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1. Introduction 

Optimal control is one of the most important branches in modern control theory, and linear 
quadratic regulator (LQR) has been well used and developed in linear control systems. 
However, there would be several problems in employing LQR to uncertain nonlinear 
systems. The optimal LQR problem for nonlinear systems often leads to solving a nonlinear 
two-point boundary-value (TPBV) problem (Tang et al. 2008; Pang et al. 2009) and an 
analytical solution generally does not exist except some simplest cases (Tang & Gao, 2005). 
Additionally, the optimal controller design is usually based on the precise mathematical 
models. While if the controlled system is subject to some uncertainties, such as parameter 
variations, unmodeled dynamics and external disturbances, the performance criterion which 
is optimized based on the nominal system would deviate from the optimal value, even the 
system becomes unstable (Gao & Hung, 1993 ; Pang & Wang, 2009). 
The main control strategies to deal with the optimal control problems of nonlinear systems 
are as follows. First, obtain approximate solution of optimal control problems by iteration or 
recursion, such as successive approximate approach (Tang, 2005), SDRE (Shamma & 
Cloutier, 2001), ASRE (Cimen & Banks, 2004). These methods could have direct results but 
usually complex and difficult to be realized. Second, transform the nonlinear system into a 
linear one by the approximate linearization (i.e. Jacobian linearization), then optimal control 
can be realized easily based on the transformed system. But the main problem of this 
method is that the transformation is only applicable to those systems with less nonlinearity 
and operating in a very small neighborhood of equilibrium points. Third, transform the 
nonlinear system into a linear one by the exact linearization technique (Mokhtari et al. 2006; 
Pang & Chen, 2009). This differs entirely from approximate linearization in that the 
approximate linearization is often done simply by neglecting any term of order higher than 
1 in the dynamics while exact linearization is achieved by exact state transformations and 
feedback.  
As a precise and robust algorithm, the sliding mode control (SMC) (Yang & Özgüner, 1997; 
Choi et al. 1993; Choi et al. 1994) has attracted a great deal of attention to the uncertain 
nonlinear system control problems. Its outstanding advantage is that the sliding motion 
exhibits complete robustness to system uncertainties. In this chapter, combining LQR and 
SMC, the design of global robust optimal sliding mode controller (GROSMC) is concerned. 
Firstly, the GROSMC is designed for a class of uncertain linear systems. And then, a class of 
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affine nonlinear systems is considered. The exact linearization technique is adopted to 
transform the nonlinear system into an equivalent linear one and a GROSMC is designed 
based on the transformed system. Lastly, the global robust optimal sliding mode tracking 
controller is studied for a class of uncertain affine nonlinear systems. Simulation results 
illustrate the effectiveness of the proposed methods. 

2. Optimal sliding mode control for uncertain linear system 

In this section, the problem of robustify LQR for a class of uncertain linear systems is 
considered. An optimal controller is designed for the nominal system and an integral sliding 
surface (Lee, 2006; Laghrouche et al. 2007) is constructed. The ideal sliding motion can 
minimize a given quadratic performance index, and the reaching phase, which is inherent in 
conventional sliding mode control, is completely eliminated (Basin et al. 2007). Then the 
sliding mode control law is synthesized to guarantee the reachability of the specified sliding 
surface. The system dynamics is global robust to uncertainties which satisfy matching 
conditions. A GROSMC is realized. To verify the effectiveness of the proposed scheme, a 
robust optimal sliding mode controller is developed for rotor position control of an electrical 
servo drive system. 

2.1 System description and problem formulation 
Consider an uncertain linear system described by 

 ( ) ( ) ( ) ( ) ( ) ( , )x t A A x t B B u t x tδ= + Δ + + Δ +$  (1) 

where ( ) nx t R∈  and ( ) mu t R∈  are the state and the control vectors, respectively. AΔ  and 
BΔ  are unknown time-varying matrices representing system parameter uncertainties. 
( , )x tδ is an uncertain extraneous disturbance and/or unknown nonlinearity of the system. 

Assumption 1. The pair ( , )A B is controllable and rank( )B m= . 
Assumption 2. AΔ , BΔ  and ( , )x tδ are continuously differentiable in x , and piecewise 
continuous in t . 
Assumption 3. There exist unknown continuous functions of appropriate dimension AΔ # , 

BΔ #  and ( , )x tδ# , such that  

, , ( , ) ( , ).A B A B B B x t B x tδ δΔ = Δ Δ = Δ =# # #  

These conditions are the so-called matching conditions. 
From these assumptions, the state equation of the uncertain dynamic system (1) can be 
rewritten as 

 ( ) ( ) ( ) ( , ),x t Ax t Bu t B x tδ= + + #$  (2) 

where  
Assumption 4. There exist unknown positive constants 0γ  and 1γ  such that  

0 1( , ) ( ) .x t x tδ γ γ≤ +#  

where •  denotes the Euclidean norm. 
By setting the uncertainty to zero, we can obtain the dynamic equation of the original 
system of (1), as 
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 ( ) ( ) ( ).x t Ax t Bu t= +$  (3) 

For the nominal system (3), let’s define a quadratic performance index as follows: 

 T T
0 0

1
[ ( ) ( ) ( ) ( )] ,

2
J x t Qx t u t Ru t dt

∞
= +∫  (4) 

where n nQ R ×∈  is a semi-positive definite matrix, the weighting function of states; 
m mR R ×∈  is a positive definite matrix, the weighting function of control variables. 

