We are IntechOpen, the world's leading publisher of Open Access books
 Built by scientists, for scientists

6,900

Open access books available

185,000

International authors and editors

Our authors are among the
TOP 1\%
most cited scientists

Downloads

Contributors from top 500 universities

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Quantum-Chemical Design of Molecular Quantum-Dot Cellular Automata (QCA): A New Approach from Frontier Molecular Orbitals

Ken Tokunaga
General Education Department, Faculty of Engineering, Kogakuin University
Japan

1. Introduction

Recently, research and development of next-generation devices have been very active (1). Quantum-dot cellular automata (QCA) (2) which is constructed from many quantum dot cells (QDC, Fig. 1) is one of such new-generation devices. The QCA devices such as a majority logic gate and a signal transmission wire (Fig. 2) are expected to achieve a dramatic saving of energy and an increase in processing speed of computing since these devices are free from a current flow. Successful operations of several QCA devices have been already demonstrated $(3 ; 4)$. However, for improvement in operation temperature and size of the QCA devices, the idea of molecular quantum-dot cellular automata (molecular QCA) devices (5), in which a QDC constructed from small metallic dots is replaced by a single molecule, was proposed. Toward the experimental operation of molecular QCA devices, syntheses of tetranuclear complexes (6-10) and simplified dinuclear complexes (11; 12), and single-molecule observation of the dinuclear complexes (13-16) have been paid attention. However, the capacity of molecular QCA devices for molecular computing is still not clear.

Fig. 1. (a) Quantum dot (QD) and quantum-dot cell (QDC) constructed from four QDs. (b) Schematic energy curve of two localized degenerate states, " 0 " and "1", and one delocalized transition state of QDC after injection of two electrons into QDC. Charge of open circles is positive relative to that of filled circles. In the transition state, charges of four dots are all equivalent.

Fig. 2. Examples of QCA devices constructed from many QDCs: (a) QCA logic gate (OR gate) and (b) QCA signal transmission wire.

Braun-Sand and Wiest $(17 ; 18)$ have reported theoretical studies on the electronic response of Ru dinuclear complexes to Li^{+}in order to propose molecular QCA candidates. Lent et al. took up hydrocarbons with allyl end-groups $(19 ; 20)$ and tetranuclear complex (21). In these studies, however, only the static response of molecular QCA to the switch of input was focused, and dynamic properties such as signal transmission time after the switch had not been discussed. About this point, Timler and Lent (22), and Lu and Lent (23) have reported the dynamic behavior of multi-cellular systems using model Hamiltonian. However, the detailed discussion about a relation between the electronic structure and dynamic properties had not been made in their studies. For understanding the behavior and performance of molecular QCA devices and development of high-efficient devices, it is necessary to clear the relation.
Very recently, I have proposed the simple method for an analysis of dynamic behavior of QCA devices, taking Creutz-Taube complexes $\left[\mathrm{L}_{5} \mathrm{M}-\mathrm{BL}-\mathrm{ML}_{5}\right]^{n+}$ ($\mathrm{M}=\mathrm{Ru}$, BL=pyrazine(py) and $4,4^{\prime}$-bipyridine (bpy), $\mathrm{L}=\mathrm{NH}_{3}, n=5$) as examples (24), based on the methods proposed by Remacle and Levine (25; 26). These analyses are all based on the simple one electron theories, density functional theory (DFT) and Hartree-Fock theory (HF). Time evolution of the wave function is expressed by the initial and final stationary states. Initial wave function is expanded by final wave function. Using this method, main properties concerning the signal transmission such as the signal period T, the signal amplitude A, and the signal transmission time $t_{\text {st }}$ (see Fig. 3) can be interpreted as follows (24):

- Signal period (T) is inverse proportional to an orbital energy gap, $\Delta \varepsilon_{H L}$, between HOMO (the highest occupied molecular orbital, H) and LUMO (the lowest unoccupied molecular orbital, L) of the final stationary state.
- Signal amplitude (A) is proportional to an overlap integral, $d_{L H^{\prime}}$, between HOMO of the initial stationary state $\left(H^{\prime}\right)$ and LUMO of the final stationary state (L).
- Signal transmission time $\left(t_{\mathrm{st}}\right)$ is determined depending on the balance of A and T.

