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1. Introduction

The aim of this chapter is to present several interesting connections between the input-output
stability properties and the stabilizability and detectability of variational control systems,
proposing a new perspective concerning the interference of the interpolation methods in
control theory and extending the applicability area of the input-output methods in the stability
theory.
Indeed, let X be a Banach space, let (Θ, d) be a locally compact metric space and let E = X×Θ.
We denote by B(X) the Banach algebra of all bounded linear operators on X. If Y, U are two
Banach spaces, we denote by B(U, Y) the space of all bounded linear operators from U into Y
and by Cs(Θ,B(U, Y)) the space of all continuous bounded mappings H : Θ → B(U, Y). With
respect to the norm |||H||| := sup

θ∈Θ

||H(θ)||, Cs(Θ,B(U, Y)) is a Banach space.

If H ∈ Cs(Θ,B(U, Y)) and Q ∈ Cs(Θ,B(Y, Z)) we denote by QH the mapping Θ ∋ θ �→
Q(θ)H(θ). It is obvious that QH ∈ Cs(Θ,B(U, Z)) .

Definition 1.1. Let J ∈ {R+, R}. A continuous mapping σ : Θ × J → Θ is called a flow on Θ

if σ(θ, 0) = θ and σ(θ, s + t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ × J2.

Definition 1.2. A pair π = (Φ, σ) is called a linear skew-product flow on E = X × Θ if σ is a
flow on Θ and Φ : Θ × R+ → B(X) satisfies the following conditions:
(i) Φ(θ, 0) = Id, the identity operator on X, for all θ ∈ Θ;
(ii) Φ(θ, t + s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈ Θ × R

2
+ (the cocycle identity);

(iii) (θ, t) �→ Φ(θ, t)x is continuous, for every x ∈ X;
(iv) there are M ≥ 1 and ω > 0 such that ||Φ(θ, t)|| ≤ Meωt, for all (θ, t) ∈ Θ × R+.
The mapping Φ is called the cocycle associated to the linear skew-product flow π = (Φ, σ).

Let L1
loc(R+, X) denote the linear space of all locally Bochner integrable functions u : R+ → X.

Let π = (Φ, σ) be a linear skew-product flow on E = X × Θ. We consider the variational
integral system

(Sπ) xθ(t; x0, u) = Φ(θ, t)x0 +
∫ t

0
Φ(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ
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with u ∈ L1
loc(R+, X) and x0 ∈ X.

Definition 1.3. The system (Sπ) is said to be uniformly exponentially stable if there are N, ν > 0
such that

||xθ(t; x0, 0)|| ≤ Ne−νt||x0||, ∀(θ, t) ∈ Θ × R+, ∀x0 ∈ X.

Remark 1.4. It is easily seen that the system (Sπ) is uniformly exponentially stable if and only
if there are N, ν > 0 such that ||Φ(θ, t)|| ≤ Ne−νt, for all (θ, t) ∈ Θ × R+.

If π = (Φ, σ) is a linear skew-product flow on E = X × Θ and P ∈ Cs(Θ,B(X)), then there
exists a unique linear skew-product flow denoted πP = (ΦP, σ) on X × Θ such that this
satisfies the variation of constants formula:

ΦP(θ, t)x = Φ(θ, t)x +
∫ t

0
Φ(σ(θ, s), t − s)P(σ(θ, s))ΦP(θ, s)x ds (1.1)

and respectively

ΦP(θ, t)x = Φ(θ, t)x +
∫ t

0
ΦP(σ(θ, s), t − s)P(σ(θ, s))Φ(θ, s)x ds (1.2)

for all (x, θ, t) ∈ E × R+. Moreover, if M, ω are the exponential growth constants given by
Definition 1.2 (iv) for π, then

||ΦP(θ, t)|| ≤ Me(ω+M ||P||)t, ∀(θ, t) ∈ Θ × R+.

The perturbed linear skew-product flow πP = (ΦP, σ) is obtained inductively (see Theorem
2.1 in (Megan et al., 2002)) via the formula

ΦP(θ, t) =
∞

∑
n=0

Φn(θ, t),

where

Φ0(θ, t)x = Φ(θ, t)x and Φn(θ, t)x =
∫ t

0
Φ(σ(θ, s), t − s) P(σ(θ, s)) Φn−1(θ, s)x ds, n ≥ 1

for every (x, θ) ∈ E and t ≥ 0.
Let U, Y be two Banach spaces, let B ∈ Cs(Θ,B(U, X)) and C ∈ Cs(Θ,B(X, Y)). We consider
the variational control system (π, B, C) described by the following integral model

⎧

⎨

⎩

x(θ, t, x0, u) = Φ(θ, t)x0 +
∫ t

0 Φ(σ(θ, s), t − s)B(σ(θ, s))u(s) ds

y(θ, t, x0, u) = C(σ(θ, t))x(θ, t, x0, u)

where t ≥ 0, (x0, θ) ∈ E and u ∈ L1
loc(R+, U).