According to optimal control theory and considering Assumption1, there exists an optimal 
feedback control law that minimizes the index (4). The optimal control law can be written as 

 * 1( ) ( ) ,Tu t R B Px t−= −  (5) 

where n nP R ×∈  is a positive definite matrix solution of Riccati matrix equation: 

 1 0.T TPA A P PBR B P Q−− − + − =  (6) 

So the dynamic equation of the closed-loop system is  

 1( ) ( ) ( ).Tx t A BR B P x t−= −$  (7) 

Obviously, according to optimal control theory, the closed-loop system is asymptotically 
stable. However, when the system is subjected to uncertainties such as external disturbances 
and parameter variations, the optimal system behavior could be deteriorated, even unstable. 
In the next part, we will utilize sliding mode control strategy to robustify the optimal control 
law. 

2.2 Design of optimal sliding mode controller 
2.2.1 Design of optimal sliding mode surface 

Considering the uncertain system (2), we chose the integral sliding surface as follows: 

 1 T

0
( , ) [ ( ) (0)] ( ) ( ) 0.

t
s x t G x t x G A BR B P x dτ τ−= − − − =∫  (8) 

where m nG R ×∈ , which satisfies that GB is nonsingular, (0)x is the initial state vector. In 
sliding mode, we have ( , ) 0s x t = and ( , ) 0s x t =$ . Differentiating (8) with respect to t  and 
considering (1), we obtain 

 

1 T

1 T

1 T

[( ) ( ) ] ( )

( )

( ) ( )

s G A A x B B u G A BR B P x

G Ax G B B u G GBR B Px

G Ax BR B Px G G B B u

δ

δ

δ

−

−

−

= + Δ + + Δ + − −

= Δ + + Δ + +

= Δ + + + + Δ

$
 (9) 

the equivalent control becomes 

 1 1 T
eq [ ( )] [ ( ) ].u G B B G A BR B P x Gδ− −= − + Δ Δ + +  (10) 

Substituting (10) into (1) and considering Assumption3, the ideal sliding mode dynamics 
becomes  
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1 1 T

1 1 T

1 T

( ) ( )[ ( )] [ ( ) ]

( ) ( )[ ( )] [ ( ) ]

( )

x A A x B B G B B G A BR B P x G

A B A x B B B G B B B GB Ax GBR B Px B

A BR B P x

δ δ

δ δ

− −

− −

−

= + Δ − + Δ + Δ Δ + + +

= + Δ − + Δ + Δ Δ + + +

= −

$
# ## # # #  (11) 

Comparing equation (11) with equation (7), we can see that they have the same form. So the 
sliding mode is asymptotically stable. Furthermore, it can be seen from (11) that the sliding 
mode is robust to uncertainties which satisfying matching conditions. So we call (8) a robust 
optimal sliding surface. 

2.2.2 Design of sliding mode control law 
To ensure the reachability of sliding mode in finite time, we chose the sliding mode control 
law as follows: 

 
c d

1 T
c

1
d 0 1

( ) ( ) ( ),

( ) ( ),

( ) ( ) ( ( ) )sgn( ).

u t u t u t

u t R B Px t

u t GB GB GB x t sη γ γ

−

−

= +

= −

= − + +

 (12) 

Where 0η > , c( )u t is the continuous part, used to stabilize and optimize the nominal 
system; d( )u t is the discontinuous part, which provides complete compensation for 
uncertainties of system (1). Let’s select a quadratic performance index as follows: 

 T T
c c0

1
( ) [ ( ) ( ) ( ) ( )] .

2
J t x t Qx t u t Ru t dt

∞
= +∫  (13) 

where the meanings of Q and R are as the same as that in (4). 
Theorem 1. Consider uncertain linear system (1) with Assumptions 1-4. Let u and sliding 
surface be given by (12) and (8), respectively. The control law (12) can force the system 
trajectories with arbitrarily given initial conditions to reach the sliding surface in finite time 
and maintain on it thereafter.  
Proof. Choosing T(1 2)V s s=  as a lyapunov function, and differentiating this function with 
respect to t and considering Assumptions 1-4, we have 

T

T 1 T

T 1 T

T 1 T 1 T
0 1

T
0 1

T
0 11 1

0 11 1

{ [( ) ( ) ] ( ) }

{ }

{ ( )sgn( ) }

{ ( )sgn( ) }

( )

( ) (

V s s

s G A A x B B u G A BR B P x

s GBu GB GBR B Px

s GBR B Px GB GB x s GB GBR B Px

s GB GB x s GB

s GB GB x s s GB

s GB GB x s

δ

δ

η γ γ δ

η γ γ δ

η γ γ δ

η γ γ

−

−

− −

=

= + Δ + + Δ + − −

= + +

= − − + + + +

= − + + +

= − − + +

≤ − − + +

$ $

#

#

#

#

0 1 )GB GB x sγ γ+

 

where 
1

•  denotes 1-norm. Noting the fact that 
1

s s≥ , we get 

 TV s s sη= ≤ −$ $  (14) 

This implies that the sliding mode control law we have chosen according to (12) could 
ensure the trajectories which start from arbitrarily given points be driven onto the sliding 
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surface (8) in finite time and would not leave it thereafter despite uncertainties. The proof is 
complete. 
Conclusion 1. The uncertain system (1) with the integral sliding surface (8) and the control 
law (12) achieves global sliding mode, and the performace index (13) is minimized. So the 
system designed is global robust and optimal. 