This method has advantage that signal transmission behavior can be analyzed from the viewpoint of one electron properties, which are shapes of molecular orbitals (MOs) and MO energies. Thus, the proposed method is suitable for simple design of high-performance molecular QCA. Additionally, in my next paper (27), metal-dependence of dynamic behavior of signal transmission through metal complexes $\left[\mathrm{L}_{5} \mathrm{M}-\mathrm{BL}^{2} \mathrm{ML}_{5}\right]^{n+}(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}$, and Os, BL=py and bpy, $\mathrm{L}=\mathrm{NH}_{3}, n=5$), was discussed.
In this Chapter, I review my approaches $(24 ; 27)$ for the theoretical study on the two-site molecular QCA (Fig. 3) . Additionally, I discuss the influence of complex charge n on the signal transmission through molecular QCA. The reason why mixed-valence complexes are
suitable for molecular QCA is shown from the calculation of complexes with charge $n=4$, 5, and 6. Summarizing these results, I propose a new and simple approach for designing high-performance molecular QCA.

Fig. 3. Simplified two-site QCA and schematic picture of signal transmission between two units after the switch of input. A, T, and t_{st} are the signal amplitude, the signal period, and the signal transmission time, respectively.

This Chapter is organized as follows. In section 2, model, theory, and computational method of dynamic simulations are presented. A detailed explanation about the time evolution of the Mulliken charge (28) is also given. Calculated results of geometric parameters and molecular orbitals of selected complexes are shown in section 3. In section 4, the dynamic responses of molecular QCA cell upon the switch are calculated by the DFT and HF methods. In subsection 4.1, the relation between "input position" and signal transmission behavior is discussed. Detailed procedure of analysis from MOs are explained in this subsection. Relation between "switch power" and signal transmission behavior is shown in subsection 4.2. "Complex charge" also have great influence on the signal transmission (subsection 4.3). Lastly in subsection 4.4, the influence of "metal kind" on the signal transmission is discussed. In all subsections of section 4 , factors which determine the dynamic properties of molecular QCA cell are discussed from the viewpoint of MOs and orbital energies. Finally, this Chapter is summarized in section 5 .

2. Model, theory, and computation

2.1 Model

Schematic picture of signal transmission behavior is shown in Fig. 3. Before the switch (input charge is positive), unit 1 (U1) and unit 2 (U2) have negative and positive charges, respectively. U 1 is constructed from one M atom near to the input plus five NH_{3} ligands, and U 2 is constructed from one M atom far from the input plus five NH_{3} ligands (see Fig. (4). The moment of the switch of input corresponds to $t=0$. After the switch of the input charge from q^{i} to q^{f}, as time flows after the switch, $Q_{2}(t)$ decreases and $Q_{1}(t)$ increases, namely, signal (electron) is transmitted from U 1 to U 2 by the Coulombic repulsion. Via transition state, signal transmission is completed when Q_{1} becomes almost same to $Q_{2}(t=0)$, and Q_{2} becomes almost same to $Q_{1}(t=0)$. This time is called the signal transmission time $\left(t_{\mathrm{st}}\right)$. After the signal transmission, periodic behavior is repeated with a period of T and an amplitude of A.

Like the previous work by Braun-Sand and Wiest (18), dinuclear metal complexes shown in Fig. 4 are used to understand the essence of signal transmission through the molecular QCA cell. Bridging ligand (BL) of the complexes is pyrazine (py) or 4,4'-bipyridine (bpy), and ligand is NH_{3}. Total charge of the whole molecule is $n+$, excluding the input charge. Metal atoms (M) are selected as Fe, Ru, and Os and charges $(n+$) of the complexes are $4+, 5+$, and $6+$. These complexes are well-known to have mixed-valence electronic state when $n=5$, and such complexes are called Creutz-Taube complexes $(29 ; 30)$. Point charge q placed parallel to $\mathrm{M}-\mathrm{N}_{\mathrm{BL}}$ axis at a distance of $r_{q-\mathrm{M}}=5,10$, and $15 \AA$ from the M atom is used as an input to the complexes. For the discussion of switch power, three kinds of switch patterns, $\left(q^{i}, q^{\mathrm{f}}\right)=(+0.1$, $-0.1),(+0.3,-0.3),(+0.5,-0.5)$ (in e unit), are selected.

Fig. 4. Input and structures of py and bpy complexes.

