
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



12 

Simple Robust Normalized PI  
Control for Controlled Objects with  

One-order Modelling Error 

Makoto Katoh 
Osaka Institute of Technology 

Japan 

1. Introduction 

In this section, the small gain theorem is introduced as a background theory of this chapter. 

Then, a large mission on safety and a small mission on analytic solutions are introduced 

after indicating the some problems in discussing robust PI control systems. Moreover, the 

way how it came to be possible to obtain the analytic solution of PI control adjustment for 

the concrete robust control problems with uncertain modeling error which is impossible 

using the space theory for MIMO systems, is shown for a SISO system. The worst lines of 

closed loop gain margin were shown in a parameter plane. Finally, risk, merit and demerit 

of the robust control is discussed and the countermeasure for safeness of that is introduced. 

And some theme, eg., in the lag time system, the MIMO system and a class of non-linear 

system for expansion of the approach of this chapter is introduced. 

- Many researchers have studied on many kinds of robust system recently.  The basic 

robust stability concept is based on the small gain theorem (Zbou K. with Doyle F. C. 

and Glover K., 1996). The theorem insists that a closed loop system is internal (robust) 

stable sufficiently and necessary if the H∞  norm of the nominal closed loop transfer 

function is smaller than the inverse of H∞  norm of the any uncertainty of feedback 

elements. (Fig. 1) Moreover, the expansion of the theorem claims that a closed loop 

system is stable sufficiently if  the product of H∞  norms of open loop transfer functions 

is smaller than 1 when the forward and the feedback transfer functions are both stable. 
 

  

+
A(s) 

Δ (s)

+
Y(s) 

W(s)

    

1
when  if A  then internal stable∞ ∞Δ ≤ γ <

γ  

Fig. 1. Feed back system configuration with unknown feedback element 

- In MIMO state space models (A,B,C,D), a necessary and sufficient condition using LMI 

(Linear Matrix Inequality) for the above bounded norm of controlled objects is known 

as the following Bounded Real Lemma (Zhou K. And Khargonekar P.P., 1988) using the 

Riccati unequality and Shure complement. 
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A gain margin between the critical closed loop gain of a dependent type IP controller by 
the Furwits criteria and the analytical closed loop gain solution when closed loop Hardy 
space norm became 1, and the parametric stability margin (Bhattacharyya S. P., 
Chapellat H., and Keel L. H., 1994; Katoh 2010) on uncertain time constant and 
damping coefficient were selected in this chapter for its easiness and robustness  
although it was expected also using this lemma that internal stable concrete conditions 
for controlled objects and forward controllers may obtain. 

- One of H∞ control problems is described to obtain a robust controller K(s) when Hardy 
space norm of closed loop transfer function matrix is bounded like Fig.2 assuming 
various (additive, multiplicative, left co-prime factor etc.) uncertainty of controlled 
objects P(s) (Zbou K. with Doyle F. C. and Glover K., 1996).   
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Fig. 2. Feed back system configuration for obtained robust control K(s) when Hardy space 
norm of closed loop transfer function matrix is bounded 

- The purpose of this chapter for the robust control problem is to obtain analytical 
solution of closed loop gain of a dependent type IP controller and analyze robustness 
by closed loop gain margin for 2nd order controlled objects with one-order feedback like 
(left co-prime factor) uncertainty as Fig.1 in some tuning regions of IP controller when 
Hardy space norm of closed loop transfer function matrix is bounded less than 1. 

- Though another basic robust problem is a cooperation design in frequency region 
between competitive sensitivity and co-sensitivity function, it was omitted in this 
chapter because a tuning region of IP control was superior for unknown input 
disturbance other tuning region was superior for unknown reference disturbance. 

- However, there is some one not simple for using higher order controllers with many 
stable zeros and using the norm with window (Kohonen T., 1995, 1997) for I in Hardy 
space for evaluating the uncertainty of models. Then, a number of robust PI or PID 
controller and compensator design methods have recently been proposed.  But, they are 
not considered on the modelling error or parameter uncertainty. 

- Our given large mission is to construct safe robust systems using simple controllers and 
simple evaluating method of the uncertainty of models. Then, we have proposed robust 
PI controllers for controlled objects without stable zeros (Katoh M., 2008, 2009). Our 
small mission in this chapter is to obtain analytical solution of controller gain with flat 
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gain curve in a band width as Butter-worse filter for the 3rd order closed systems with 
one-order modelling errors and to show the robust property by loop gain margin for 
damping coefficients of nominal controlled objects and time constants of missing 
objects (sensor and signal conditioner) using Table Computation Tool (Excel: Microsoft 
Co. LTD). It is interesting and important historically that infinity time constant is 
contained in the investing set though it isn’t existing actually. Moreover, we confirm the 
robustness for a parameter change by raising and lowering of step response using CAD 
Tool (Simulink: Mathworks Co. LTD). 