Two fundamental concepts related to the asymptotic behavior of the associated perturbed
systems (see (Clark et al., 2000), (Curtain & Zwart, 1995), (Sasu & Sasu, 2004)) are described
by stabilizability and detectability as follows:

Definition 1.5. The system (π, B, C) is said to be:
(i) stabilizable if there exists a mapping F ∈ Cs(Θ,B(X, U)) such that the system (SπBF) is
uniformly exponentially stable;
(ii) detectable if there exists a mapping K ∈ Cs(Θ,B(Y, X)) such that the system (SπKC) is
uniformly exponentially stable.
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Remark 1.6. (i) The system (π, B, C) is stabilizable if and only if there exists a mapping F ∈
Cs(Θ,B(X, U)) and two constants N, ν > 0 such that the perturbed linear skew-product flow
πBF = (ΦBF, σ) has the property

||ΦBF(θ, t)|| ≤ Ne−νt, ∀(θ, t) ∈ Θ × R+;

(ii) The system (π, B, C) is detectable if and only if there exists a mapping K ∈ Cs(Θ,B(Y, X))
and two constants N, ν > 0 such that the perturbed linear skew-product flow πKC = (ΦKC, σ)
has the property

||ΦKC(θ, t)|| ≤ Ne−νt, ∀(θ, t) ∈ Θ × R+.

In the present work we will investigate the connections between the stabilizability and
the detectability of the variational control system (π, B, C) and the asymptotic properties
of the variational integral system (Sπ). We propose a new method based on input-output
techniques and on the behavior of some associated operators between certain function spaces.
We will present a distinct approach concerning the stabilizability and detectability problems
for variational control systems, compared with those in the existent literature, working with
several representative classes of translations invariant function spaces (see Section 2 in (Sasu,
2008) and also (Bennet & Sharpley, 1988)) and thus we extend the applicability area, providing
new perspectives concerning this framework.
A special application of our main results will be the study of the connections between
the exponential stability and the stabilizability and detectability of nonautonomous control
systems in infinite dimensional spaces. The nonautonomous case treated in this chapter will
include as consequences many interesting situations among which we mention the results
obtained by Clark, Latushkin, Montgomery-Smith and Randolph (see (Clark et al., 2000))
and the authors (see (Sasu & Sasu, 2004)) concerning the connections between stabilizability,
detectability and exponential stability.

2. Preliminaries on Banach function spaces and auxiliary results

In what follows we recall several fundamental properties of Banach function spaces and we
introduce the main tools of our investigation. Indeed, let M(R+, R) be the linear space of all
Lebesgue measurable functions u : R+ → R, identifying the functions equal a.e.

Definition 2.1. A linear subspace B of M(R+, R) is called a normed function space, if there is a
mapping | · |B : B → R+ such that:
(i) |u|B = 0 if and only if u = 0 a.e.;
(ii) |αu|B = |α| |u|B, for all (α, u) ∈ R × B;
(iii) |u + v|B ≤ |u|B + |v|B, for all u, v ∈ B;
(iv) if |u(t)| ≤ |v(t)| a.e. t ∈ R+ and v ∈ B, then u ∈ B and |u|B ≤ |v|B.

If (B, | · |B) is complete, then B is called a Banach function space.

Remark 2.2. If (B, | · |B) is a Banach function space and u ∈ B then |u(· )| ∈ B.

A remarkable class of Banach function spaces is represented by the translations invariant
spaces. These spaces have a special role in the study of the asymptotic properties of the
dynamical systems using control type techniques (see Sasu (2008), Sasu & Sasu (2004)).
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Definition 2.3. A Banach function space (B, | · |B) is said to be invariant to translations if for
every u : R+ → R and every t > 0, u ∈ B if and only if the function

ut : R+ → R, ut(s) =

{

u(s − t) , s ≥ t
0 , s ∈ [0, t)

belongs to B and |ut|B = |u|B.

Let Cc(R+, R) denote the linear space of all continuous functions v : R+ → R with compact
support contained in R+ and let L1

loc(R+, R) denote the linear space of all locally integrable
functions u : R+ → R.

We denote by T (R+) the class of all Banach function spaces B which are invariant to
translations and satisfy the following properties:
(i) Cc(R+, R) ⊂ B ⊂ L1

loc(R+, R);

(ii) if B \ L1(R+, R) 
= ∅ then there is a continuous function δ ∈ B \ L1(R+, R).

For every A ⊂ R+ we denote by χA the characteristic function of the set A.

Remark 2.4. (i) If B ∈ T (R+), then χ[0,t) ∈ B, for all t > 0.

(ii) Let B ∈ T (R+), u ∈ B and t > 0. Then, the function ũt : R+ → R, ũt(s) = u(s + t) belongs
to B and |ũt|B ≤ |u|B (see (Sasu, 2008), Lemma 5.4).

Definition 2.5. (i) Let u, v ∈ M(R+, R). We say that u and v are equimeasurable if for every
t > 0 the sets {s ∈ R+ : |u(s)| > t} and {s ∈ R+ : |v(s)| > t} have the same measure.

(ii) A Banach function space (B, | · |B) is rearrangement invariant if for every equimeasurable
functions u, v : R+ → R+ with u ∈ B we have that v ∈ B and |u|B = |v|B.

We denote by R(R+) the class of all Banach function spaces B ∈ T (R+) which are
rearrangement invariant.

