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1. Introduction 

In this chapter, a novel control method using a reinforcement learning (RL) (Sutton and 
Barto (1998)) with concept of sliding mode control (SMC) (Slotine and Li (1991)) for 
unknown dynamical system is considered. 
 In designing the control system for unknown dynamical system, there are three approaches. 
The first one is the conventional model-based controller design, such as optimal control and 
robust control, each of which is mathematically elegant, however both controller design 
procedures present a major disadvantage posed by the requirement of the knowledge of the 
system dynamics to identify and model it. In such cases, it is usually difficult to model the 
unknown system, especially, the nonlinear dynamical complex system, to make matters 
worse, almost all real systems are such cases.  
The second one is the way to use only the soft-computing, such as neural networks, fuzzy 
systems, evolutionary systems with learning and so on. However, in these cases it is well 
known that modeling and identification procedures for the dynamics of the given uncertain 
nonlinear system and controller design procedures often become time consuming iterative 
approaches during parameter identification and model validation at each step of the 
iteration, and in addition, the control system designed through such troubles does not 
guarantee the stability of the system.   

The last one is the way to use the method combining the above the soft-computing method 
with the model-based control theory, such as optimal control, sliding mode control (SMC), 
H∞  control and so on. The control systems designed through such above control theories 
have some advantages, that is, the good nature which its adopted theory has originally, 
robustness, less required iterative learning number which is useful for fragile system 
controller design not allowed a lot of iterative procedure. This chapter concerns with the last 
one, that is, RL system, a kind of soft-computing method, supported with robust control 
theory, especially SMC for uncertain nonlinear systems.  
RL has been extensively developed in the computational intelligence and machine learning 
societies, generally to find optimal control policies for Markovian systems with discrete state 
and action space. RL-based solutions to the continuous-time optimal control problem have 
been given in Doya (Doya (2000). The main advantage of using RL for solving optimal 
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control problems comes from the fact that a number of RL algorithms, e.g. Q-learning 
(Watkins et al. (1992)) and actor-critic learning (Wang et al. (2002)) and Obayashi et al. 
(2008)), do not require knowledge or identification/learning of the system dynamics. On the 
other hand, remarkable characteristics of SMC method are simplicity of its design method, 
good robustness and stability for deviation of control conditions.  
Recently, a few researches as to robust reinforcement learning have been found, e.g., 
Morimoto et al. (2005) and Wang et al. (2002) which are designed to be robust for external 
disturbances by introducing the idea of H∞ control theory (Zhau et al. (1996)), and our 
previous work (Obayashi et al. (2009)) is for deviations of the system parameters by 
introducing the idea of sliding mode control commonly used in model-based control. 
However, applying reinforcement learning to a real system has a serious problem, that is, 
many trials are required for learning to design the control system.   
Firstly we introduce an actor-critic method, a kind of RL, to unite with SMC. Through the 
computer simulation for an inverted pendulum control without use of the inverted pendulum 
dynamics, it is clarified the combined method mentioned above enables to learn in less trial of 
learning than the only actor-critic method and has good robustness (Obayashi et al. (2009a)). 
In applying the controller design, another problem exists, that is, incomplete observation 
problem of the state of the system. To solve this problem, some methods have been 
suggested, that is, the way to use observer theory (Luenberger (1984)), state variable filter 
theory (Hang (1976), Obayashi et al. 2009b) and both of the theories (Kung and Chen (2005)).  
Secondly we introduce a robust reinforcement learning system using the concept of SMC, 
which uses neural network-type structure in an actor/critic configuration, refer to Fig. 1, to 
the case of the system state partly available by considering the variable state filter (Hang 
(1976)).  
 