- Risk of Integral term of PI controller when disconnecting the feedback line can be 
rescued by M/A station used in many industrial applications or by shutdown of the 
plant in our standing point. Then, we show a simple soft M/A station for simulation 
with PI controllers in appendix.  

- This method is not actually because it becomes complicated to computation for higher 
order objects contained plants with lag time as pointed out in appendix but useful. 

2. System description 

In this section, a description of the higher order generalized system for later 2nd order 
examples with one-order modeling error  is presented although they may not computed 

concretely. 

2.1 Normalized transfer function 
In this section, how to normalize and why to normalize transfer functions are explained. 

The following transfer functions of controlled objects Eq. (1) with multiplicative one-order 
modeling error Eq. (2) are normalized using a general natural angular frequency n

∗ω  and 
gain o sK K K∗ =  as Eq. (3) although the three positions distributed for normalization are 
different.  

 
2

2 2
1 1

( )
2= =

=
+ + +∏ ∏

αω
ς ω ω α

qr
jni

o

i ji ni ni j

G s K
s s s

 (1) 

 ( )
1

=
+ε
sK

H s
s

 (2) 

 *

*2 1

2 1 * 2 *2 *2 1

2 1

1
( ) ( ) ( )

+ +

+ + + + + +
+

=

=
+ + + +

ω
ε β ω β ω ωA

l

r q

n

r q r q r q r q

r q n n n

G s G s H s
K

s s s

 

(3)

 

Moreover, converting the differential operator s to s as, 

 *

*
, n

n

s
s ε ω ε

ω
=5  (4) 

the following normalized open loop transfer function is obtained: 
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 where  n = 2r + q (5) 
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Neglecting one-order modeling error, the following normalized open loop transfer function is 
obtained: 

 
1

1 1

1
( )

1−
−

=
+ + +γ γAn n

n

G s
s s s

 where n = 2r + q (6) 

2.2 State space models  
In this section, 3 kinds of description on normalized state space models are shown although 

they may not computed concretely. First shows a continuous realization form of the higher 

order transfer functions to a SISO system. Second shows a normalized sampled system form 

for the first continuous realization on sampling points. Third shows a normalized 

continuously approximated form using logarithm conversion for the second sampled 

system. 

Minimum realization of normalized transfer function: The normalized transfer function, 
shown in Eq. (6), is converted to the following SISO controllable minimum realization:   

 ( ) ( ) ( )

( ) ( ) ( )

t t u t

y t t du t

= +
= +

x Ax b

cx

##$
#

 (7) 

Normalized sampled system on sampling points: Integrating the response between two 
sampling points to the next sampling point, the following precise sampled system is 
obtained: 
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Normalized sampled system approximated:   

Approximating Eq. (3) by the advanced difference method, the following sampled system is 
obtained: 
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Normalized System in continuous region:   

Returning to the continuous region after conversion using the matrix logarithm function, the 
following system is obtained in continuous region: 
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The condition of convergence for logarithm conversion Eq. (11) of controllable accompany 

description Eq. (7) is not described because it is assumed that the sampled time h is 

sufficiently small. The approximated order is then selected as the 9th order. Thus, 0d =#  is 

assumed for the simplification. 

3. Controller and parameter tuning 

In this section, an IP controller and a number of parameter tuning methods are presented in 

order to increase the robustness of the control system. 

3.1 Normalized IP controller 
In this section, 3 kinds of description on normalized integral lead dependent type IP 

controller which is not conventional proportional lead dependent type PI controller are 

shown. First is showing inherent frequency for normalization as magnitudes of integral and 

proportional in continuous systems. Second is showing that in digital systems. Third is 

showing again that of digital systems in returning approximated continuous systems. 

 1 1
( ) ( ) ( )i i n

n

p
C s K p K

s s
ω

ω
= + = +  (12) 
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Note that the digital IP controller of Eq. (13) is asymptotic to the proportional control as h 

approaches zero or p  becomes larger.  This controller is called IPL tuning. Then, the stable 

zero = - 1/ p must be placed not in the neighborhood of the system poles for safety. 

3.2 Stability of closed loop transfer function  
In this section, more higher order systems are processed  for consideration generally on 

three tuning region classified by the amplitude of P control parameter using Hurwits 

approach in example of a second-order system with one-order modelling error. It is guessed 

that there may be four elementary tuning regions and six combinatorial tuning regions 

generally in the aspect of Hurwits stability. 

