − I)x(k) − y(k) + Eω(k)

]

= 2η⊤(k)P⊤{

[

0
Ai − I

]

x(k) +

[

I
−I

]

y(k) +

[

0
Bj

]

x(k) +

[

0
Eω(k)

]

}.
(21)

According to Lemma 1 we get that

−2
k−1
∑

l=k−h
η⊤(k)P⊤

[

0
Bj

]

y(l)

≤
k−1
∑

l=k−h

[

η(k)
y(l)

]⊤
⎡

⎣

W M − P⊤

[

0
Bj

]

∗ S1

⎤

⎦

[

η(k)
y(l)

]

=η⊤(k)hWη(k) + 2η⊤(k)(M − P⊤

[

0
Bj

]

)(x(k) − x(k − h)) +
k−1

∑
l=k−h

y⊤(l)S1y(l),

(22)

where
[

W M
∗ S1

]

≥ 0.
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From (19)-(22) we can get

∆V(k) − 2z⊤(k)ω(k)=2η⊤(k)P⊤

[

0 I
Ai − I −I

]

η(k) + η⊤(k)hWη(k)

+2η⊤(k)Mx(k) + 2η⊤(k)(P⊤

[

0
Bj

]

− M)x(k − h) + x⊤(k)S2x(k)

+y⊤(k)(P1 + hS1)y(k) − x⊤(k − h)S2x(k − h) + 2η⊤(k)P⊤

[

0
Eω(k)

]

−2(x⊤(k)C⊤ω(k) + ω⊤(k)D⊤ω(k)).

Let ξ⊤(k) = [x⊤(k), y⊤(k), x⊤(k − h), ω⊤(k)], then ∆V(k)− 2z⊤(k)ω(k) ≤ ξ(k)⊤υξ(k), where

υ =

⎡

⎢

⎢

⎣

φ P⊤

[

0
Bj

]

− M

[

P⊤
2 E − C⊤

P⊤
3 E

]

∗ −S2 0

∗ ∗ −(D + D⊤)

⎤

⎥

⎥

⎦

, (23)

and

φ=P⊤

[

0 I
Ai − I −I

]

+

[

0 I
Ai − I −I

]⊤

P + hW +
[

M 0
]

+

[

M⊤

0

]

+

[

S2 0
0 P1 + hS1

]

.

If v < 0, then △V(k) − 2z⊤(k)ω(k) < 0, which gives

k f

∑
k=0

ω⊤(k)z(k) >
1

2

k f

∑
k=0

△V(k) =
1

2
[V(k f + 1) − V(0)].

Furthermore, since V(k) = V(x(k)) ≥ 0, it follows that

k f

∑
k=0

ω⊤(k)z(k) ≥ −
1

2
V(0) ≡ β, ∀ω ∈ L2[0, ∞), ∀k f ∈ N,

which implies from Definition 1 that the system (11) is passive. Using the Schur complement
(23) is equivalent to (17). This complete the proof.

Theorem 2. System (12) is passive under arbitrary switching rules s and σ, if there
exist matrices P1 > 0, P2, P3, W1, W2, W3, M1, M2, S1 > 0, S2 > 0 such that the following LMIs
holds

⎡

⎢

⎢

⎢

⎢

⎣

Q1+E⊤
a Ea Q2 P⊤

2 Bj−M1+E⊤
a Eb P⊤

2 E − C⊤ + E⊤
a Ee P⊤

2 D1

∗ Q3 P⊤
3 Bj − M2 P⊤

3 E P⊤
3 D1

∗ ∗ −S2 + E⊤
b Eb E⊤

b Ee 0

∗ ∗ ∗ −(D + D⊤) + E⊤
e Ee 0

∗ ∗ ∗ ∗ −I

⎤

⎥

⎥

⎥

⎥

⎦

<0, (24)

and
[

W M

M⊤ S1

]

≥ 0, (25)

for

i ∈ {1, · · · , N1}, j ∈ {1, · · · , N2}, N1, N2 ∈ N,
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where Q1, Q2, Q3, W, M are defined in Theorem 1 and Ea, Eb, Ee are given by (9) and (10).

Proof. Replacing Ai, Bj and E in (17) with Ai + D1F(k)Ea, Bj + D1F(k)Eb and E + D1F(k)Ee,
respectively, we find that (17) for (12) is equivalent to the following condition

Λ +

⎡

⎢

⎢

⎣

P⊤
2 D1

P⊤
3 D1

0
0

⎤

⎥

⎥

⎦

F(k)
[

Ea 0 Eb Ee
]

+

⎡

⎢

⎢

⎣

E⊤
a
0

E⊤
b

E⊤
e

⎤

⎥

⎥

⎦

F⊤(k)
[

D⊤
1 P2 D⊤

1 P3 0 0
]

< 0.