 

)(tr  

)(tx  

)(tn

       )(tP  
)(ˆ tr  

)(tu  

Critic  

Actor  

)(ˆ tr  

Noise Generator 

Environment
 

 

Fig. 1. The construction of the actor-critic system. (symbols in this figure are reffered to 
section 2) 

The rest of this chapter is organized as follows. In Section 2, the conventional actor-critic 
reinforcement learing system is described. In Section 3, the controlled system, variable filter 
and sliding mode control are shortly explained. The proposed actor-critic reinforcement 
learning system with state variable filter using sliding mode control is described in Section 
4. Comparison between the proposed system and the conventional system through 
simulation experiments is executed in Section 5. Finally, the conclusion is given in Section 6. 
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2. Actor-critic reinforcement learning system   

Reinforcement learning (RL, Sutton and Barto (1998)), as experienced learning through 
trial and error, which is a learning algorithm based on calculation of reward and penalty 
given through mutual action between the agent and environment, and which is 
commonly executed in living things. The actor-critic method is one of representative 
reinforcement learning methods. We adopted it because of its flexibility to deal with both 
continuous and discrete state-action space environment. The structure of the actor-critic 
reinforcement learning system is shown in Fig. 1. The actor plays a role of a controller and 
the critic plays role of an evaluator in control field. Noise plays a part of roles to search 
the optimal action. 

2.1 Structure and learning of critic 
2.1.1 Structure of critic 

The function of the critic is calculation of ( )P t : the prediction value of sum of the discounted 

rewards r(t) that will be gotten over the future. Of course, if the value of ( )P t  becomes 

bigger, the performance of the system becomes better. These are shortly explained as 

follows. 
The sum of the discounted rewards that will be gotten over the future is defined as ( )V t . 

       ( ) ( )
0

n

l

V t r t l
∞

=

≡ ⋅ +∑γ , (1) 

where γ ( 0 1≤ <γ ) is a constant parameter called discount rate. 
Equation (1) is rewritten as  

        ( ) ( ) ( )1V t r t V t= + +γ .  (2)  

Here the prediction value of ( )V t  is defined as ( )P t . The prediction error ( )r̂ t  is expressed 
as follows, 

 ( ) ( ) ( ) ( )ˆ ˆ 1tr t r r t P t P tγ= = + + − . (3) 

The parameters of the critic are adjusted to reduce this prediction error ( )r̂ t . In our case the 
prediction value ( )P t  is calculated as an output of a radial basis function neural network 
(RBFN) such as,  

 ( )
1

( ) ,
J

c c
j j

j

P t y t
=

=∑ω   (4) 

 2 2

1

( ) exp ( ( ) ) /( )
n

c c c
j i ij ij

i

y t x t c σ
=

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ . (5) 

Here, ( ) : thc
jy t j node’s output of the middle layer of the critic at time t , c

jω : the weight 
of thj output of the middle layer of the critic, :ix i th state of the environment at time t, 

c
ijc and c

ijσ : center and dispersion in the i th input of j th basis function, respectively, J : the 
number of nodes in the middle layer of the critic, n : number of the states of the system (see 
Fig. 2). 
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Fig. 2. Structure of the critic. 

2.1.2 Learning of parameters of critic 

Learning of parameters of the critic is done by back propagation method which makes 
prediction error ( )r̂ t  go to zero. Updating rule of parameters are as follows,  

 
2ˆ

, ( 1, , )c t
i c c

i

r
i J

∂
= − ⋅ =

∂
Δω η

ω
A . (6) 

Here cη  is a small positive value of learning coefficient. 

2.2 Structure and learning of actor 
2.2.1 Structure of actor 

Figure 3 shows the structure of the actor. The actor plays the role of controller and outputs 
the control signal, action ( )a t , to the environment. The actor basically also consists of radial 
basis function network. The thj basis function of the middle layer node of the actor is as 
follows, 

 2 2

1

( ) exp ( ( ) ) /( ) ,
n

a a a
j i ij ij

i

y t x t c
=

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ σ  (7) 

 ( ) ( )
1

´
J

a a
j j

j

u t y t
=

= ⋅∑ω , (8) 

 1 max

1 exp( '( ))
( ) ,

1 exp( '( ))

u t
u t u

u t

+ −
= ⋅

− −
 (9) 

       ( )1( ) ( )u t u t n t= + . (10) 

Here : tha
jy j node’s output of the middle layer of the actor, a

ijc and a
ijσ : center and dispersion 

in thi input of thj node basis function of the actor, respectively, a
jω : connection weight 

from thj  node of the middle layer to the output, ( )u t : control input, ( )n t : additive noise. 
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Fig. 3. Structure of the actor. 