A remarkable class of rearrangement invariant function spaces is represented by the so-called
Orlicz spaces which are introduced in the following remark:

Remark 2.6. Let ϕ : R+ → R+ be a non-decreasing left-continuous function, which is
not identically zero on (0, ∞). The Young function associated with ϕ is defined by Yϕ(t) =
∫ t

0 ϕ(s) ds. For every u ∈ M(R+, R) let Mϕ(u) :=
∫ ∞

0 Yϕ(|u(s)|) ds. The set Oϕ of all
u ∈ M(R+, R) with the property that there is k > 0 such that Mϕ(ku) < ∞, is a linear
space. With respect to the norm |u|ϕ := inf{k > 0 : Mϕ(u/k) ≤ 1}, Oϕ is a Banach space,
called the Orlicz space associated with ϕ.
The Orlicz spaces are rearrangement invariant (see (Bennet & Sharpley, 1988), Theorem 8.9).
Moreover, it is well known that, for every p ∈ [1, ∞], the space Lp(R+, R) is a particular case
of Orlicz space.

Let now (X, || · ||) be a real or complex Banach space. For every B ∈ T (R+) we denote
by B(R+, X), the linear space of all Bochner measurable functions u : R+ → X with the
property that the mapping Nu : R+ → R+, Nu(t) = ||u(t)|| lies in B. Endowed with the norm
||u||B(R+,X) := |Nu|B, B(R+, X) is a Banach space.

Let (Θ, d) be a metric space and let E = X × Θ. Let π = (Φ, σ) be a linear skew-product flow
on E = X × Θ. We consider the variational integral system

(Sπ) xθ(t; x0, u) = Φ(θ, t)x0 +
∫ t

0
Φ(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ
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with u ∈ L1
loc(R+, X) and x0 ∈ X.

An important stability concept related with the asymptotic behavior of dynamical systems is
described by the following concept:

Definition 2.7. Let W ∈ T (R+). The system (Sπ) is said to be completely (W(R+, X),
W(R+, X))-stable if the following assertions hold:
(i) for every u ∈ W(R+, X) and every θ ∈ Θ the solution xθ(· ; 0, u) ∈ W(R+, X);
(ii) there is λ > 0 such that ||xθ(· ; 0, u)||W(R+,X) ≤ λ||u||W(R+,X), for all (u, θ) ∈ W(R+, X) ×
Θ.

A characterization of uniform exponential stability of variational systems in terms of the
complete stability of a pair of function spaces has been obtained in (Sasu, 2008) (see Corollary
3.19) and this is given by:

Theorem 2.8. Let W ∈ R(R+). The system (Sπ) is uniformly exponentially stable if and only if
(Sπ) is completely (W(R+, X), W(R+, X))-stable.

The problem can be also treated in the setting of the continuous functions. Indeed, let
Cb(R+, R) be the space of all bounded continuous functions u : R+ → R. Let C0(R+, R)
be the space of all continuous functions u : R+ → R with lim

t→∞
u(t) = 0 and let C00(R+, R) :=

{u ∈ C0(R+, R) : u(0) = 0}.

Definition 2.9. Let V ∈ {Cb(R+, R), C0(R+, R), C00(R+, R)}. The system (Sπ) is said to be
completely (V(R+, X), V(R+, X))-stable if the following assertions hold:
(i) for every u ∈ V(R+, X) and every θ ∈ Θ the solution xθ(· ; 0, u) ∈ V(R+, X);
(ii) there is λ > 0 such that ||xθ(· ; 0, u)||V(R+,X) ≤ λ||u||V(R+,X), for all (u, θ) ∈ V(R+, X)× Θ.

For the proof of the next result we refer to Corollary 3.24 in (Sasu, 2008) or, alternatively, to
Theorem 5.1 in (Megan et al., 2005).

Theorem 2.10. Let V ∈ {Cb(R+, R), C0(R+, R), C00(R+, R)}. The system (Sπ) is uniformly
exponentially stable if and only if (Sπ) is completely (V(R+, X), V(R+, X))-stable.

Remark 2.11. Let W ∈ R(R+) ∪ {C0(R+, X), C00(R+, X), Cb(R+, X)}. If the system (Sπ) is
uniformly exponentially stable then for every θ ∈ Θ the linear operator

Pθ
W : W(R+, X) → W(R+, X), (Pθ

Wu)(t) =
∫ t

0
Φ(σ(θ, s), t − s)u(s) ds

is correctly defined and bounded. Moreover, if λ > 0 is given by Definition 2.7 or respectively
by Definition 2.9, then we have that supθ∈Θ ||Pθ

W || ≤ λ.

These results have several interesting applications in control theory among we mention those
concerning the robustness problems (see (Sasu, 2008)) which lead to an inedit estimation of
the lower bound of the stability radius, as well as to the study of the connections between
stability and stabilizability and detectability of associated control systems, as we will see in
what follows. It worth mentioning that these aspects were studied for the very first time for
the case of systems associated to evolution operators in (Clark et al., 2000) and were extended
for linear skew-product flows in (Megan et al., 2002).
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3. Stabilizability and detectability of variational control systems

As stated from the very beginning, in this section our attention will focus on the connections
between stabilizability, detectability and the uniform exponential stability. Let X be a Banach
space, let (Θ, d) be a metric space and let π = (Φ, σ) be a linear skew-product flow on E =
X × Θ. We consider the variational integral system

(Sπ) xθ(t; x0, u) = Φ(θ, t)x0 +
∫ t

0
Φ(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ

with u ∈ L1
loc(R+, X) and x0 ∈ X.