By Lemma 2, a sufficient condition guaranteeing (17) for (12) is that there exists a positive
number λ > 0 such that

λΛ + λ2

⎡

⎢

⎢

⎣

P⊤
2 D1

P⊤
3 D1

0
0

⎤

⎥

⎥

⎦

[

D⊤
1 P2 D⊤

1 P3 0 0
]

+

⎡

⎢

⎢

⎣

E⊤
a
0

E⊤
b

E⊤
e

⎤

⎥

⎥

⎦

[

Ea 0 Eb Ee
]

< 0. (26)

Replacing λP, λS1, λS2, λM and λW with P, S1, S2, M and W respectively, and applying the
Schur complement shows that (26) is equivalent to (24). This completes the proof.

4. A numerical example

In this section, we shall present an example to demonstrate the effectiveness and applicability
of the proposed method. Consider system (12) with parameters as follows:

A1 =

[

−6 −6
2 −2

]

, A2 =

[

−4 −6
4 −4

]

, B1 =

[

−1 −2
0 −1

]

, B2 =

[

−2 0
−3 −1

]

,

B3 =

[

−1 0
0 −1

]

C =
[

0.1 −0.2
]

, E =

[

0.2
0.1

]

, Ea =

[

0.5 0
0.1 0.2

]

, Eb =

[

0.6 0
0 0.3

]

, D1 =

[

0.1 0
0 1

]

,

D = 0.1, h = 5.

Applying Theorem 2, with i ∈ {1, 2}, j ∈ {1, 2, 3}. It has been found by using software LMIlab
that the switching discrete time-delay system (12) is the passive and we obtain the solution as
follows:

P1 = 10−3 ×

[

0.1586 0.0154
∗ 0.2660

]

, P2 =

[

0.5577 0.3725
−1.6808 1.0583

]

, P3 =

[

0.1689 −0.0786
−0.0281 0.1000

]

,

S1 = 10−4 ×

[

0.4207 0.0405
∗ 0.6941

]

, S2 =

[

2.6250 0.8397
∗ 2.0706

]

, W1 =

[

0.2173 −0.0929
∗ 0.0988

]

,

W2 =

[

0.0402 −0.0173
∗ 0.0182

]

, W3 =

[

0.0075 −0.0032
∗ 0.0034

]

, M1 = 10−4 ×

[

−0.0640 −0.2109
0.1402 −0.5777

]

,

M2 = 10−5 ×

[

0.0985 −0.4304
0.1231 −0.9483

]

.
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5. Conclusions

In this paper, based on remote control and local control strategy, a class of hybrid multi-rate
control models with uncertainties and switching controllers have been formulated and their
passive control problems have been investigated. Using the Lyapunov-Krasovskii function
approach on an equivalent singular system, some new conditions in form of LMIs have been
derived. A numerical example has been shown to verify the effectiveness of the proposed
control and passivity methods.

6. Acknowledgements

This work is supported by the Program of the International Science and Technology
Cooperation (No.2007DFA10600), the National Natural Science Foundation of China
(No.60904015, 61004028), the Chen Guang project supported by Shanghai Municipal
Education Commission, Shanghai Education Development Foundation (No.09CG17), the
National High Technology Research and Development Program of China (No.2009AA043001),
the Shanghai Pujiang Program (No.10PJ1402800), the Fundamental Research Funds for the
Central Universities (No.WH1014013) and the Foundation of East China University of Science
and Technology (No.YH0142137).

7.References

[1] Huang J, Guan Z H, Wang Z. Stability of networked control systems based on model
of discrete-time interval system with uncertain delay. Dynamics of Continuous, Discrete
and Impulsive Systems Series B: Applications & Algorithms 2004; 11: 35-44.

[2] Lien C H. Further results on delay-dependent robust stability of uncertain fuzzy systems
with time-varying delay. Chaos, Solitons & Fractals 2006; 28(2): 422-427.

[3] Montestruque L A, Antsaklis P J. On the model-based control of networked systems.
Automatica 2003; 39: 1837-43.

[4] Montestruque L A , Antsaklis P J.Stability of model-based networked control systems
with time-varying transmission times. IEEE Trans. Autom. Control 2005; 49(9): 1562-1573.

[5] Nesic D, Teel A R. Input-to-state stability of networked control systems. Automatica 2004;
40: 2121-28.

[6] Overstreet J. W, Tzes A. An Internet-based real-time control engineering laboratory. IEEE
Control Systems Magazine 1999; 9: 320-26.

[7] Yang S H, Chen X , Tan L , Yang L. Time delay and data loss compensation for
Internet-based process control systems. Transactions of the Institute of Measurement and
Control 2005; 27(2): 103-08.