The following normalized loop transfer function is obtained from the normalized controlled 

object Eq. (5) and the normalized controller Eq. (12): 
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If the original parameters , , 0, 0i ji j ς α∀ > > are positive, then , 0kk β∀ > . 

Assuming p  > 0 and  
iK  > 0, and that  

 2 1 2

2 1( ) ( 1)n n

r q i is s s s K p s Kϕ ε β β+ +
++ + + + + +5 A  (16) 

www.intechopen.com



 Advances in Reinforcement Learning 

 

266 

is a Hurwits polynomial, the stability limits of 
iK can be obtained as a region of p . Then, 

this region is called a IPL region when p  has a maximum lower bound and an IP0 region 

when p =0. The region between zero and the minimum upper bound is called the IPS. The 

region between the minimum upper bound and the maximum lower bound is called the 

IPM region.  Generally, there are four elementary regions and six combinatorial regions. 

3.3 Stationary points investing approach on fraction equation 
In this section, Stationary Points Investing approach on Fraction Equation for searching 

local maximum with equality restriction is shown using Lagrange’s undecided multiplier 

approach. Then, multiple same solutions of the independent variable are solved at the 

stationary points. They can be used to check for mistakes in calculation as self-diagnostics 
approach. 

Here, the common normalized control parameters 
iK  and p  will be obtained in continuous 

region, which has reduction models reduced from original region. 
Stationary Points Investing for Fraction Equation approach for searching local maximum 

with equality restriction: 

 0.5( )
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u
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ωω
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→ =

=

ω ω
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s

solve local muximum minimum for

such that W j
 

This is the design policy of servo control for wide band width. In particular, ( ) 1W o =  

means that steady state error is 0.  

Next, Lagrange’s undecided multiplier approach is applied to obtain stationary points 

sω with equality restriction using the above u,v notations. 
Then, the original problem can be converted to the following problem: 

 
2 ( )

( , ) ( ) { ( ) ( )}
( )

_ _ /

++ = = + −

→

ωω λ ω λ ω ω
ω

u
J W j u v

v

solve local maximum minimum

 (18) 

 

where λ is a Lagrange  multiplier. 

The necessary conditions for obtaining the local minimum/maximum of a new function 

become as followings.  
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The following relations are obtained from eqs. (19) and (20): 
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Solutions of control parameters:   

Solving these simultaneous equations, the following functions can be obtained: 

 
( , )

( , , ) ( 1, 2, , )j

i sj

p

K g p j

s
ω f a

a ω α

=

= = A
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where 
sω  is the stationary points vector. 

Multiple solutions of 
iK can be used to check for mistakes in calculation. 

3.4 Example of a second-order system with one-order modelling error 
In this section, an IP control system in continuous design for a second-order original 

controlled object without one-order sensor and signal conditioner dynamics is assumed for 

simplicity. The closed loop system with uncertain one-order modeling error is normalized 

and obtained the stable region of the integral gain in the three tuning region classified by 

the amplitude of  P control parameter using Hurwits approach. Then, the safeness of the 

only I tuning region and the risk of the large P tuning region are discussed.  Moreover, the 

analytic solutions of stationary points and double same integral gains are obtained using 

the Stationary Points Investing on Fraction Equation approach for the gain curve of a 

closed loop system. 

Here, an IP control system for a second-order controlled object without sensor dynamics is 
assumed. 
Closed-loop transfer function: 
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Stable conditions by Hurwits approach with four parameters: 

a. In the case of a certain  time constant 
IPL&IPS Common Region: 
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  2 30 max[0,min[ , , ]]iK k k< < ∞
 

(28)
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2 20 4 2 2where p for ς ε ςε ς ε> + + ≤  

IPL, IPS Separate Region: 

The integral gain stability region is given by Eqs. (28)-(30).  
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It can be proven that 
3k >0 in the IPS region, and 

 2 3, 0k k when p→∞ →∞ →
 

(33)
 

IP0 Region: 
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The IP0 region is most safe because it has not zeros. 
b. In the case of an uncertain positive time constant 
IPL&IPS Common Region: 
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IPL, IPS Separate Region: 

This region is given by Eq. (32). 
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IP0 Region: 
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c. Robust loop gain margin 

The following loop gain margin is obtained from eqs. (28) through (38) in the cases of certain 

and uncertain parameters: 

 iUL

i

K
gm

K
5  (39) 

where 
 i ULK  is the upper limit of the stable loop gain 

iK . 
Stable conditions by Hurwits approach with three parameters: 