Let U, Y be Banach spaces and let B ∈ Cs(Θ,B(U, X)), C ∈ Cs(Θ,B(X, Y)). We consider the
variational control system (π, B, C) described by the following integral model

⎧

⎨

⎩

x(θ, t, x0, u) = Φ(θ, t)x0 +
∫ t

0 Φ(σ(θ, s), t − s)B(σ(θ, s))u(s) ds

y(θ, t, x0, u) = C(σ(θ, t))x(θ, t, x0, u)

where t ≥ 0, (x0, θ) ∈ E and u ∈ L1
loc(R+, U).

According to Definition 1.5 it is obvious that if the system (Sπ) is uniformly exponentially
stable, then the control system (π, B, C) is stabilizable (via the trivial feedback F ≡ 0) and
this is also detectable (via the trivial feedback K ≡ 0). The natural question arises whether the
converse implication holds.

Example 3.1. Let X = R, Θ = R and let σ(θ, t) = θ + t. Let (Sπ) be a variational integral
system such that Φ(θ, t) = Id (the identity operator on X), for all (θ, t) ∈ Θ × R+. Let U =
Y = X and let B(θ) = C(θ) = Id, for all θ ∈ Θ. Let δ > 0. By considering F(θ) = −δ Id, for all
θ ∈ Θ, from relation (1.1), we obtain that

ΦBF(θ, t)x = x − δ

∫ t

0
ΦBF(θ, s)x ds, ∀t ≥ 0

for every (x, θ) ∈ E . This implies that ΦBF(θ, t)x = e−δtx, for all t ≥ 0 and all (x, θ) ∈ E ,
so the perturbed system (SπBF) is uniformly exponentially stable. This shows that the system
(π, B, C) is stabilizable.
Similarly, if δ > 0, for K(θ) = −δ Id, for all θ ∈ Θ, we deduce that the variational control
system (π, B, C) is also detectable.
In conclusion, the variational control system (π, B, C) is both stabilizable and detectable, but
for all that, the variational integral system (Sπ) is not uniformly exponentially stable.

It follows that the stabilizability or/and the detectability of the control system (π, B, C) are
not sufficient conditions for the uniform exponential stability of the system (Sπ). Naturally,
additional hypotheses are required. In what follows we shall prove that certain input-output
conditions assure a complete resolution to this problem. The answer will be given employing
new methods based on function spaces techniques.
Indeed, for every θ ∈ Θ, we define

Pθ : L1
loc(R+, X) → L1

loc(R+, X), (Pθw)(t) =
∫ t

0
Φ(σ(θ, s), t − s)w(s) ds
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and respectively

Bθ : L1
loc(R+, U) → L1

loc(R+, X), (Bθu)(t) = B(σ(θ, t))u(t)

Cθ : L1
loc(R+, X) → L1

loc(R+, Y), (Cθv)(t) = C(σ(θ, t))v(t).

We also associate with the control system S = (π, B, C) three families of input-output
mappings, as follows: the left input-output operators {Lθ}θ∈Θ defined by

Lθ : L1
loc(R+, U) → L1

loc(R+, X), Lθ := PθBθ

the right input-output operators {Rθ}θ∈Θ given by

Rθ : L1
loc(R+, X) → L1

loc(R+, Y), Rθ := CθPθ

and respectively the global input-output operators {Gθ}θ∈Θ defined by

Gθ : L1
loc(R+, U) → L1

loc(R+, Y), Gθ := CθPθBθ .

A fundamental stability concept for families of linear operators is given by the following:

Definition 3.2. Let Z1, Z2 be two Banach spaces and let W ∈ T (R+) be a Banach function
space. A family of linear operators {Oθ : L1

loc(R+, Z1) → L1
loc(R+, Z2)}θ∈Θ is said to be

(W(R+, Z1), W(R+, Z2))-stable if the following conditions are satisfied:
(i) for every α1 ∈ W(R+, Z1) and every θ ∈ Θ, Oθα1 ∈ W(R+, Z2);
(ii) there is m > 0 such that ||Oθα1||W(R+,Z2) ≤ m ||α1||W(R+,Z1), for all α1 ∈ W(R+, Z1) and
all θ ∈ Θ.

Thus, we observe that if W ∈ R(R+), then the variational integral system (Sπ) is uniformly
exponentially stable if and only if the family {Pθ}θ∈Θ is (W(R+, X), W(R+, X))-stable (see
also Remark 2.11).

Remark 3.3. Let Z1, Z2 be two Banach spaces and let W ∈ T (R+) be a Banach function space.
If Q ∈ Cs(Θ,B(Z1, Z2)) then the family {Qθ}θ∈Θ defined by

Qθ : L1
loc(R+, Z1) → L1

loc(R+, Z2), (Qθα)(t) = Q(σ(θ, t))α(t)

is (W(R+, Z1), W(R+, Z2))-stable. Indeed, this follows from Definition 2.1 (iv) by observing
that

||(Qθα)(t)|| ≤ |||Q||| ||α(t)||, ∀t ≥ 0, ∀α ∈ W(R+, Z1), ∀θ ∈ Θ.