2.3 Application to electrical servo drive 
The speed and position electrical servo drive systems are widely used in engineering 
systems, such as CNC machines, industrial robots, winding machines and etc. The main 
properties required for servo systems include high tracking behavior, no overshoot, no 
oscillation, quick response and good robustness. 
In general, with the implementation of field-oriented control, the mechanical equation of an 
induction motor drive or a permanent synchronous motor drive can be described as 

 d e( ) ( )m mJ t B t T Tθ θ+ + =$$ $  (15) 

where θ  is the rotor position; mJ is the moment of inertia; mB is the damping coefficient; dT  
denotes the external load disturbance, nonlinear friction and unpredicted uncertainties; eT  
represents the electric torque which defined as 

 e tT K i=  (16) 

where tK  is the torque constant and i  is the torque current command. 
Define the position tracking error d( ) ( ) ( )e t t tθ θ= − , where d( )tθ denotes the desired 
position, and let 1( ) ( )x t e t= , 2 1( ) ( )x t x t= $ , u i= , then the error state equation of an electrical 
servo drive can be described as 

 1 1
d d dt

2 2

0   1 0 0 0
0

.1
0  1m m

mm m m

x x
u TB B K

x x
JJ J J

θ θ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$ $ $$
$

 (17) 

Supposing the desired position is a step signal, the error state equation can be simplified as 

 1 1
dt

2 2

0   1 0 0

.1
0  m

mm m

x x
u TB K

x x
JJ J

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

$
$

 (18) 

The parameters of the servo drive model in the nominal condition with d 0NmT =  are (Lin 
& Chou, 2003): 

2 2

3

t

ˆ 5.77 10 Nms ,
ˆ 8.8 10 Nms/rad,
ˆ 0.667 Nm/A.

J

B

K

−

−

= ×

= ×

=

 

The initial condition is [ ](0) 1 0
T

x = . To investigate the effectiveness of the proposed 
controller, two cases with parameter variations in the electrical servo drive and load torque 
disturbance are considered here. 
Case 1: ˆ

m mJ J= , ˆ
m mB B= , d 1( 10)Nm 1( 13)NmT t t= − − − . 
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Case 2: ˆ3m mJ J= , ˆ
m mB B= , d 0T = . 

The optimal controller and the optimal robust SMC are designed, respectively, for both 
cases. The optimal controller is based on the nominal system with a quadratic performance 
index (4). Here 

1 0
, 1

0 1
Q R

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

 

In Case 1, the simulation results by different controllers are shown in Fig. 1. It is seen that 
when there is no disturbance ( 10st < ), both systems have almost the same performance. 
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(a) Position responses 
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(b) Performance indexes 

 

Fig. 1. Simulation results in Case 1 

But when a load torque disturbance occurs at (10 ~ 13)st = , the position trajectory of 
optimal control system deviates from the desired value, nevertheless the position trajectory 
of the robust optimal SMC system is almost not affected. 
In Case 2, the simulation results by different controllers are given in Fig.2. It is seen that the 
robust optimal SMC system is insensitive to the parameter uncertainty, the position 
trajectory is almost as the same as that of the nominal system. However, the optimal control 
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system is affected by the parameter variation. Compared with the nominal system, the 
position trajectory is different, bigger overshoot and the relative stability degrades. 
In summery, the robust optimal SMC system owns the optimal performance and global 
robustness to uncertainties. 
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(a) Position responses 
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(b) Performance indexes 

Fig. 2. Simulation results in Case 2 

2.4 Conclusion 
In this section, the integral sliding mode control strategy is applied to robustifying the 
optimal controller. An optimal robust sliding surface is designed so that the initial condition 
is on the surface and reaching phase is eliminated. The system is global robust to 
uncertainties which satisfy matching conditions and the sliding motion minimizes the given 
quadratic performance index. This method has been adopted to control the rotor position of 
an electrical servo drive. Simulation results show that the robust optimal SMCs are superior 
to optimal LQR controllers in the robustness to parameter variations and external 
disturbances. 

www.intechopen.com



 Robust Control, Theory and Applications 

 

148 

3. Optimal sliding mode control for uncertain nonlinear system 

In the section above, the robust optimal SMC design problem for a class of uncertain linear 
systems is studied. However, nearly all practical systems contain nonlinearities, there would 
exist some difficulties if optimal control is applied to handling nonlinear problems (Chiou & 
Huang, 2005; Ho, 2007, Cimen & Banks, 2004; Tang et al., 2007).In this section, the global 
robust optimal sliding mode controller (GROSMC) is designed based on feedback 
linearization for a class of MIMO uncertain nonlinear system.  

3.1 Problem formulation 

Consider an uncertain affine nonlinear system in the form of 

 
( ) ( ) ( , ) ,

( ) ,

x f x g x u d t x

y H x

= + +
=

$
 (19) 

where nx R∈ is the state, mu R∈ is the control input, and ( )f x and ( )g x  are sufficiently 
smooth vector fields on a domain nD R⊂ .Moreover, state vector x  is assumed available, 

( )H x is a measured sufficiently smooth output function and T
1( ) ( , , )mH x h h= A . ( , )d t x  is an 

unknown function vector, which represents the system uncertainties, including system 
parameter variations, unmodeled dynamics and external disturbances.  
Assumption 5. There exists an unknown continuous function vector ( , )t xδ such that ( , )d t x  
can be written as  

( , ) ( ) ( , )d t x g x t xδ= . 

This is called matching condition. 
Assumption 6. There exist positive constants 0γ  and 1γ , such that  

0 1( , )t x xδ γ γ≤ +  

where the notation ⋅  denotes the usual Euclidean norm. 
By setting all the uncertainties to zero, the nominal system of the uncertain system (19) can 
be described as  

 
( ) ( ) ,

( ) .

x f x g x u

y H x

= +
=

$
 (20) 

The objective of this paper is to synthesize a robust sliding mode optimal controller so that 
the uncertain affine nonlinear system has not only the optimal performance of the nominal 
system but also robustness to the system uncertainties. However, the nominal system is 
nonlinear. To avoid the nonlinear TPBV problem and approximate linearization problem, 
we adopt the feedback linearization to transform the uncertain nonlinear system (19) into an 
equivalent linear one and an optimal controller is designed on it, then a GROSMC is 
proposed. 