2.2.2 Noise generator 

Noise generator let the output of the actor have the diversity by making use of the noise. It 
comes to realize the learning of the trial and error according to the results of performance of 
the system by executing the decided action. Generation of the noise ( )n t  is as follows, 

 ( ) ( )( )min 1,exp(t tn t n noise P t= = ⋅ − , (11) 

where tnoise is uniformly random number of [ ]1 , 1− , min ( ⋅ ): minimum of ⋅ . As the ( )P t  
will be bigger (this means that the action goes close to the optimal action), the noise will be 
smaller. This leads to the stable learning of the actor. 

2.2.3 Learning of parameters of actor 

Parameters of the actor, ( 1, , )a
j j J=ω A , are adjusted by using the results of executing the 

output of the actor, i.e. the prediction error t̂r  and noise.  

 1( )
ˆ .a

j a t t a
j

u t
n rΔω η

ω
∂

= ⋅ ⋅ ⋅
∂

 (12) 

( 0)a >η is the learning coefficient. Equation (12) means that ˆ( )t tn r− ⋅  is considered as an 
error, a

jω  is adjusted as opposite to sign of ˆ( )t tn r− ⋅ . In other words, as a result of executing 
( )u t , e.g. if the sign of the additive noise is positive and the sign of the prediction error is 

positive, it means that positive additive noise is sucess, so the value of a
jω  should be 

increased (see Eqs. (8)-(10)), and vice versa. 

3. Controlled system, variable filter and sliding mode control 

3.1 Controlled  system 

This paper deals with next nth order nonlinear differential equation.  

 ( ) ( ) ( ) ,
n

x f b u= +x x  (13) 
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 y x= , (14)        

where ( 1)[ , , , ]n Tx x x −=x $ A  is state vector of the system. In this paper, it is assumed that a 

part of states, ( )y x= , is observable, u  is control input, ( ), ( )f bx x  are unknown continuous 

functions. 
Object of the control system: To decide control input u which leads the states of the system 
to their targets x. We define the error vector e as follows, 

 

( 1)

( 1) ( 1)

[ , , , ] ,

[ , , , ] .

n T

n n T
d d d

e e e

x x x x x x

−

− −

=

= − − −

e $ A
$ $ A

 (15) 

The estimate vector of e, ê , is available through the state variable filter (see Fig. 4).  

3.2 State variable filter 

Usually it is that not all the state of the system are available for measurement in the real 

system. In this work we only get the state x, that is, e, so we estimate the values of error 

vector e, i.e.  ê , through the state variable filter, Eq. (16) (Hang (1976) (see Fig. 4). 

 
1

1 0

ˆ , ( 0, , 1)
i

i
n

n n
n

p
e e i n

p p −
−

⋅
= = −

+ + +
ω

ω ω
A

A
 (16) 

ωn  σ
1

p
 

1

p
 

1

p
 

n−1 n−2 

0 

ω0
 

 

e 

ωn−2  ωn−1  

d
x

êê

ê

 

Fig. 4. Internal structure of the state variable filter.  

3.3 Sliding mode control 

Sliding mode control is described as follows. First it restricts states of the system to a sliding 

surface set up in the state space. Then it generates a sliding mode s (see in Eq. (18)) on the 

sliding surface, and then stabilizes the state of the system to a specified point in the state 

space. The feature of sliding mode control is good robustness.  

Sliding time-varying surface H and sliding scalar variable s are defined as follows, 

 { }: | ( ) 0H s =e e , (17) 
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 ( ) Ts =e α e , (18) 

where 1 1n− =α  0 1 1[ , , , ] ,T
n−= α α αα A  and 1 2

1 2 0
n n

n np p− −
− −+ + +α α αA   is strictly stable in 

Hurwitz, p  is Laplace transformation variable. 

4. Actor-critic reinforcement learning system using sliding mode control with 
state variable filter 

In this section, reinforcement learning system using sliding mode control with the state 

variable filter is explained. Target of this method is enhancing robustness which can not be 

obtained by conventional reinforcement. The method is almost same as the conventional 

actor-critic system except using the sliding variable s as the input to it inspite of the system 

states. In this section, we mainly explain the definition of the reward and the noise 

generation method. 