The main result of this section is:

Theorem 3.4. Let W be a Banach function space such that W ∈ R(R+). The following assertions are
equivalent:
(i) the variational integral system (Sπ) is uniformly exponentially stable;
(ii) the variational control system (π, B, C) is stabilizable and the family of the left input-output
operators {Lθ}θ∈Θ is (W(R+, U), W(R+, X))-stable;
(iii) the variational control system (π, B, C) is detectable and the family of the right input-output
operators {Rθ}θ∈Θ is (W(R+, X), W(R+, Y))-stable
(iv) the variational control system (π, B, C) is stabilizable, detectable and the family of the global
input-output operators {Gθ}θ∈Θ is (W(R+, U), W(R+, Y))-stable.
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Proof. We will independently prove each equivalence (i) ⇐⇒ (ii), (i) ⇐⇒ (iii) and
respectively (i) ⇐⇒ (iv). Indeed, we start with the first one and we prove that (i) =⇒ (ii).
Taking into account that (Sπ) is uniformly exponentially stable, we have that the family
{Pθ}θ∈Θ is (W(R+, X), W(R+, X))-stable. In addition, observing that

||(Lθu)(t)|| ≤ sup
θ∈Θ

||Pθ|| |||B||| ||u(t)||, ∀u ∈ W(R+, U), ∀θ ∈ Θ

from Definition 2.1 (iv) we deduce that that the family {Lθ}θ∈Θ is
(W(R+, U), W(R+, X))-stable.
To prove the implication (ii) =⇒ (i), let F ∈ Cs(Θ,B(X, U)) be such that the
system (SπBF) is uniformly exponentially stable. It follows that the family {Hθ}θ∈Θ is
(W(R+, X), W(R+, X))-stable, where

Hθ : L1
loc(R+, X) → L1

loc(R+, X), (Hθu)(t) =
∫ t

0
ΦBF(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ.

For every θ ∈ Θ let

Fθ : L1
loc(R+, X) → L1

loc(R+, U), (Fθu)(t) = F(σ(θ, t))u(t).

Then from Remark 3.3 we have that the family {Fθ}θ∈Θ is (W(R+, X), W(R+, U))-stable.
Let θ ∈ Θ and let u ∈ L1

loc(R+, X). Using Fubini’s theorem and formula (1.1), we successively
deduce that

(Lθ Fθ Hθu)(t) =
∫ t

0

∫ s

0
Φ(σ(θ, s), t − s)B(σ(θ, s))F(σ(θ, s))ΦBF(σ(θ, τ), s − τ)u(τ) dτ ds =

=
∫ t

0

∫ t

τ
Φ(σ(θ, s), t − s)B(σ(θ, s))F(σ(θ, s))ΦBF(σ(θ, τ), s − τ)u(τ) ds dτ =

=
∫ t

0

∫ t−τ

0
Φ(σ(θ, τ + ξ), t − τ − ξ)B(σ(θ, τ + ξ))F(σ(θ, τ + ξ))ΦBF(σ(θ, τ), ξ)u(τ) dξ dτ =

=
∫ t

0
[ΦBF(σ(θ, τ), t − τ)u(τ)− Φ(σ(θ, τ), t − τ)u(τ)] dτ =

= (Hθu)(t)− (Pθu)(t), ∀t ≥ 0.

This shows that
Pθu = Hθu − Lθ Fθ Hθu, ∀u ∈ L1

loc(R+, X), ∀θ ∈ Θ. (3.1)

Let m1 and m2 be two constants given by Definition 3.2 (ii) for {Hθ}θ∈Θ and for {Lθ}θ∈Θ,
respectively. From relation (3.1) we deduce that Pθu ∈ W(R+, X), for every u ∈ W(R+, X)
and

||Pθu||W(R+,X) ≤ m1(1 + m2|||F|||) ||u||W(R+,X), ∀u ∈ W(R+, X), ∀θ ∈ Θ.

From the above relation we obtain that the family {Pθ}θ∈Θ is (W(R+, X), W(R+, X))-stable,
so the system (Sπ) is uniformly exponentially stable.
The implication (i) =⇒ (iii) follows using similar arguments with those used in the proof
of (i) =⇒ (ii). To prove (iii) =⇒ (i), let K ∈ Cs(Θ,B(Y, X)) be such that the system (SπKC)
is uniformly exponentially stable. Then, the family {Γθ}θ∈Θ is (W(R+, X), W(R+, X))-stable,
where

Γθ : L1
loc(R+, X) → L1

loc(R+, X), (Γθu)(t) =
∫ t

0
ΦKC(σ(θ, s), t − s)u(s) ds.
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For every θ ∈ Θ we define

Kθ : L1
loc(R+, Y) → L1

loc(R+, X), (Kθu)(t) = K(σ(θ, t))u(t).

From Remark 3.3 we have that the family {Kθ}θ∈Θ is (W(R+, Y), W(R+, X))-stable.
Using Fubini’s theorem and the relation (1.2), by employing similar arguments with those
from the proof of the implication (ii) =⇒ (i), we deduce that

Pθu = Γθu − ΓθKθRθu, ∀u ∈ L1
loc(R+, X), ∀θ ∈ Θ. (3.2)

Denoting by q1 and by q2 some constants given by Definition 3.2 (ii) for {Γθ}θ∈Θ and for
{Rθ}θ∈Θ, respectively, from relation (3.2) we have that Pθu ∈ W(R+, X), for every u ∈
W(R+, X) and

||Pθu||W(R+,X) ≤ q1(1 + q2|||K|||) ||u||W(R+,X), ∀u ∈ W(R+, X), ∀θ ∈ Θ.