3.2 Feedback linearization 

Feedback linearization is an important approach to nonlinear control design. The central 
idea of this approach is to find a state transformation ( )z T x=  and an input transformation 
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( , )u u x v=  so that the nonlinear system dynamics is transformed into an equivalent linear 
time-variant dynamics, in the familiar form z Az Bv= +$ , then linear control techniques can 
be applied.  
Assume that system (20) has the vector relative degree { }1 , , mr rA  and 1 mr r n+ + =A . 

According to relative degree definition, we have 

 

( )

( ) 1

1

, 0 1

( ) ,i i i

k k
f i ii

m
r r r

i j i ji f f
j

y L h k r

y L h g L h u−

=

= ≤ ≤ −

= +∑
 (21) 

and the decoupled matrix  

1 1

1

1

1 1
1 1

1 1

( ) ( )

( ) ( )

( ) ( )

m

m m

m

r r
g gf f

ij m m

r r
g m g mf f

L L h L L h

E x e

L L h L L h

− −

×
− −

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥⎣ ⎦

A

B A B

A
 

 

is nonsingular in some domain 0x X∀ ∈ .  
Choose state and input transformations as follows: 

 ( ) , 1, , ; 0,1, , 1j j j
i ii i fz T x L h i m j r= = = = −A A  (22) 

 1( )[ ( )] ,u E x v K x−= −  (23) 

where 1 T
1( ) ( , , )mrr

mf fK x L h L h= A , v  is an equivalent input to be designed later. The uncertain 

nonlinear system (19) can be transformed into m subsystems; each one is in the form of 

 

0 0

1 1

1 1
1

00 1 0 0 0
00 0 1 0 0

.
00 0 0 1 0

0 0 0 0 1
i i

i

i i

i i
i

r r
ri i

d if

z z

z z
v

z z L L h
− −

−

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

A$
A

$ BB B B B B B
B BA

$ A

 (24) 

So system (19) can be transformed into the following equivalent model of a simple linear 
form:  

 ( ) ( ) ( ) ( , ) ,z t Az t Bv t t zω= + +$  (25) 

where nz R∈ , mv R∈  are new state vector and input, respectively. n nA R ×∈  and n mB R ×∈  
are constant matrixes, and ( , )A B are controllable. ( , ) nt z Rω ∈ is the uncertainties of the 
equivalent linear system. As we can see, ( , )t zω also satisfies the matching condition, in 
other words there exists an unknown continuous vector function ( , )t zω#  such that 

( , ) ( , )t z B t zω ω= # . 

www.intechopen.com



 Robust Control, Theory and Applications 

 

150 

3.3 Design of GROSMC 
3.3.1 Optimal control for nominal system 

The nominal system of (25) is  

 ( ) ( ) ( ).z t Az t Bv t= +$  (26) 

For (26), let 0v v=  and 0v can minimize a quadratic performance index as follows: 

 T T
0 00

1
[ ( ) ( ) ( ) ( )]

2
J z t Qz t v t Rv t dt

∞
= +∫  (27) 

where n nQ R ×∈ is a symmetric positive definite matrix, m mR R ×∈  is a positive definite 
matrix. According to optimal control theory, the optimal feedback control law can be 
described as  

 1 T
0( ) ( )v t R B Pz t−= −  (28) 

with P  the solution of the matrix Riccati equation 

 T 1 T 0.PA A P PBR B P Q−+ − + =  (29) 

So the closed-loop dynamics is  

 1 T( ) ( ) ( ).z t A BR B P z t−= −$  (30) 

The closed-loop system is asymptotically stable.  
The solution to equation (30) is the optimal trajectory z*(t) of the nominal system with 
optimal control law (28). However, if the control law (28) is applied to uncertain system (25), 
the system state trajectory will deviate from the optimal trajectory and even the system 
becomes unstable. Next we will introduce integral sliding mode control technique to 
robustify the optimal control law, to achieve the goal that the state trajectory of uncertain 
system (25) is the same as that of the optimal trajectory of the nominal system (26). 

3.3.2 The optimal sliding surface  

Considering the uncertain system (25) and the optimal control law (28), we define an 
integral sliding surface in the form of 

 1 T

0
( ) [ ( ) (0)] ( ) ( )

t
s t G z t z G A BR B P z dτ τ−= − − −∫  (31) 

where m nG R ×∈ , which satisfies that GB is nonsingular, (0)z  is the initial state vector. 
Differentiating (31) with respect to t and considering (25), we obtain 

 

1 T

1 T

1 T

( ) ( ) ( ) ( )

[ ( ) ( ) ( , )] ( ) ( )

( ) ( ) ( , )

s t Gz t G A BR B P z t

G Az t Bv t t z G A BR B P z t

GBv t GBR B Pz t G t z

ω

ω

−

−

−

= − −

= + + − −

= + +

$ $

 (32) 

Let ( ) 0s t =$ , the equivalent control becomes 
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 1 1 T
eq( ) ( ) ( ) ( , )v t GB GBR B Pz t G t zω− −⎡ ⎤= − +⎣ ⎦

 (33) 

Substituting (33) into (25), the sliding mode dynamics becomes 

 

1 1 T

1 T 1

1 T 1

1 T

( ) ( )

( )

( )

( )

z Az B GB GBR B Pz G

Az BR B Pz B GB G

Az BR B Pz B GB GB B

A BR B P z

ω ω

ω ω

ω ω

− −

− −

− −

−

= − + +

= − − +

= − − +

= −

$

# #
 (34) 

Comparing (34) with (30), we can see that the sliding mode of uncertain linear system (25) is 
the same as optimal dynamics of (26), thus the sliding mode is also asymptotically stable, 
and the sliding motion guarantees the controlled system global robustness to the uncertainties 
which satisfy the matching condition. We call (31) a global robust optimal sliding surface. 
Substituting state transformation ( )z T x=  into (31), we can get the optimal switching 
function ( , )s x t  in the x -coordinates. 