2.2 Theory

Dynamic calculation for the simulation of signal transmission is all based on one-electron theories. A method of time evolution is similar to that of Remacle and Levine (24-27). All procedures shown below are repeated for both α and β MOs.
In initial stationary state before the switch, the following one-electron equation

$$
\begin{equation*}
h^{\mathrm{i}}\left|\psi_{n}^{\mathrm{i}}\right\rangle=\varepsilon_{n}^{\mathrm{i}}\left|\psi_{n}^{\mathrm{i}}\right\rangle \tag{1}
\end{equation*}
$$

is satisfied, where $h^{\mathrm{i}},\left|\psi_{n}^{\mathrm{i}}\right\rangle$, and $\varepsilon_{n}^{\mathrm{i}}$ denote one-electron Hamiltonian, nth MO, and nth orbital energy when $q=q^{i}$, respectively. Similarly, in final stationary state after the switch, the following equation

$$
\begin{equation*}
h^{\mathrm{f}}\left|\psi_{n}^{\mathrm{f}}\right\rangle=\varepsilon_{n}^{\mathrm{f}}\left|\psi_{n}^{\mathrm{f}}\right\rangle \tag{2}
\end{equation*}
$$

is satisfied, where $h^{\mathrm{f}},\left|\psi_{n}^{\mathrm{f}}\right\rangle$, and $\varepsilon_{n}^{\mathrm{f}}$ denote one-electron Hamiltonian, nth MO, and nth orbital energy when $q=q^{\mathrm{f}}$, respectively. At the moment $(t=0)$ of switch of input $\left(q=q^{\mathrm{i}} \rightarrow q=q^{\mathrm{f}}\right)$,
one-electron Hamiltonian h suddenly changes from h^{i} to $h^{\mathrm{f}}(0)$ (31) but MOs are remaining $\left|\psi_{n}^{\mathrm{i}}\right\rangle$, so that time evolution of nth $\mathrm{MO}\left|\psi_{n}(t)\right\rangle$ is represented by the following time-dependent Schrödinger equation (in atomic unit)

$$
\begin{equation*}
i \frac{\partial\left|\psi_{n}(t)\right\rangle}{\partial t}=h^{\mathrm{f}}(t)\left|\psi_{n}(t)\right\rangle, \tag{3}
\end{equation*}
$$

where $\left|\psi_{n}(0)\right\rangle$ corresponds to $\left|\psi_{n}^{\mathrm{i}}\right\rangle$. Neglecting the time dependence of $h^{\mathrm{f}}(t)$ (assumed to be equal to h^{f} of Equation 2) and expanding $\left|\psi_{n}(t)\right\rangle$ in a complete set of the final stationary states $\left|\psi_{j}^{\mathrm{f}}\right\rangle$ of Equation 2, $\left|\psi_{n}(t)\right\rangle$ is written as

$$
\begin{equation*}
\left|\psi_{n}(t)\right\rangle=e^{-i h^{\mathrm{f}}}\left|\psi_{n}(0)\right\rangle=\sum_{j}^{\text {all }} e^{-i h^{\mathrm{f}} t}\left|\psi_{j}^{\mathrm{f}}\right\rangle\left\langle\psi_{j}^{\mathrm{f}} \mid \psi_{n}(0)\right\rangle=\sum_{j}^{\text {all }}\left|\psi_{j}^{\mathrm{f}}\right\rangle e^{-i \varepsilon_{j}^{\mathrm{f}} t} d_{j n} \tag{4}
\end{equation*}
$$

where $d_{j n}=\left\langle\psi_{j}^{\mathrm{f}} \mid \psi_{n}(0)\right\rangle=\left\langle\psi_{j}^{\mathrm{f}} \mid \psi_{n}^{\mathrm{i}}\right\rangle$ is the overlap integral between MOs and j runs over all MOs when $q=q^{f}$. This approximation gives not only a drastic reduction of computational time but also a simple picture of signal transmission based on MOs. Then, an inner product of $\left|\psi_{n}(t)\right\rangle$ is

$$
\begin{equation*}
\left\langle\psi_{n}(t) \mid \psi_{n}(t)\right\rangle=\sum_{j, j^{\prime}}^{\text {all }} d_{j n} d_{j^{\prime} n} e^{i \Delta \varepsilon_{i j^{\prime}} t}\left\langle\psi_{j}^{\mathrm{f}} \mid \psi_{j^{\prime}}^{\mathrm{f}}\right\rangle=1, \tag{5}
\end{equation*}
$$