 

 

Fig. 5. Proposed  reinforcement learning control system using sliding mode control with 
state variable filter. 

4.1 Reward 

We define the reward r(t) to realize the sliding mode control as follows, 

 2( ) exp{ ( ) } ,r t s t= −   (19) 

here, from Eq. (18) if the actor-critic system learns so that the sliding variable s becomes 
smaller, i.e., error vector e would be close to zero, the reward r(t) would be bigger. 

4.2 Noise 

Noise n(t) is used to maintain diversity of search of the optimal input and to find the 

optimal input. The absolute value of sliding variable s is bigger, n(t) is bigger, and that of s is 

smaller, it is smaller.  

www.intechopen.com



 Robust Control, Theory and Applications 

 

204 

 
2

1
( ) exp ,n t z n

s

⎛ ⎞= ⋅ ⋅ − ⋅⎜ ⎟
⎝ ⎠

β  (20) 

where, z is uniform random number of range [-1, 1]. n is upper limit of the perturbation 

signal for searching the optimal input .u  β  is predefined positive constant for adjusting.  

5. Computer simulation 

5.1 Controlled object  

To verify effectiveness of the proposed method, we carried out the control simulation using 
an inverted pendulum with dynamics described by Eq. (21) (see Fig. 6).  

 sin v qmg mgl T= − +θ θ μ θ$$ $ . (21) 

Parameters in Eq. (21) are described in Table 1. 
 

 

Fig. 6. An inverted pendulum used in the computer simulation. 

 

θ  joint angle - 

m  mass 1.0 [kg] 

l  length of the pendulum 1.0 [m] 
g  gravity 9.8 [m/sec2] 

Vμ  coefficient  of  friction 0.02 

qT  input torque - 

[ , ]θ θ=X $  observation vector - 

Table 1. Parameters of the system used in the computer simulation. 

5.2 Simulation procedure 

Simulation algorithm is as follows, 

Step 1. Initial control input 0qT  is given to the system through Eq. (21). 
Step 2. Observe the state of the system. If the end condition is satisfied, then one trial ends, 

otherwise, go to Step 3. 

Step 3. Calculate the error vector e , Eq. (15). If only ( )y x= , i.e., e  is available, calculate     

ê , the estimate value of through the state variable filters, Eq. (16). 

www.intechopen.com



A Robust Reinforcement Learning System Using Concept of  
Sliding Mode Control for Unknown Nonlinear Dynamical System   

 

205 

Step 4. Calculate the sliding variable s, Eq. (18). 
Step 5. Calculate the reward r by Eq. (19). 

Step 6. Calculate the prediction reward ( )P t  and the control input ( )u t , i.e., torque qT  by 
Eqs. (4) and (10), respectively. 

Step 7. Renew the parameters a
j

c
i ωω , of the actor and the critic by Eqs. (6) and (12). 

Step 8. Set qT in Eq. (21) of the system. Go to Step 2. 

5.3 Simulation conditions 

One trial means that control starts at 0 0( , ) ( 18[ ], 0 [ /sec] )rad rad=θ θ π$  and continues the 
system control for 20[sec], and sampling time is 0.02[sec]. The trial ends if / 4≥θ π  or 
controlling time is over 20[sec]. We set upper limit for output 1u  of the actor. Trial success 
means that θ  is in range [ ]360 , 360−π π  for last 10[sec]. The number of nodes of the 
hidden layer of the critic and the actor are set to 15 by trial and error (see Figs. (2)–( 3)). The 
parameters used in this simulation are shown in Table 2. 
 

0α : sliding variable parameter in Eq. (18) 5.0 

cη : learning coefficient of the actor in Eqs. (6)-(A6) 0.1 

aη : learning coefficient of the critic in Eqs. (12)-A(7) 0.1 

maxU : Maximun value of the Torque in Eqs. (9)-(A3) 20 

γ  : forgetting rate  in Eq. (3) 0.9 

Table 2. Parameters used in the simulation for the proposed system. 

5.4 Simulation results 
Using subsection 5.2, simulation procedure, subsection 5.3, simulation conditions, and the 
proposed method mentioned before, the control simulation of the inverted pendulum Eq. 
(21) are carried out. 