3.3.3 The control law 
After designing the optimal sliding surface, the next step is to select a control law to ensure 
the reachability of sliding mode in finite time.  
Differentiating ( , )s x t  with respect to t  and considering system (20), we have 

 ( ( ) ( ) ) .
s s s s

s x f x g x u
x t x t

∂ ∂ ∂ ∂
= + = + +
∂ ∂ ∂ ∂

$ $  (35) 

Let 0s =$ , the equivalent control of nonlinear nominal system (20) is obtained 

 
1

( ) ( ) ( ) .eq

s s s
u t g x f x

x x t

−∂ ∂ ∂⎡ ⎤ ⎡ ⎤== − +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦
 (36) 

Considering equation (23), we have 1
0( )[ ( )]equ E x v K x−= − .  

Now, we select the control law in the form of  

 

con dis

1

con

1

dis 0 1

( ) ( ) ( ),

( ) ( ) ( ) ,

( ) ( ) ( ( ) ( ) )sgn( ),

u t u t u t

s s s
u t g x f x

x x t

s s
u t g x x g x s

x x
η γ γ

−

−

= +

∂ ∂ ∂⎡ ⎤ ⎡ ⎤== − +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∂ ∂⎡ ⎤= − + +⎢ ⎥∂ ∂⎣ ⎦

 (37) 

where [ ]T1 2sgn( ) sgn( ) sgn( ) sgn( )ms s s s= A  and 0η > . con( )u t  and dis( )u t  denote 
continuous part and discontinuous part of ( )u t , respectively. 
The continuous part con( )u t , which is equal to the equivalent control of nominal system (20), 
is used to stabilize and optimize the nominal system. The discontinuous part dis( )u t  
provides the complete compensation of uncertainties for the uncertain system (19). 
Theorem 2. Consider uncertain affine nonlinear system (19) with Assumputions 5-6. Let 
u and sliding surface be given by (37) and (31), respectively. The control law can force the 
system trajectories to reach the sliding surface in finite time and maintain on it thereafter.  
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Proof. Utilizing T(1 / 2)V s s= as a Lyapunov function candidate, and taking the Assumption 5 
and Assumption 6, we have 

T T

T
0 1

T T T
0 1 0 11 1

0 11

( ( ) )

( ) sgn( )

( ) sgn( ) ( )

( )

s s
V s s s f gu d

x t

s s s s s s
s f f x g s d

x x t x x t

s s s s
s x g s s d s x g s s g

x x x x

s
s x

x

η γ γ

η γ γ η γ γ δ

η γ γ

∂ ∂
= = + + + =

∂ ∂
⎧ ⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎪ ⎫= − + + + + + + =⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ⎭⎝ ⎠⎪ ⎣ ⎦⎩
⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪= − + + + = − − + +⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭

∂
≤ − − +

∂

$ $

1

0 1 0 11 1
( ) ( )

s
g s g s

x

s s
s x g s x g s

x x

δ

η γ γ γ γ

∂
+ ≤

∂
∂ ∂

≤ − − + + +
∂ ∂

 (38) 

where 
1

i  denotes the 1-norm. Noting the fact that 
1

s s≥ , we get 

 T 0 ,for 0.V s s s sη= ≤ − < ≠$ $  (39) 

This implies that the trajectories of the uncertain nonlinear system (19) will be globally 
driven onto the specified sliding surface 0s = despite the uncertainties in finite time. The 
proof is complete. 
From (31), we have (0) 0s = , that is the initial condition is on the sliding surface. According 
to Theorem2, we know that the uncertain system (19) with the integral sliding surface (31) 
and the control law (37) can achieve global sliding mode. So the system designed is global 
robust and optimal. 

3.4 A simulation example 

Inverted pendulum is widely used for testing control algorithms. In many existing 
literatures, the inverted pendulum is customarily modeled by nonlinear system, and the 
approximate linearization is adopted to transform the nonlinear systems into a linear one, 
then a LQR is designed for the linear system.  
To verify the effectiveness and superiority of the proposed GROSMC, we apply it to a single 
inverted pendulum in comparison with conventional LQR.  
The nonlinear differential equation of the single inverted pendulum is 

 
1 2

2
1 2 1 1 1

2 2
1

,

sin sin cos cos
( ),

(4 /3 cos )

x x

g x amLx x x au x
x d t

L am x

=

− +
= +

−

$

$
 (40) 

where 1x  is the angular position of the pendulum (rad) , 2x is the angular speed (rad/s) , 
M is the mass of the cart, m and L are the mass and half length of the pendulum, 
respectively. u denotes the control input, g  is the gravity acceleration, ( )d t  represents the 
external disturbances, and the coefficient /( )a m M m= + . The simulation parameters are as 
follows: 1 kgM = , 0.2 kgm = , 0.5 mL = , 29.8 m/sg = , and the initial state vector is 

T(0) [ /18 0]x π= − . 
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Two cases with parameter variations in the inverted pendulum and external disturbance are 
considered here. 
Case 1: The m and L are 4 times the parameters given above, respectively. Fig. 3 shows the 

 robustness to parameter variations by the suggested GROSMC and conventional 
 LQR. 

Case 2: Apply an external disturbance ( ) 0.01sin 2d t t=  to the inverted pendulum system at 
 9t s= . Fig. 4 depicts the different responses of these two controllers to external 
 disturbance. 
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                             (a) By GROSMC                                              (b) By Conventional LQR. 

Fig. 3. Angular position responses of the inverted pendulum with parameter variation  
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Fig. 4. Angular position responses of the inverted pendulum with external disturbance. 