The stability conditions will be shown in order to determine the risk of one order modelling 

error, 

 
1

0 ( )
2

iK where p PL< ≥
ς

 (40) 
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0 0 ( 0)
1 2 2

iK where p P
p

ς
< < ≤ <

− ς ς
 (41) 

Hurwits Stability is omitted because h  is sufficiently small, although it can be checked using 

the bilinear transform. 
Robust loop gain margin: 

 ( _ )gm PL region= ∞  (42) 

It is risky to increase the loop gain in the IPL region too much, even if the system does not 

become unstable because a model order error may cause instability in the IPL region. In the 

IPL region, the sensitivity of the disturbance from the output rises and the flat property of 

the gain curve is sacrificed, even if the disturbance from the input can be isolated to the 

output upon increasing the control gain. 
Frequency transfer function: 
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 (43) 

When the evaluation function is considered to be two variable functions (ω  and 
iK ) and the 

stationary point is obtained, the system with the parameters does not satisfy the above 

stability conditions.  
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Therefore, only the stationary points in the direction of ω  will be obtained without 
considering the evaluation function on 

i
K  alone.   

Stationary points and the integral gain:  
Using the Stationary Points Investing for Fraction Equation approach based on Lagrange’s 
undecided multiplier approach with equality restriction, the following two loop gain 
equations on x are obtained. Both identities can be used to check for miscalculation. 

 2 2

1 0.5{ 2(2 1) 1}/{2 ( 1) }iK x x x pς ς= + − + + −  (44) 

 
2 2

2

2

0.5{3 4(2 1) 1}/{2 (2 1) }

0

i

s

K x x x p

where x

ς ς

ω

= + − + + −

= ≥
 (45) 

Equating the right-hand sides of these equations, the third-order algebraic equation and the 
solutions for semi-positive stationary points are obtained as follows: 

 
22(2 1)(2 )

0, 1
p

x x
p

ς ς− −
= = −  (46) 

These points, which are called the first and second stationary points, call the first and second 
tuning methods, respectively, which specify the points for gain 1. 

4. Numerical results 

In this section, the solutions of double same integral gain for a tuning region at the 
stationary point of the gain curve of the closed system are shown and checked in some 
parameter tables on normalized proportional gains and normalized damping coefficients. 
Moreover, loop gain margins are shown in some parameter tables on uncertain time 
constants of one-order modeling error and damping coefficients of original controlled 
objects  for some tuning regions contained with safest only I region. 
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Table 1. 
pω  values for ς  and p  in IPL tuning by the first tuning method 
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Table 2. 
1 2i iK K=  values for ς  and p in IPL tuning by the first tuning method 
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Table 1 lists the stationary points for the first tuning method. Table 2 lists the integration 
gains (

1 2i iK K= ) obtained by substituting Eq. (46) into Eqs. (44) and (45) for various 
damping coefficients. 

Table 3 lists the integration gains (
1 2i iK K= ) for the second tuning method. 

 

1.01.2501.6672.505.001.7
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2.50

1.667
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Table 3. 
1 2i iK K= values for ς  and p  in IPL tuning by the second tuning method 

Then, a table of loop gain margins ( 1gm > ) generated by Eq. (39) using the stability limit 
and the loop gain by the second tuning method on uncertainε  in a given region of ε  for 
each controlled ς by IPL ( p =1.5) control is very useful for analysis of robustness. Then, the 
unstable region, the unstable region, which does not become unstable even if the loop gain 
becomes larger, and robust stable region in which uncertainty of the time constant, are 
permitted in the region of ε . 
Figure 3 shows a reference step up-down response with unknown input disturbance in the 
continuous region. The gain for the disturbance step of the IPL tuning is controlled to be 
approximately 0.38 and the settling time is approximately 6 sec. 

The robustness on indicial response for the damping coefficient change of ±0.1 is an 
advantageous property. Considering Zero Order Hold. with an imperfect dead-time 
compensator using 1st-order Pade approximation, the overshoot in the reference step 
response is larger than that in the original region or that in the continuous region. 
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Fig. 3. Robustness of IPL tuning for damping coefficient change. 

Then, Table 4 lists robust loop gain margins ( 1gm > ) using the stability limit by Eq.(37) and 

the loop gain by the second tuning method on uncertainε  in the region of (0.1 10)ε≤ ≤  for 

each controlled ς (>0.7) by IPL( p =1.5) control. The first gray row shows the area that is also 

unstable.   
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Table 5 does the same for each controlled ς (>0.4) by IPS( p =0.01). Table 6 does the same for 

each controlled ς (>0.4) by IP0( p =0.0). 