where $\Delta \varepsilon_{j j^{\prime}}=\varepsilon_{j}^{\mathrm{f}}-\varepsilon_{j^{\prime}}^{\mathrm{f}}$. In actual calculation, $\left|\psi_{j}\right\rangle$ and $\left|\psi_{j^{\prime}}\right\rangle$ are expressed by localized gaussian functions $|\phi\rangle$ and molecular coefficients c as

$$
\begin{align*}
& \left|\psi_{j}\right\rangle=\sum_{\mu}^{\text {all }} c_{j \mu}\left|\phi_{\mu}\right\rangle, \tag{6}\\
& \left|\psi_{j^{\prime}}\right\rangle=\sum_{v}^{\text {all }} c_{j^{\prime} v}\left|\phi_{v}\right\rangle, \tag{7}
\end{align*}
$$

where μ and v run over all basis functions. Total number of electrons N is defined as

$$
\begin{equation*}
N=\sum_{n}^{\text {occ. }}\left\langle\psi_{n}(t) \mid \psi_{n}(t)\right\rangle \tag{8}
\end{equation*}
$$

Substituting Equations 5 and 7 into Equation $8, N$ can be explicitly rewritten like the form of Mulliken population as $(32 ; 33)$

$$
\begin{align*}
N & =\sum_{\mu, v}^{\text {all }}\left[\sum_{n}^{\text {occ. all }} \sum_{j, j^{\prime}} d_{j n} d_{j^{\prime} n} \cdot c_{j \mu} c_{j^{\prime} v} \cdot \cos \left(\Delta \varepsilon_{j j^{\prime}} t\right)\right]\left\langle\phi_{\mu} \mid \phi_{\nu}\right\rangle \\
& =\sum_{\mu, v}^{\text {all }} P_{v \mu} S_{\mu v}=\sum_{v}^{\text {all }}(\mathbf{P S})_{v v} \tag{9}
\end{align*}
$$

where \mathbf{S} is an overlap matrix of $S_{\mu v}\left(=\left\langle\phi_{\mu} \mid \phi_{\nu}\right\rangle\right)$, and \mathbf{P} is a population matrix of $P_{\nu \mu}$:

$$
\begin{equation*}
P_{v \mu}=\sum_{n}^{\text {occ. all }} \sum_{j, j^{\prime}} d_{j n} d_{j^{\prime} n} \cdot c_{j \mu} c_{j^{\prime} v} \cdot \cos \left(\Delta \varepsilon_{j j^{\prime}} t\right) . \tag{10}
\end{equation*}
$$

Then, the time-dependent Mulliken charge of unit u is defined as

$$
\begin{equation*}
Q_{u}(t)=\sum_{a \in u}^{\text {Atom }}\left\{Z_{a}-\sum_{v \in a}^{\text {Basis }}(\mathbf{P S})_{v v}\right\} \tag{11}
\end{equation*}
$$

where Z_{a} is a nuclear charge of an atom a. The value in the braces of Equation 11 corresponds to the Mulliken charge of a.

2.3 Computation

All dynamic calculations were performed by the restricted DFT method for $4+$ and $6+$ complexes, and unrestricted DFT method for $5+$ complexes, using B3LYP functional. It is well-known that DFT method generally over-estimate the electron delocalization (35), so that the HF method which generally under-estimate the electron delocalization was also checked. However, detailed results of HF method are not shown in this chapter (see my previous paper, ref. 24). Conventional basis set was used for H, C, and N atoms ($6-31 \mathrm{G}(\mathrm{d}$) for C and N atoms, and $6-31 \mathrm{G}$ for H atoms). All-electron 3-21G basis set was used for Fe and Ru atoms, and LANL2DZ basis set and LANL2 pseudo potential were used for Ru and Os atoms. It was confirmed about Ru complexes that there is only a small difference between the results obtained by 3-21G and LANL2DZ basis sets. Therefore, the comparison between Fe (3-21G), $\mathrm{Ru}(3-21 \mathrm{G})$, and Os (LANL2DZ) complexes will be valid. All results of Ru complexes shown in this chapter are those obtained by 3-21 basis set for Ru atom.
Gaussian 03 program package (34) was used for geometrical optimizations and self-consistent field electronic calculations. Fortran 77 program for the time evolution of the Mulliken charge and its analysis was coded by myself.