[8] Yang S H, Chen X ,Alty J L. Design issues and implementation of Internet-based process
control systems. Control Eng. Practice 2003; 11: 709-20.

[9] Yang S H, Tan L,Liu G P. Architecture design for Internet-based control systems.Int. J. of
Automation and Computing 2005; 1: 1-9.

[10] Yang S H,Dai C.Multi-rate control in Internet based control systems. In Proc. UK Control
2004, Sahinkaya, M.N. and Edge, K.A. (eds), Bath, UK, 2004, ID-053.

[11] Guan Z H, David J H, Shen X. On hybrid impulsive and switching systems and
application to nonlinear control.IEEE Trans. Autom. Control 2005; 50(7): 1158-62.

487Passive Robust Control for Internet-Based Time-Delay Switching Systems

www.intechopen.com



[12] Chen W H, Guan ZH, Lu X M. Delay-dependent exponential stability of uncertian
stochastic system with multiple delays: an LMI approach. Systems & Control Letters
2005; 54: 547-55.

[13] Chen W H, Guan ZH, Lu X M. Delay-dependent output feedback guaranteed cost control
for uncertain time-delay systems. Automatica 2004; 40: 1263-68.

[14] Huang X, Cao J D, Huang D S. LMI-based approach for delay-dependent exponential
stability analysis of BAM neural networks. Chaos, Solitons & Fractals 2005; 24(3): 885-898.

[15] Liu X W, Zhang H B, Zhang F L. Delay-dependent stability of uncertain fuzzy large-scale
systems with time delays. Chaos, Solitons & Fractals 2005; 26(1): 147-158.

[16] Li C D, Liao X F, Zhang R. Delay-dependent exponential stability analysis of
bi-directional associative memory neural networks with time delay: an LMI approach.
Chaos, Solitons & Fractals 2005; 24(4): 1119-1134.

[17] Tu F H, Liao X F, Zhang W. Delay-dependent asymptotic stability of a two-neuron system
with different time delays. Chaos, Solitons & Fractals 2006; 28(2): 437-447.

[18] Srinivasagupta D , Joseph B. An Internet-mediated process control laboratory. IEEE
Control Systems Magazine 2003; 23: 11-18.

[19] Walsh G C, Ye H, Bushnell L G. Aysmptotic behavior of nonlinear networked control
systems.IEEE Trans. Autom. Control 2001; 46: 1093-97.

[20] Zhang L, Shi Y,Chen T, Huang B. A new method for stabilization of networked control
systems with random delays. IEEE Trans. Autom. Control 2005; 50(8): 1177-81.

[21] Zhang W, Branicky M S, Phillips S M. Stability of networked control systems. IEEE
Control Systems Magazine 2001; 2: 84-99.

[22] Moon Y S, Park P, Koon W H, Lee Y S. Delay-dependent robust stabilization of uncdrtain
state-delayed systems. International Journal of Control 2001; 74: 1447-1455.

[23] Xie L. Output feedback H∞ control of systems with parameter uncertainty. International
Journal of Control 1996; 63: 741-750.

[24] Cui B,Hua M, Robust passive control for uncertain discrete-time systems with
time-varying delays. Chaos Solitions and Fractals 2006; 29: 331-341.

[25] Mahmoud M,Ismail A. Passiveity analysis and synthesis of discrete-time delay system.
Dynam Contin Discrete Impuls Syst Ser A:Math Anal 2004; 11(4): 525-544.

[26] R. Lozano, B. Brogliato, O. Egeland and B. Maschke, Dissipative Systems Analysis and
Control. Theory and Applications, London, U.K.: CES, Springer, 2000.

488 Robust Control, Theory and Applications

www.intechopen.com



Robust Control, Theory and Applications

Edited by Prof. Andrzej Bartoszewicz

ISBN 978-953-307-229-6

Hard cover, 678 pages

Publisher InTech

Published online 11, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The main objective of this monograph is to present a broad range of well worked out, recent theoretical and

application studies in the field of robust control system analysis and design. The contributions presented here

include but are not limited to robust PID, H-infinity, sliding mode, fault tolerant, fuzzy and QFT based control

systems. They advance the current progress in the field, and motivate and encourage new ideas and solutions

in the robust control area.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hao Zhang and Huaicheng Yan (2011). Passive Robust Control for Internet-Based Time-Delay Switching

Systems, Robust Control, Theory and Applications, Prof. Andrzej Bartoszewicz (Ed.), ISBN: 978-953-307-229-

6, InTech, Available from: http://www.intechopen.com/books/robust-control-theory-and-applications/passive-

robust-control-for-internet-based-time-delay-switching-systems



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