5.4.1 Results of the proposed method  
a. The case of  complete observation 

The results of the proposed method in the case of complete observation, that is, θθ $,  are 
available, are shown in Fig. 7. 
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                                    (a) ,θ θ$                                                              (b) Torque qT  

Fig. 7. Result of the proposed method in the case of  complete observation ( θθ $,  ). 
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b. The case of  incomplete observation using the state variable filters 

In the case that only θ  is available, we have to estimate θ$  as θ$̂ . Here, we realize it by use  
of the state variable filter (see Eqs. (22)-(23), Fig. 8). By trial and error, the parameters, 

210 ,, ωωω , of it are set to .50,10,100 210 === ωωω The results of the proposed method 
with state variable filter in the case of incomplete observation are shown in Fig. 9. 
 

 

Fig. 8. State variable filter in the case of  incomplete  observation ( θ  ).  

 e
pp

e
01

2

2
0

ˆ
ωω

ω
++

=  (22) 

 e
pp

p
e

01
2

2
1

ˆ
ωω

ω
++

=  (23) 
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                                     (a) ,θ θ$                                                             (b)   Torque  qT  

Fig. 9. Results of the proposed method with the state variable filter in the case of  incomplete  
observation (onlyθ is available). 

c. The case  of  incomplete observation using the difference method  
Instead of the state variable filter in 5.4.1 B, to estimate the velocity angle, we adopt the 

commonly used difference method, like that, 

   1
ˆ

−−= ttt θθθ
$

. (24) 

We construct the sliding variable s  in Eq. (18) by using θθ
$̂

, . The results of the simulation of 
the proposed method are shown in Fig. 10. 
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                                      (a) ,θ θ$                                                              (b)   Torque  qT  

Fig. 10. Result of the proposed method using the difference method in the case of incomplete  
observation (onlyθ is available). 

5.4.2 Results of the conventional method. 
d. Sliding mode control method 
The control input is given as follows, 

 

]N[0.20

0,

0,
)(

max

max

max

=
+=
⎩
⎨
⎧

≤⋅−
>⋅

=

=U

c

ifU

ifU
tu

θθσ

σθ
σθ

$  (25)  

Result of the control is shown in Fig. 11. In this case, angular, velocity angular, and Torque 
are all oscillatory because of the bang-bang control. 
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                                       (a) ,θ θ$                                                                (b) Torque  qT  

Fig. 11. Result of the conventional (SMC) method  in the case of complete observation ( θθ $,  ). 

e. Conventional actor-critic method  
The structure of the actor of the conventional actor-critic control method is shown in Fig. 12. 
The detail of the conventional actor-critic method is explained in Appendix. Results of the 
simulation are shown in Fig. 13. 
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Fig. 12. Structure of the actor of the conventional actor-critic control method.  
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Fig. 13. Result of the conventional (actor-critic) method in the case of complete observation 
( ,θ θ$ ). 
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Fig. 14. Result of the conventional PID control method in the case of complete observation 
( θθ $, ). 
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f. Conventional PID control method  

The control signal )(tu  in the PID control is  

 )()()()(
0

teKdtteKteKtu d

t

Ip $⋅−⋅−−= ∫ , (26) 

here, 45, 1, 10p I dK K K= = ⋅ = . Fig. 14 shows the results of the PID control.  

5.4.3 Discussion 

Table 3 shows the control performance, i.e. average error of θθ $, , through the controlling 

time when final learning for all the methods the simulations have been done. Comparing  

the proposed method with the conventional actor-critic method, the proposed method is 

better than the conventional one. This means that the performance of the conventional actor-

critic method hass been improved by making use of the concept of sliding mode control.  
 