 

 
eps/zita 0.3 0.7 0.8 0.9 1 1.1 1.2

0.1 - 2.042 - 1.115 1.404 5.124 10.13 16.49 24.28
0.2 - 1.412 - 0.631 0.788 2.875 5.7 9.33 13.83
1.5 - 0.845 - 0.28 0.32 1.08 2 3.08 4.32
2.4 - 1.019 - 0.3 0.326 1.048 1.846 2.702 3.6
3.2 - 1.488 - 0.325 0.342 1.06 1.8 2.539 3.26
5 - 2.128 - 0.386 0.383 1.115 1.778 2.357 2.853
10 - 4.596 - 0.542 0.483 1.26 1.81 2.187 2.448  

Table 4. Robust loop gain margins on uncertainε  in each region for each controlled ς at IPL 

( p =1.5) 

 

eps/zita 0.4 0.5 0.6 0.7 0.8

0.1 1.189 1.832 2.599 3.484 4.483

0.6 1.066 1.524 2.021 2.548 3.098

1 1.097 1.492 1.899 2.312 2.729

2.1 1.254 1.556 1.839 2.106 2.362

10 1.717 1.832 1.924 2.003 2.073

Table 5. Robust loop gain margins on uncertainε  in each region for each controlled ς at IPS 

( p =0.01) 

 

eps/zita 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.6857 1.196 1.835 2.594 3.469 4.452 5.538 6.722

0.4 0.6556 1.087 1.592 2.156 2.771 3.427 4.118 4.84

0.5 0.6604 1.078 1.556 2.081 2.645 3.24 3.859 4.5

0.6 0.6696 1.075 1.531 2.025 2.547 3.092 3.655 4.231

1 0.7313 1.106 1.5 1.904 2.314 2.727 3.141 3.556

2.1 0.9402 1.264 1.563 1.843 2.109 2.362 2.606 2.843

10 1.5722 1.722 1.835 1.926 2.004 2.073 2.136 2.195

9999 1.9995 2 2 2 2 2 2 2

Table 6. Robust loop gain margins on uncertainε  in each region for each controlled ς at IP0 
( p =0.0) 

These table data with additional points were converted to the 3D mesh plot as following  

Fig. 4. As IP0 and IPS with very small p  are almost equivalent though the equations differ 

quiet, the number of figures are reduced. It implies validity of both equations. 
According to the line of worst loop gain margin as the parameter of attenuation in the 

controlled objects which are described by gray label, this parametric stability margin (PSM) 

(Bhattacharyya S. P., Chapellat H., and Keel L. H., 1994) is classified to 3 regions in IPS and 

IP0 tuning regions and to 4 regions in IPL tuning regions as shown in Fig.5.  We may call the 
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larger attenuation region with more than 2 loop gain margin to the strong robust segment 

region in which region  uncertainty time constant of one-order modeling error  is allowed in 

the any region and some change of attenuation is also allowed. 
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              (a) p =1.5                       (b) p =1.0                      (c) p =0.5                       (d) p =0.01or 0 

Fig. 4. Mesh plot of closed loop gain margin 

Next, we call the larger attenuation region with more than 1>γ  and less than 2 loop gain 
margin to the weak robust segment region in which region  uncertainty time constant of 
one-order modeling error is only allowed in some region over some larger loop gain margin 
and some larger change of attenuation is not allowed. The third and the forth segment is 
almost unstable.  Especially, notice that the joint of each segment is large bending so that the 
sensitivity of uncertainty for loop gain margin is larger more than the imagination.  
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Fig. 5. The various worst lines of loop gain margin in a parameter plane (certain&uncertain) 

Moreover, the readers had to notice that the strong robust region and weak robust region 
of IPL is shift to larger damping coefficient region than ones of IPS and IP0. Then, this is 
also one of risk on IPL tuning region and change of tuning region from IP0 or IPS to IPL 
region. 