From Fig. 3 we can see that the angular position responses of inverted pendulum with and 
without parameter variations are exactly same by the proposed GROSMC, but the responses 
are obviously sensitive to parameter variations by the conventional LQR. It shows that the 
proposed GROSMC guarantees the controlled system complete robustness to parameter 
variation. As depicted in Fig. 4, without external disturbance, the controlled system could be 
driven to the equilibrium point by both of the controllers at about 2t s= . However, when 
the external disturbance is applied to the controlled system at 9t s= , the inverted 
pendulum system could still maintain the equilibrium state by GROSMC while the LQR not. 
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The switching function curve is shown in Fig. 5. The sliding motion occurs from the 
beginning without any reaching phase as can be seen. Thus, the GROSMC provides better 
features than conventional LQR in terms of robustness to system uncertainties. 
 

0 5 10 15 20
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t (s)

s
 (
t)

Sliding Surface

 
Fig. 5. The switching function s(t) 

3.5 Conclusion 
In this section, the exact linearization technique is firstly adopted to transform an uncertain 
affine nonlinear system into a linear one. An optimal controller is designed to the linear 
nominal system, which not only simplifies the optimal controller design, but also makes the 
optimal control applicable to the entire transformation region. The sliding mode control is 
employed to robustfy the optimal regulator. The uncertain system with the proposed 
integral sliding surface and the control law achieves global sliding mode, and the ideal 
sliding dynamics can minimized the given quadratic performance index. In summary, the 
system designed is global robust and optimal. 

4. Optimal sliding mode tracking control for uncertain nonlinear system 

With the industrial development, there are more and more control objectives about the 
system tracking problem (Ouyang et al., 2006; Mauder, 2008; Smolders et al., 2008), which is 
very important in control theory synthesis. Taking the robot as an example, it is often 
required to follow some special trajectories quickly as well as provide robustness to system 
uncertainties, including unmodeled dynamics, internal parameter variations and external 
disturbances. So the main tracking control problem becomes how to design the controller, 
which can not only get good tracking performance but also reject the uncertainties 
effectively to ensure the system better dynamic performance. In this section, a robust LQR 
tracking control based on intergral sliding mode is proposed for a class of nonlinear 
uncertain systems.  

4.1 Problem formulation and assumption  

Consider a class of uncertain affine nonlinear systems as follows: 

 
( ) ( ) ( )[ ( , , )]

( )

x f x f x g x u x t u

y h x

δ= + Δ + +⎧
⎨ =⎩

$
 (41) 
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where nx R∈  is the state vector, mu R∈ is the control input with 1m = , and y R∈  is the 
system output. ( )f x , ( )g x , ( )f xΔ  and ( )h x  are sufficiently smooth in domain nD R⊂ . 

( , , )x t uδ is continuous with respect to t  and smooth in ( , )x u . ( )f xΔ and ( , , )x t uδ  represent 
the system uncertainties, including unmodelled dynamics, parameter variations and 
external disturbances. 
Our goal is to design an optimal LQR such that the output y  can track a reference 
trajectory r( )y t  asymptotically, some given performance criterion can be minimized, and the 
system can exhibit robustness to uncertainties. 
Assumption 7. The nominal system of uncertain affine nonlinear system (41), that is 

 
( ) ( )

( )

x f x g x u

y h x

= +⎧
⎨ =⎩

$
 (42) 

has the relative degree ρ  in domain D  and nρ = . 
Assumption 8. The reference trajectory r( )y t  and its derivations ( )

r ( )iy t ( 1, , )i n= A can be 
obtained online, and they are limited to all 0t ≥ . 
While as we know, if the optimal LQR is applied to nonlinear systems, it often leads to 
nonlinear TPBV problem and an analytical solution generally does not exist. In order to 
simplify the design of this tracking problem, the input-output linearization technique is 
adopted firstly. 
Considering system (41) and differentiating y , we have  

( ) ( ), 0 1k k
fy L h x k n= ≤ ≤ −  

( ) 1 1( ) ( ) ( )[ ( , , )].n n n n
f f f g fy L h x L L h x L L h x u x t uδ− −

Δ= + + +  

According to the input-out linearization, choose the following nonlinear state transformation  

 
T1( ) ( ) ( ) .n

fz T x h x L h x−⎡ ⎤= = ⎣ ⎦A  (43) 

So the uncertain affine nonlinear system (40) can be written as  

1

1 1

, 1, , 1

( ) ( ) ( )[ ( , , )].

i i

n n n
n f f f g f

z z i n

z L h x L L h x L L h x u x t uδ
+

− −
Δ

= = −

= + + +

$ A
$

 

Define an error state vector in the form of  

1 r

( 1)
r

,
n

n

z y

e z

z y −

⎡ ⎤−
⎢ ⎥

= = −ℜ⎢ ⎥
⎢ ⎥−⎣ ⎦

B  

where 
T( 1)

r r
ny y −⎡ ⎤ℜ = ⎣ ⎦A . By this variable substitution e z= −ℜ , the error state equation 

can be described as follows: 

1

( )1 1 1
r

, 1, , 1

( ) ( ) ( ) ( ) ( ) ( , , ) ( ).

i i

nn n n n
n f f f g f g f

e e i n

e L h x L L h x L L h x u t L L h x x t u y tδ
+

− − −
Δ

= = −

= + + + −

$ A
$
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Let the feedback control law be selected as  

 
( )
r

1

( ) ( ) ( )
( )

( )

nn
f

n
g f

L h x v t y t
u t

L L h x−

− + +
=  (44) 

The error equation of system (40) can be given in the following forms: 

 

1 1

0 00 1 0 0 0
0 00 0 1 0 0
0 00( ) ( ) ( ) .