Hence we deduce that the family {Pθ}θ∈Θ is (W(R+, X), W(R+, X))-stable, which shows that
the system (Sπ) is uniformly exponentially stable.
The implication (i) =⇒ (iv) is obvious, taking into account the above items. To prove that
(iv) =⇒ (i), let K ∈ Cs(Θ,B(Y, X)) be such that the system (SπKC) is uniformly exponentially
stable and let {Kθ}θ∈Θ and {Γθ}θ∈Θ be defined in the same manner like in the previous stage.
Then, following the same steps as in the previous implications, we obtain that

Lθu = ΓθBθu − ΓθKθGθu, ∀u ∈ L1
loc(R+, X), ∀θ ∈ Θ. (3.3)

From relation (3.3) we deduce that the family {Lθ}θ∈Θ is (W(R+, U), W(R+, X))-stable.
Taking into account that the system (π, B, C) is stabilizable and applying the implication
(ii) =⇒ (i), we conclude that the system (Sπ) is uniformly exponentially stable. �

Corollary 3.5. Let V ∈ {Cb(R+, R), C0(R+, R), C00(R+, R)}. The following assertions are
equivalent:
(i) the variational integral system (Sπ) is uniformly exponentially stable;
(ii) the variational control system (π, B, C) is stabilizable and the family of the left input-output
operators {Lθ}θ∈Θ is (V(R+, U), V(R+, X))-stable;
(iii) the variational control system (π, B, C) is detectable and the family of the right input-output
operators {Rθ}θ∈Θ is (V(R+, X), V(R+, Y))-stable
(iv) the variational control system (π, B, C) is stabilizable, detectable and the family of the global
input-output operators {Gθ}θ∈Θ is (V(R+, U), V(R+, Y))-stable.

Proof. This follows using similar arguments and estimations with those from the proof of
Theorem 3.4, by applying Theorem 2.10. �

4. Applications to nonautonomous systems

An interesting application of the main results from the previous section is to deduce necessary
and sufficient conditions for uniform exponential stability of nonautonomous systems in
terms of stabilizability and detectability. For the first time this topic was considered in (Clark
et al., 2000)). We propose in what follows a new method for the resolution of this problem
based on the application of the conclusions from the variational case, using arbitrary Banach
function spaces.
Let X be a Banach space and let Id denote the identity operator on X.
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Definition 4.1. A family U = {U(t, s)}t≥s≥0 ⊂ B(X) is called an evolution family if the
following properties hold:
(i) U(t, t) = Id and U(t, s)U(s, t0) = U(t, t0), for all t ≥ s ≥ t0 ≥ 0;

(ii) there are M ≥ 1 and ω > 0 such that ||U(t, s)|| ≤ Meω(t−s), for all t ≥ s ≥ t0 ≥ 0;
(iii) for every x ∈ X the mapping (t, s) �→ U(t, s)x is continuous.

Remark 4.2. For every P ∈ Cs(R+,B(X)) (see e.g. (Curtain & Zwart, 1995)) there is a unique
evolution family UP = {UP(t, s)}t≥s≥0 such that the variation of constants formulas hold:

UP(t, s)x = U(t, s)x +
∫ t

s
U(t, τ)P(τ)UP(τ, s)x dτ, ∀t ≥ s ≥ 0, ∀x ∈ X

and respectively

UP(t, s)x = U(t, s)x +
∫ t

s
UP(t, τ)P(τ)U(τ, s)x dτ, ∀t ≥ s ≥ 0, ∀x ∈ X.

Let U = {U(t, s)}t≥s≥0 be an evolution family on X. We consider the nonautonomous integral
system

(SU ) xs(t; x0, u) = U(t, s)x0 +
∫ t

s
U(t, τ)u(τ) dτ, t ≥ s, s ≥ 0

with u ∈ L1
loc(R+, X) and x0 ∈ X.

Definition 4.3. The system (SU ) is said to be uniformly exponentially stable if there are N, ν > 0

such that ||xs(t; x0, 0)|| ≤ Ne−ν(t−s)||x0||, for all t ≥ s ≥ 0 and all x0 ∈ X.

Remark 4.4. The system (SU ) is uniformly exponentially stable if and only if there are N, ν > 0

such that ||U(t, s)|| ≤ Ne−ν(t−s), for all t ≥ s ≥ 0.

Definition 4.5. Let W ∈ T (R+). The system (SU ) is said to be completely (W(R+, X),
W(R+, X))-stable if for every u ∈ W(R+, X), the solution x0(·; 0, u) ∈ W(R+, X).

Remark 4.6. If the system (SU ) is completely (W(R+, X), W(R+, X))-stable, then it makes
sense to consider the linear operator

P : W(R+, X) → W(R+, X), P(u) = x0(·; 0, u).

It is easy to see that P is closed, so it is bounded.

Let now U, Y be Banach spaces, let B ∈ Cs(R+,B(U, X)) and let C ∈ Cs(R+,B(X, Y)). We
consider the nonautonomous control system (U , B, C) described by the following integral
model

⎧

⎨

⎩

xs(t; x0, u) = U(t, s)x0 +
∫ t

s U(t, τ)B(τ)u(τ) dτ, t ≥ s, s ≥ 0

ys(t; x0, u) = C(t)xs(t; x0, u), t ≥ s, s ≥ 0

with u ∈ L1
loc(R+, U), x0 ∈ X.