5. Conclusion 

In this section, the way to convert this IP control tuning parameters to independent type PI 

control is presented. Then, parameter tuning policy and the reason adopted the policy on the 

controller are presented. The good and no good results, limitations and meanings in this 

chapter are summarized. The closed loop gain curve obtained from the second order example 

with one-order feedback modeling error implies the butter-worth filter model matching 

method in higher order systems may be useful. The Hardy space norm with bounded 

window was defined for I, and robust stability was discussed for MIMO system by an 

expanssion of small gain theorem under a bounded condition of closed loop systems. 
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- We have obtained first an integral gain leading type of normalized IP controller to 
facilitate the adjustment results of tuning parameters explaining in the later. The 
controller is similar that conventional analog controllers are proportional gain type of PI 
controller. It can be converted easily to independent type of PI controller as used in recent 
computer controls by adding some converted gains. The policy of the parameter tuning is 
to make the norm of the closed loop of frequency transfer function contained one-order 
modeling error with uncertain time constant to become less than 1. The reason of selected 
the policy is to be able to be similar to the conventional expansion of the small gain 
theorem and to be possible in PI control. Then, the controller and uncertainty of the model 
becomes very simple. Moreover, a simple approach for obtaining the solution is proposed 
by optimization method with equality restriction using Lagrange’s undecided multiplier 
approach for the closed loop frequency transfer function.   

- The stability of the closed loop transfer function was investigated using Hurwits 
Criteria as the structure of coefficients were known though they contained uncertain 
time constant. 

- The loop gain margin which was defined as the ratio of the upper stable limit of integral 
gain and the nominal integral gain, was investigated in the parameter plane of damping 
coefficient and uncertain time constant. Then, the robust controller is safe in a sense if 
the robust stable region using the loop gain margin is the single connection and changes 
continuously in the parameter plane even if the uncertain time constant changes larger 
in a wide region of damping coefficient and even if the uncertain any adjustment is 
done.  Then, IP0 tuning region is most safe and IPL region is most risky. 

- Moreover, it is historically and newly good results that the worst loop gain margin as 
each damping coefficient approaches to 2 in a larger region of damping coefficients. 

- The worst loop gain margin line in the uncertainty time constant and controlled objects 
parameters plane had 3 or 4 segments and they were classified strong robust segment 
region for more than 2 closed loop gain margin and weak robust segment region for 
more than γ > 1 and less than 2 loop gain margin. Moreover, the author was presented 
also risk of IPL tuning region and the change of tuning region. 

- It was not good results that the analytical solution and the stable region were 
complicated to obtain for higher order systems with higher order modeling error 
though they were easy and primary. Then, it was unpractical. 

6. Appendix  

A. Example of a second-order system with lag time and one-order modelling error 
In this section, for applying the robust PI control concept of this chapter to systems with 

lag time, the systems with one-order model error are approximated using Pade 

approximation and only the simple stability region of the integral gain is shown in the 

special proportional tuning case for simplicity because to obtain the solution of integral 

gain is difficult. 

Here, a digital IP control system for a second-order controlled object with lag time L without 
sensor dynamics is assumed. For simplicity, only special proportional gain case is shown. 
Transfer functions: 
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Normalized operation: 

The normalize operations as same as above mentioned are done as follows. 
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Closed loop transfer function: 

The closed loop transfer function is obtained using above normalization as follows; 
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Stability analysis by Hurwits Approach 

1. 
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k3 < k2  then 
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In continuous region with one order modelling error, 
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Analytical solution of Ki for flat gain curve using Stationary Points Investing for Fraction 
Equation approach is complicated to obtain, then it is remained for reader’s theme.  
In the future, another approach will be developed for safe and simple robust control.  
B. Simple soft M/A station 
In this section, a configuration of simple soft M/A station and the feedback control system 
with the station is shown for a simple safe interlock avoiding dangerous large overshoot.  

B.1 Function and configuration of simple soft M/A station 
This appendix describes a simple interlock plan for an simple soft M/A station that has a 
parameter-identification mode (manual mode) and a control mode (automatic mode). 
The simple soft M/A station is switched from automatic operation mode to manual 
operation mode for safety when it is used to switch the identification mode and the control 
mode and when the value of Pv exceeds the prescribed range. This serves to protect the 
plant; for example, in the former case, it operates when the integrator of the PID controller 
varies erratically and the control system malfunctions. In the latter case, it operates when 
switching from P control with a large steady-state deviation with a high load to PI or PID 
control, so that the liquid in the tank spillovers. Other dangerous situations are not 
considered here because they do not fall under general basic control. 
There have several attempts to arrange and classify the control logic by using a case base. 
Therefore, the M/A interlock should be enhanced to improve safety and maintainability; 
this has not yet been achieved for a simple M/A interlock plan (Fig. A1). 
For safety reasons, automatic operation mode must not be used when changing into manual 
operation mode by changing the one process value, even if the process value recovers to an 
appropriate level for automatic operation. 
Semiautomatic parameter identification and PID control are driven by case-based data for 
memory of tuners, which have a nest structure for identification. 
This case-based data memory method can be used for reusing information, and preserving 
integrity and maintainability for semiautomatic identification and control. The semiautomatic 
approach is adopted not only to make operation easier but also to enhance safety relative to 
the fully automatic approach.  
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Notation in computer control (Fig. B1, B3) 
 Pv : Process value 
 Av: Actual value 
 Cv : Control value 
 Mv : Manipulated value 
 Sp: Set point 
 A : Auto 
 M : Manual 
 T : Test 
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Fig. B1 A Configuration of Simple Soft M/A Station 

B.2 Example of a SISO system 
Fig. B2 shows the way of using M/A station in a configuration of a SISO control system. 
 