0 0 0 1

0 0 0 0 0 1( ) ( ) ( , , )n n
f f g f

e t e t v t

L L h x L L h x x t uδ− −
Δ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + + +
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

A
A

$ B B B B
B BA B

 (45) 

Therefore, equation (45) can be rewritten as 

  ( ) ( ) ( ) .e t Ae t A Bv t δ= + Δ + + Δ$  (46) 

where  

0 1 0 0 0

0 0 1 0 0

0, ,

0 0 0 1

0 0 0 0 0 1

A B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A
A

B B B B
A B

 

1 1

0 0

0 0

0 0, .

( ) ( ) ( , , )n n
f f g f

A

L L h x L L h x x t u

δ

δ− −
Δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ = Δ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

B B
 

As can be seen, ne R∈ is the system error vector, v R∈ is a new control input of the 
transformed system. n nA R ×∈  and  n mB R ×∈  are corresponding constant matrixes. AΔ  and 
δΔ  represent uncertainties of the transformed system.  

Assumption 9. There exist unknown continuous function vectors of appropriate dimensions 
AΔ #  and δΔ # , such that 

A B AΔ = Δ # , Bδ δΔ = Δ #  
 

Assumption 10. There exist known constants ma , mb such that 

mA aΔ ≤# ,
mbδΔ ≤#  

Now, the tracking problem becomes to design a state feedback control law v  such that 
0e →  asymptotically. If there is no uncertainty, i.e. ( , ) 0t eδ = , we can select the new input 

as v Ke= −  to achieve the control objective and obtain the closed loop dynamics 
( )e A BK e= −$ . Good tracking performance can be achieved by choosing K  using optimal 

www.intechopen.com



Optimal Sliding Mode Control for a Class of  
Uncertain Nonlinear Systems Based on Feedback Linearization    

 

157 

control theory so that the closed loop dynamics is asymptotically stable. However, in 
presence of the uncertainties, the closed loop performance may be deteriorated. In the 
next section, the integral sliding mode control is adopted to robustify the optimal control 
law. 

4.2 Design of optimal sliding mode tracking controller 
4.2.1 Optimal tracking control of nominal system.  
Ignoring the uncertainties of system (46), the corresponding nominal system is  

 ( ) ( ) ( ).e t Ae t Bv t= +$  (47) 

For the nominal system (47), let 0v v=  and 0v  can minimize the quadratic performance 
index as follows: 

 T T
0 00

1
[ ( ) ( ) ( ) ( )]

2
I e t Qe t v t Rv t dt

∞
= +∫  (48) 

where n nQ R ×∈ is a symmetric positive definite matrix, m mR R ×∈  (here 1m = ) is a positive 
definite matrix. 
According to optimal control theory, an optimal feedback control law can be obtained as: 

 1 T
0( ) ( )v t R B Pe t−= −  (49) 

with P  the solution of matrix Riccati equation 

T 1 T 0.PA A P PBR B P Q−+ − + =  

So the closed-loop system dynamics is  

 1 T( ) ( ) ( ).e t A BR B P e t−= −$  (50) 

The designed optimal controller for system (47) is sensitive to system uncertainties 
including parameter variations and external disturbances. The performance index (48) may 
deviate from the optimal value. In the next part, we will use integral sliding mode control 
technique to robustify the optimal control law so that the uncertain system trajectory could 
be same as nominal system. 

4.2.2 The robust optimal sliding surface.  
To get better tracking performance, an integral sliding surface is defined as 

 1 T

0
( , ) ( ) ( ) ( ) (0),

t
s e t Ge t G A BR B P e d Geτ τ−= − − −∫  (51) 

where m nG R ×∈  is a constant matrix which is designed so that GB is nonsingular. And (0)e  
is the initial error state vector. 
Differentiating (51) with respect to t  and considering system (46), we obtain 

 

1 T

1 T

1 T

( , ) ( ) ( ) ( )

[ ( ) ( ) ] ( ) ( )

( ) ( ) ( ).

s e t Ge t G A BR B P e t

G Ae t A Bv t G A BR B P e t

GBv t GBR B Pe t G A

δ

δ

−

−

−

= − −

= + Δ + + Δ − −

= + + Δ + Δ

$ $
 (52) 
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Let ( , ) 0s e t =$ , the equivalent control can be obtained by 

 1 1 T
eq( ) ( ) [ ( ) ( )].v t GB GBR B Pe t G A δ− −= − + Δ + Δ  (53) 

Substituting (53) into (46), and considering Assumption 10, the ideal sliding mode dynamics 
becomes 

 

eq

1 1 T

1 T 1

1 T 1

1 T

( ) ( ) ( )

( ) ( ) [ ( ) ( )]

( ) ( ) ( ) [ ]

( ) ( ) ( ) ( ) ( )

( ) ( ).

e t Ae t A Bv t

Ae t A B GB GBR B Pe t G A

A BR B P e t B GB G A A

A BR B P e t B GB GB A B A

A BR B P e t

δ

δ δ

δ δ

δ δ

− −

− −

− −

−

= + Δ + + Δ

= + Δ − + Δ + Δ + Δ

= − − Δ + Δ + Δ + Δ

= − − Δ + Δ + Δ + Δ

= −

$

# ## #
 (54) 

It can be seen from equation (50) and (54) that the ideal sliding motion of uncertain system 
and the optimal dynamics of the nominal system are uniform, thus the sliding mode is also 
asymptotically stable, and the sliding mode guarantees system (46) complete robustness to 
uncertainties. Therefore, (51) is called a robust optimal sliding surface. 