Definition 4.7. The system (U , B, C) is said to be:
(i) stabilizable if there exists F ∈ Cs(R+,B(X, U)) such that the system (SUBF

) is uniformly
exponentially stable;
(ii) detectable if there exists G ∈ Cs(R+,B(Y, X)) such that the system (SUGC

) is uniformly
exponentially stable.
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We consider the operators

B : L1
loc(R+, U) → L1

loc(R+, X), (Bu)(t) = B(t)u(t)

C : L1
loc(R+, X) → L1

loc(R+, Y), (Cu)(t) = B(t)u(t)

and we associate with the system (U , B, C) three input-output operators: the left input-output
operator defined by

L : L1
loc(R+, U) → L1

loc(R+, X), L = PB

the right input-output operator given by

R : L1
loc(R+, X) → L1

loc(R+, Y), R = CP

and respectively the global input-output operator defined by

G : L1
loc(R+, U) → L1

loc(R+, Y), G = CPB.

Definition 4.8. Let Z1, Z2 be two Banach spaces and let W ∈ T (R+) be a Banach
function space. An operator Q : L1

loc(R+, Z1) → L1
loc(R+, Z2) is said to be

(W(R+, Z1), W(R+, Z2))-stable if for every λ ∈ W(R+, Z1) the function Qλ ∈ W(R+, Z2).

The main result of this section is:

Theorem 4.9. Let W be a Banach function space such that B ∈ R(R+). The following assertions are
equivalent:
(i) the integral system (SU ) is uniformly exponentially stable;
(ii) the control system (U , B, C) is stabilizable and the left input-output operator L is
(W(R+, U), W(R+, X))-stable;
(iii) the control system (U , B, C) is detectable and the right input-output operator R is
(W(R+, X), W(R+, Y))-stable;
(iv) the control system (U , B, C) is stabilizable, detectable and the global input-output operator G is
(W(R+, U), W(R+, Y))-stable.

Proof. We prove the equivalence (i) ⇐⇒ (ii) , the other equivalences: (i) ⇐⇒ (iii) and (i) ⇐⇒
(iv) being similar.
Indeed, the implication (i) =⇒ (ii) is immediate. To prove that (ii) =⇒ (i) let Θ = R+,
σ : Θ × R+ → Θ, σ(θ, t) = θ + t and let Φ(θ, t) = U(t + θ, θ), for all (θ, t) ∈ Θ × R+. Then
π = (Φ, σ) is a linear skew-product flow and it makes sense to associate with π the following
integral system

(Sπ) xθ(t; x0, u) = Φ(θ, t)x0 +
∫ t

0
Φ(σ(θ, s), t − s)u(s) ds, t ≥ 0, θ ∈ Θ

with u ∈ L1
loc(R+, X) and x0 ∈ X.

We also consider the control system (π, B, C) given by

⎧

⎨

⎩

x(θ, t, x0, u) = Φ(θ, t)x0 +
∫ t

0 Φ(σ(θ, s), t − s)B(σ(θ, s))u(s) ds

y(θ, t, x0, u) = C(σ(θ, t))x(θ, t, x0, u)

where t ≥ 0, (x0, θ) ∈ E and u ∈ L1
loc(R+, U). For every θ ∈ Θ we associate with the system

(π, B, C) the operators Pθ , Bθ and Lθ using their definitions from Section 3.
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We prove that the family {Lθ}θ∈Θ is (W(R+, U), W(R+, X))-stable. Let θ ∈ Θ and let α ∈
W(R+, U). Since W is invariant to translations the function

αθ : R+ → U, αθ(t) =

{

α(t − θ), t ≥ θ
0, t ∈ [0, θ)

belongs to W(R+, U) and ||αθ ||W(R+,U) = ||α||W(R+,U). Since the operator L is

(W(R+, U), W(R+, X))-stable we obtain that the function

ϕ : R+ → X, ϕ(t) = (Lαθ)(t)

belongs to W(R+, X). Using Remark 2.4 (ii) we deduce that the function

γ : R+ → X, γ(t) = ϕ(t + θ)

belongs to W(R+, X) and ||γ||W(R+,X) ≤ ||ϕ||W(R+,X). We observe that

(Lθα)(t) =
∫ t

0
U(θ + t, θ + s)B(θ + s)α(s) ds =

∫ θ+t

θ
U(θ + t, τ)B(τ)α(τ − θ) dτ =

=
∫ θ+t

θ
U(θ + t, τ)B(τ)αθ(τ) dτ = (Lαθ)(θ + t) = γ(t), ∀t ≥ 0.