 

Fig. B2  Configuration of a IP Control System with a M/A Station for a SISO Controlled Object 

where the transfer function  needed in Fig.B2 is as follows.  

1. Controlled Object: ( )
1

LsK
G s e

Ts
−=

+
 

2. Sensor & Signal Conditioner: ( )
1

s
s

s

K
G s

T s
=

+
 

3. Controller: 2

1
( ) 0.5 ( 0.5 )iC s K L

s
= +  

4. Sensor Caribration Gain: 1 / sK  

5. Normalized Gain before M/A Station: 1 / 0.5TL  

6. Normalized Gain after M/A Station: 1 /K  

Fig. B3 shows examples of simulated results for 2 kinds of switching mode when Pv 

becomes higher than a given threshold. (a) shows one to out of service and (b) does to 

manual mode.  

In former, Mv is down and Cv is almost hold. In latter, Mv is hold and Cv is down. 
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Auto Manual
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Mv Pv Cv

Av

Auto Out of Service

Mv Pv Cv
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(a) Switching example from auto mode to 
out of service by Pv High 

(b) Switching example from auto mode to 
manual mode by Pv High 

Fig. B3  Simulation results for 2 kinds of switching mode 

C. New norm and expansion of small gain theorem  

In this section, a new range restricted norm of Hardy space with window(Kohonen T., 1995) 
wH∞  is defined for I, of which window is described to notation of norm with superscript w, 

and a new expansion of small gain theorem based on closed loop system like general wH∞  

control problems and robust sensitivity analysis is shown  for applying the robust PI 

control concept of this chapter to MIMO systems. 

The robust control was aims soft servo and requested internal stability for a closed loop 
control system. Then, it was difficult to apply process control systems or hard servo systems 
which was needed strong robust stability without deviation from the reference value in the 
steady state like integral terms.  
The method which sets the maximum value of closed loop gain curve to 1 and the results of 
this numerical experiments indicated the above sections will imply the following new 
expansion of small gain theorem which indicates the upper limit of Hardy space norm of a 
forward element using the upper limit of all uncertain feedback elements for robust 
stability. 
For the purpose using unbounded functions in the all real domain on frequency like integral 
term in the forward element, the domain of Hardy norm of the function concerned on 
frequency is limited clearly to a section in a positive real one-order space so that the function 
becomes bounded in the section. 
Proposition 

Assuming that feedback transfer function H(s) (with uncertainty) are stable and the 
following inequality is holds, 

 
1

( ) , 1H s ∞ ≤ γ ≥
γ

 (C-1) 

Moreover , if the negative closed loop system as shown in Fig.C-1 is stable and the following 
inequality holds,  

 
( )

( ) 1
1 ( ) ( )

G s
W s

G s H s∞
∞

= ≤
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 (C-2) 
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then the following inequality on the open loop transfer function is hold in a region of 
frequency. 

 min max

1
( ) ( ) , 1 [ , ]

1

w
G j H j for

∞
ω ω ≤ γ ≥ ω∈ ω ω

γ −
 (C-3) 

In the same feedback system, G(s) holds the following inequality in a region of frequency. 

 min max( ) , 1 [ , ]
1

w
G j for

∞

γ
ω ≤ γ ≥ ω∈ ω ω

γ −
 (C-4) 
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Fig. C-1 Configuration of a negative feed back system 

(proof)   

Using triangle inequality on separation of norms of summension and inequality on 
separation of norms of product like Helder’s one under a region of frequency min max[ , ]ω ω , 
as a domain of the norm of Hardy space with window, the following inequality on the 
frequency transfer function of ( )G jω  is obtained from the assumption of the proposition. 
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Moreover, the following inequality on open loop frequency transfer function is shown. 