4.2.3 The control law. 
For uncertain system (46), we propose a control law in the form of 

 
c d

1 T
c

1
d

( ) ( ) ( ),

( ) ( ),

( ) ( ) [ sgn( )].

v t v t v t

v t R B Pe t

v t GB ks sε

−

−

= +

= −

= − +

 (55) 

where cv  is the continuous part, which is used to stabilize and optimize the nominal 
system. And dv  is the discontinuous part, which provides complete compensation for 
system uncertainties. [ ]T1sgn( ) sgn( ) sgn( )ms s s= A . k  and ε  are appropriate positive 
constants, respectively. 
Theorem 3. Consider uncertain system (46) with Assumption9-10. Let the input v and the 
sliding surface be given as (55) and (51), respectively. The control law can force system 
trajectories to reach the sliding surface in finite time and maintain on it thereafter if 

m m( )a d GBε ≥ + .  
Proof: Utilizing T(1 /2)V s s=  as a Lyapunov function candidate, and considering 
Assumption 9-10, we obtain 

{ }
( )

[ ]{ }

T T 1 T

T 1 T

T 1 T 1 T

T T
1

m m m m1

[ ( ) ( ) ( )]

[ ( ) ( ) ] ( ) ( )

( ) sgn( ) ( )

sgn( ) ( )

( ) (

V s s s Ge t G A BR B P e t

s G Ae t A Bv t G A BR B P e t

s G A GBR B Pe t ks s G GBR B Pe t

s ks s G A G k s s s G A G

k s s a d GB s k s a d

δ

ε δ

ε δ ε δ

ε ε

−

−

− −

= = − −

= + Δ + + Δ − −

⎡ ⎤= Δ − − + + Δ +⎣ ⎦
= − + + Δ + Δ = − − + Δ + Δ

≤ − − + + ≤ − − − +

$ $ $

) GB s⎡ ⎤⎣ ⎦

 

where
1

i  denotes the 1-norm. Note the fact that for any 0s ≠ , we have 
1

s s≥ . If 
( )m ma d GBε ≥ + , then 
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 T
1

( ) 0.V s s s G s G sε δ ε δ= ≤ − + ≤ − − <$ $  (56) 

This implies that the trajectories of uncertain system (46) will be globally driven onto the 
specified sliding surface ( , ) 0s e t =  in finite time and maintain on it thereafter. The proof is 
completed. 
From (51), we have (0) 0s = , that is to say, the initial condition is on the sliding surface. 
According to Theorem3, uncertain system (46) achieves global sliding mode with the 
integral sliding surface (51) and the control law (55). So the system designed is global robust 
and optimal, good tracking performance can be obtained with this proposed algorithm. 

4.3 Application to robots. 

In the recent decades, the tracking control of robot manipulators has received a great of 
attention. To obtain high-precision control performance, the controller is designed which 
can make each joint track a desired trajectory as close as possible. It is rather difficult to 
control robots due to their highly nonlinear, time-varying dynamic behavior and uncertainties 
such as parameter variations, external disturbances and unmodeled dynamics. In this 
section, the robot model is investigated to verify the effectiveness of the proposed method. 
A 1-DOF robot mathematical model is described by the following nonlinear dynamics: 

 
0 1 0 0 0

( ),( , ) ( ) 1 1
0

( ) ( )( ) ( )

q q
d tC q q G q

q q
M q M qM q M q

τ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

$
$

$$ $
 (57) 

where ,q q$  denote the robot joint position and velocity, respectively. τ  is the control vector 
of torque by the joint actuators. m  and l  are the mass and length of the manipulator arm, 
respectively. ( )d t  is the system uncertainties. ( , ) 0.03cos( ),C q q q=$  ( ) cos( ),G q mgl q=  

( ) 0.1 0.06sin( ).M q q= +  The reference trajectory is r( ) siny t tπ= . 
According to input-output linearization technique, choose a state vector as follows: 

1

2

z q
z

z q

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦$

. 

Define an error state vector of system (57) as [ ] [ ]T T
1 2 r r ,e e e q y q y= = − −$ $ and let the 

control law r( ) ( ) ( , ) ( )v y M q C q q q G qτ = + + +$$ $ $ . 
 So the error state dynamic of the robot can be written as: 

  1 1

2 2

0 1 0 0
( )

0 0 1 1 / ( )

e e
v d t

e e M q

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$
$

 (58) 

Choose the sliding mode surface and the control law in the form of (51) and (55), 
respectively, and the quadratic performance index in the form of (48). The simulation 
parameters are as follows: 0.02,m =  9.8,g =  0.5,l =  ( ) 0.5sin 2 ,d t tπ=  18,k =  6,ε =  

[ ]0 1 ,G =  
10 2

,
2 1

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 1R = . The initial error state vector is [ ]T0.5 0e = . 

The tracking responses of the joint position qand its velocity are shown in Fig. 6 and Fig. 7, 
respectively. The control input  is displayed in Fig. 8. From Fig. 6 and Fig. 7 it can be seen 
that the position error can reach the equilibrium point quickly and the position track the 
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reference sine signal yr well. Simulation results show that the proposed scheme manifest 
good tracking performance and the robustness to parameter variations and the load 
disturbance. 

4.4 Conclusions 

In order to achieve good tracking performance for a class of nonlinear uncertain systems, a 
sliding mode LQR tracking control is developed. The input-output linearization is used to 
transform the nonlinear system into an equivalent linear one so that the system can be 
handled easily. With the proposed control law and the robust optimal sliding surface, the 
system output is forced to follow the given trajectory and the tracking error can minimize 
the given performance index even if there are uncertainties. The proposed algorithm is 
applied to a robot described by a nonlinear model with uncertainties. Simulation results 
illustrate the feasibility of the proposed controller for trajectory tracking and its capability of 
rejecting system uncertainties. 
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Fig. 6. The tracking response of q 
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Fig. 7. The tracking response of q$  
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Fig. 8. The control inputτ  
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