This implies that Lθα belongs to W(R+, X) and

||Lθα||W(R+,X) = ||γ||W(R+,X) ≤ ||ϕ||W(R+,X) ≤

≤ ||L|| ||αθ||W(R+,U) = ||L|| ||α||W(R+,U). (4.1)

Since θ ∈ Θ and α ∈ W(R+, U) were arbitrary from (4.1) we deduce that the family {Lθ}θ∈Θ

is (W(R+, U), W(R+, X))-stable.
According to our hypothesis we have that the system (U , B, C) is stabilizable. Then there is
F ∈ Cs(R+,B(X, U)) such that the (unique) evolution family UBF = {UBF(t, s)}t≥s≥0 which
satisfies the equation

UBF(t, s)x = U(t, s)x +
∫ t

s
U(t, τ)B(τ)F(τ)UBF(τ, s)x dτ, ∀t ≥ s ≥ 0, ∀x ∈ X (4.2)

has the property that there are N, ν > 0 such that

||UBF(t, s)|| ≤ Ne−ν(t−s), ∀t ≥ s ≥ 0. (4.3)

For every (θ, t) ∈ Θ × R+, let Φ̃(θ, t) := UBF(θ + t, θ). Then, we have that π̃ = (Φ̃, σ) is a
linear skew-product flow. Moreover, using relation (4.2) we deduce that

∫ t

0
Φ(σ(θ, s), t − s)B(σ(θ, s))F(σ(θ, s))Φ̃(θ, s)x ds =

=
∫ t

0
U(θ + t, θ + s)B(θ + s)F(θ + s)UBF(θ + s, θ)x ds =

=
∫ θ+t

θ
U(θ + t, τ)B(τ)F(τ)UBF(τ, θ)x dτ =
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= UBF(θ + t, θ)x − U(θ + t, θ)x = Φ̃(θ, t)x − Φ(θ, t)x (4.4)

for all (θ, t) ∈ Θ × R+ and all x ∈ X. According to Theorem 2.1 in (Megan et al., 2002), from
relation (4.4) it follows that

Φ̃(θ, t) = ΦBF(θ, t), ∀(θ, t) ∈ Θ × R+

so π̃ = πBF. Hence from relation (4.3) we have that

||ΦBF(θ, t)|| = ||UBF(θ + t, θ)|| ≤ Ne−νt, ∀t ≥ 0, ∀θ ∈ Θ

which shows that the system (SπBF) is uniformly exponentially stable. So the system (π, B, C)
is stabilizable.
In this way we have proved that the system (Sπ) is stabilizable and the associated left
input-output family {Lθ}θ∈Θ is (W(R+, U), W(R+, X))-stable. By applying Theorem 3.4 we
deduce that the system (Sπ) is uniformly exponentially stable. Then, there are Ñ, δ > 0 such
that

||Φ(θ, t)|| ≤ Ñe−δt, ∀t ≥ 0, ∀θ ∈ Θ.

This implies that

||U(t, s)|| = ||Φ(s, t − s)|| ≤ Ñe−δ(t−s), ∀t ≥ s ≥ 0. (4.5)

From inequality (4.5) and Remark 4.4 we obtain that the system (SU ) is uniformly
exponentially stable. �

Remark 4.10. The version of the above result, for the case when W = Lp(R+, R) with p ∈
[1, ∞), was proved for the first time by Clark, Latushkin, Montgomery-Smith and Randolph
in (Clark et al., 2000) employing evolution semigroup techniques.

The method may be also extended for spaces of continuous functions, as the following result
shows:

Corollary 4.11. Let V ∈ {Cb(R+, R), C0(R+, R), C00(R+, R)}. The following assertions are
equivalent:
(i) the system (SU ) is uniformly exponentially stable;
(ii) the system (U , B, C) is stabilizable and the left input-output operator L is
(V(R+, U), V(R+, X))-stable;
(iii) the system (U , B, C) is detectable and the right input-output operator R is
(V(R+, X), V(R+, Y))-stable;
(iv) the system (U , B, C) is stabilizable, detectable and the global input-output operator G is
(V(R+, U), V(R+, Y))-stable.

Proof. This follows using Corollary 3.5 and similar arguments with those from the proof of
Theorem 4.9. �

5. Conclusions

Stabilizability and detectability of variational/nonautonomous control systems are two
properties which are strongly related with the stable behavior of the initial integral system.
These two properties (not even together) cannot assure the uniform exponential stability of the
initial system, as Example 3.1 shows. But, in association with a stability of certain input-output
operators the stabilizability or/and the detectability of the control system (π, B, C) imply

453On Stabilizability and Detectability of Variational Control Systems

www.intechopen.com



the existence of the exponentially stable behavior of the initial system (Sπ). Here we have
extended the topic from evolution families to variational systems and the obtained results are
given in a more general context. As we have shown in Remark 2.6 the spaces involved in the
stability properties of the associated input-output operators may be not only Lp-spaces but
also general Orlicz function spaces which is an aspect that creates an interesting link between
the modern control theory of dynamical systems and the classical interpolation theory.
It worth mentioning that the framework presented in this chapter may be also extended
to some slight weak concepts, taking into account the main results concerning the uniform
stability concept from Section 3 in (Sasu, 2008) (see Definition 3.3 and Theorem 3.6 in
(Sasu, 2008)). More precisely, considering that the system (π, B, C) is weak stabilizable
(respectively weak detectable) if there exists a mapping F ∈ Cs(Θ,B(X, U)) (respectively
K ∈ Cs(Θ,B(Y, X))) such that the system (SπBF) (respectively (SπKC)) is uniformly stable, then
starting with the result provided by Theorem 3.6 in (Sasu, 2008), the methods from the present
chapter may be applied to the study of the uniform stability in terms of weak stabilizability
and weak detectability. In authors opinion, the technical trick of the new study will rely on
the fact that in this case the families of the associated input-output operators will have to be
(L1, L∞)-stable.
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