 1
( ) ( ) ( ) ( )

1

w w w
G j H j G j H j

∞ ∞ ∞
≥ ω ω ≥ ω ω

γ −
 (C-8) 

On the inequality of norm, the reverse proposition may be shown though the separation of 
product of norms in the Hardy space with window are not clear. The sufficient conditions 
on closed loop stability are not clear. They will remain reader’s theme in the future. 
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D. Parametric robust topics 
In this section, the following three topics (Bhattacharyya S. P., Chapellat H., and Keel L. H., 1994.) 
are introduced at first for parametric robust property in static one,  dynamic one and stable one as 
assumptions after linearizing a class of non-linear system to a quasi linear parametric variable 
(QLPV) model by Taylar expansion using first order reminder term. (M.Katoh, 2010) 
1. Continuity for change of parameter 
Boundary Crossing Theorem 

1) fixed order polynomials P(λ,s) 
2) continuous polynomials with respect to one parameter λ on a fixed interval I=[a,b]. 
If P(a,s) has all its roots in S, P(b,s) has at least one root in U, then there exists at least 
one ρ in (a,b] such that: 

a) P(ρ,s) has all roots in S U∂S 
b) P(ρ,s) has at least one root in ∂S 

  

P(a,s) P(b,s)
P(ρ,s)

 

Fig. D-1 Image of boundary crossing theorem 

2. Convex for change of parameter 
Segment Stable Lemma 

Let define a segment using two stable polynomials as follows. 

1 2( ) ( ) (1 ) ( )s s sλδ λδ λ δ+ −5
 

 

1 2

1 2

[ ( ), ( )] { ( ) : [0,1]}

( ), ( ) _ _ _ _ deg _

_ _ _ _ _

s s s

where s s is polynomials of ree n

and stable with respect to S

λδ δ δ λ
δ δ

∈5

 

(D-1)

 

Then, the followings are equivalent: 
 a) The segment 

1 2[ ( ), ( )]s sδ δ  is stable with respect to S 
* *) ( ) 0 , _ _ ; [0 ,1]b s for a ll s Sλδ λ≠ ∈ ∂ ∈  

3. Worst stability margin for change of parameter 
Parametric stability margin (PSM) is defined as the worst case stability margin within 
the parameter variation. It can be applied to a QLPV system of a class of non-linear 
system. There are non-linear systems such as becoming worse stability margin  than 
linearized system although there are ones with better stability margin than it. There is a 
case which is characterized by the one parameter m which describes the injection rate of 
I/O,  the interpolation rate of segment or degree of non-linearity.  

E. Risk and Merit Analysis 
Let show a summary and enhancing of the risk discussed before sections for safety in the following 
table. 
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Kinds Evaluation of influence Countermeasure 

1) Disconnection of 
feedback line  
2) Overshoot over limit 
value 

1) Spill-over threshold 
2) Attack to weak material 

Auto change to manual 
mode by M/A station 
Auto shut down 

Change of tuning region 
from IPS to IPL by making 
proportional gain to large 

Grade down of stability 
region from strong or weak 
to weak or un-stability 

Use IP0 and not use IPS 
Not making proportional 
gain to large in IPS tuning 
region 

Change of damping 
coefficient or inverse of 
time constant over weak 
robust limit 

Grade down of stability 
region from strong or weak 
to weak or un-stability 

Change of tuning region 
from IPL to IPS or IP0 

Table E-1 Risk analysis for safety 

It is important to reduce risk as above each one by adequate countermeasures after 
understanding the property of and the influence for the controlled objects enough. 
Next, let show a summary and enhancing of the merit and demerit discussed before sections for 
robust control in the following table, too. 
 
 

Kinds Merit Demerit 

1) Steady state error is 
vanishing as time by effect 
of integral 
 

1)  It is important property 
in process control and hard 
servo area 
 

It is dislike property in soft 
servo and robot control 
because of hardness for 
disturbance 

There is a strong robust 
stability damping region in 
which the closed loop gain 
margin for any uncertainty 
is over 2 and almost not 
changing. 

It is uniform safety for 
some proportional gain 
tuning region and changing 
of damping coefficient. 
For  integral loop gain 
tuning, it recommends the 
simple limiting sensitivity 
approach. 

1) Because the region is 
different by proportional 
gain, there is a risk of grade 
down  by the gain tuning. 

There is a weak robust 
stability damping region in 
which the worst closed loop 
gain margin for any 
uncertainty is over given 
constant. 

1)  It can specify the grade 
of robust stability for any 
uncertainty 

1) Because the region is 
different by proportional 
gain, there is a risk of grade 
down  by the gain tuning. 
It is different safety for 
some proportional gain 
tuning region. 

Table E-2 Merit analysis for control 

It is important to apply to the best application area which the merit can be made and the 
demerit can be controlled by the wisdom of everyone. 
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