Proposed method Conventional method 

Actor-Critic 
+ SMC 

SMC PID 
Actor-
Critic 

Incomplete 
Observation 

(θ  : available) 

 
 
 

Kinds of 
Average 

error 
 

 
Complete 

observation 
S.v.f. Difference 

 
 

Complete observation 
 

∫ θdt/t 0.3002 0.6021 0.1893 0.2074 0.4350 0.8474 

∫ θ$dt/t 0.4774 0.4734 0.4835 1.4768 0.4350 1.2396 

Table 3. Control performance when final learning   (S.v.f. : state variable filter, Difference: 
Difference  method). 
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Fig. 15. Comparison of the porposed method with incomplete observation, the conventional 

actor-critic method and PID method for the angle,θ . 
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Figure 15 shows the comparison of the porposed method with incomplete observation, the 
conventional actor-critic method and PID method for the angle, θ . In this figure, the 
proposed method and PID method converge to zero smoothly, however the conventional 
actor-critic method does not converge. The comparison of the proposed method with PID 
control, the latter method converges quickly. These results are corresponding to Fig.16, i.e. 
the torque of the PID method converges first, the next one is the proposed method, and the 
conventional one does not converge. 
 

-20

-10

 0

 10

 20

 0  2  4  6  8  10

Incomplete state observation using State-filter RL+SMC
actor-critic RL

PID

 

Fig. 16. Comparison of the porposed method with incomplete observation, the conventional 
actor-critic method and PID method for the Torque, qT .
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Fig. 17. The comparison of the porposed method among the case of the complete observation,  
the case with the state variable filter, and with the difference method  for the angle,θ . 
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Fig. 17 shows the comparison of the porposed method among the case of the complete 

observation, the case with the state variable filter, and with the difference method for the 

angle,θ . Among them, the incomplete state observation with the difference method is best 

of three, especially, better than the complete observation. This reason can be explained by 

Fig. 18. That is, the value of s  of the case of the difference method is bigger than that of the 

observation of the velocity angle, this causes that the input gain becomes bigger and the 

convergence speed has been accelerated. 
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Fig. 18. The values of the sliding variable s  for using the velocity and the difference between 

the angle and 1 sampling past angle. 

5.4.4 Verification of the robust performance of each method 

At first, as above mentioned, each controller was designed at 1.0 [kg]m =  in Eq. (21). Next 

we examined the range of m  in which the inverted pendulum control is success. Success is 

defined as the case that if / 45≤θ π  through the last 1[sec]. Results of the robust 

performance for change of m are shown in Table 4. As to upper/lower limit of m for 

success, the proposed method is better than the conventional actor-critic method not only 

for gradually changing m smaller from 1.0 to 0.001, but also for changing m bigger from 1.0 

to 2.377. However, the best one is the conventional SMC method, next one is the PID control 

method. 

6. Conclusion 

A robust reinforcement learning method using the concept of the sliding mode control was   

mainly explained. Through the inverted pendulum control simulation, it was verified that 

the robust reinforcement learning method using the concept of the sliding mode control has 

good performance and robustness comparing with the conventional actor-critic method, 

because of the making use of the ability of the SMC method.   
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The way to improve the control performance and to clarify the stability of the proposed 
method theoretically has been remained. 
 

Proposed method Conventional method 

Actor-Critic + SMC SMC PID Actor-Critic 
 

Complete 
observation 

Incomplete 
observ. + 

s.v.f.* 

Complete 
observation 

Complete 
observation

 

Complete 
observation 

m-max 
[kg] 

2.081 2.377 11.788 4.806 1.668 

m-min 
[kg] 

0.001 0.001 0.002 0.003 0.021 

*(s.v.f.: state variable filter) 

Table 4.  Robust control performance for change of m in Eq. (21). 
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8. Appendix 

The structure of the critic of the conventional actor-critic control method is shown in Fig. 2. 

The number of nodes of the hidden layer of it is 15 as same as that of the proposed method.  

The prediction reward, P(t), is as follow, 
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The structure of actor is also similar with critic shown in Fig. 11. The output of the actor, 

'( )u t , and the control input, u(t), are  as follows, respectively, 
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i cccc θθθθ $$ ,,,  of the critic and actor of the RBF network are set to equivalent 

distance in the range of 33 <<− c . The variance, a
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the RBF networks are set to be at equivalent distance in the range of ]10[ <<σ . The values 

mentioned above, particularly, near the original are set to close. The reward )(tr is set as Eq. 

(A5) in order it to maximize at )0,0(),( =θθ $ , 
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The learning of parameters of critic and actor are carried out through the back-propagation 

algorithm as Eqs. (A6)-(A7) . )0,( >ac ηη  
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