3. Structures

3.1 Geometries

Geometrical optimizations were performed for only 5+ complexes. The schematic structures of py and bpy complexes with are shown in Fig. 4. $\mathrm{N}_{\mathrm{BL}}, \mathrm{N}_{c}$, and N_{t} represent N atoms of M-BL, cis-M-NH3 , and trans-M-NH3 bonds, respectively. Geometrical optimizations of py and bpy complexes have already been studied by other research groups, imposing or without imposing symmetry (35-39). In this chapter, all possible symmetries (including C_{1} point group) were checked in the search of the stable structures, and it was confirmed that the most stable structures have no vibrational modes with imaginary frequencies.
Table 1 shows a summary of the computed geometries of this work. For py complex, imposing $C_{2 h}, C_{2 v}, C_{2}, C_{s}$, and C_{i} symmetries, the most stable symmetries were obtained as $C_{2 h}$ symmetry (${ }^{2} B_{g}$ state) for Ru complex and C_{2} symmetry (${ }^{2} B$ state) for $F e$ and Os complexes. Some calculations starting from C_{1} symmetry also converged into these symmetries, so that stable structures of py complex were concluded to be symmetric. Energy differences between the most stable structures in each symmetry are very small that the symmetry of the stable structure will strongly depend on a selection of calculation method and basis set. Two M atoms of the complex are equivalent so that py complexes are regarded as Class III of Robin-Day's classification (40). The results of this work about Ru complexes are very similar to the results obtained by Braun-Sand and Wiest (17), but Ru- N_{BL} bond lengths are estimated a little longer due to the polarization basis function of N atoms. Compared with X-ray crystal structure ($42 ; 43$), computed bond lengths, especially Ru-N $\mathrm{N}_{\text {BL }}$ bond length, are over-estimated
by about $0.2 \AA$. This is because that inter-molecular interactions are neglected in calculations of this article.

Metal	py			bpy		
	Fe	Ru	Os	Fe	Ru	Os
Symmetry	C_{2}	$\mathrm{C}_{2 h}$	C_{2}	C_{2}	C_{2}	C_{2}
Electronic State	${ }^{2} B$	${ }^{2} B_{g}$	${ }^{2} B$	${ }^{2}$ B	${ }^{2} B$	${ }^{2} B$
$\mathrm{M}-\mathrm{N}_{\text {BL }}$	1.939	2.206	2.099	1.927	2.169	2.115
$\mathrm{M}-\mathrm{N}_{c}$	2.028	2.210	2.197	2.026	2.205	2.192
$\mathrm{M}-\mathrm{N}_{t}$	2.075	2.191	2.211	2.071	2.208	2.214
dihedral angle				15.1	28.3	23.0

Table 1. Summary of symmetries, irreducible representations of electronic state, and computed M-N bond lengths (\AA) of py and bpy complexes with charge $n=5$. M- N_{c} bond length is averaged over all $\mathrm{M}-\mathrm{N}_{c}$ bonds.

For bpy complex, the most stable symmetries finally converged to C_{2} symmetry (${ }^{2} B$ state). Another structure starting from C_{1} symmetry also converged into this structure, so that C_{2} symmetry was concluded to be the most stable structure. Computed bond lengths of Ru complexes in Table 1 is similar to the results obtained by Braun-Sand and Wiest (17). The dihedral angles between two $\mathrm{C}_{5} \mathrm{~N}$ rings are $15.1^{\circ}, 28.3^{\circ}$, and 23.0° for Fe, Ru, and Os complexes, respectively. These calculation predicts bpy complex to be classified into Class III. Contrast to above results by DFT method, HF method gives C_{1} symmetry as stable structure of bpy complexes (not shown in the text)(24). HF calculation predicts large difference between two M-N N_{BL} bond lengths. This result is consistent with the fact that Ru-bpy complex is thought to belong to Class II due to the experimental result of near-IR spectrum (41). These calculated results are not surprising because HF method tends to give more localized electronic structures than DFT method.
In my previous paper (24), bpy complexes were classified into Class III and Class II by DFT and HF methods, respectively. And it was found that signal transmission does not take place in Class II complex by HF method. Therefore, I focused only on the Class III result by DFT method in order to analysis signal transmission behavior and expand knowledge about molecular design of QCA even though the classification of bpy complex into Class III is contradict to the experimental observation.

3.2 Frontier molecular orbitals

Frontier molecular orbitals of Ru complexes (BL $=\mathbf{p y}$ and $\mathbf{b p y}, n=5$) are shown in Fig. 5. Be careful that no input charge is put at the side of complex in this figure. Other orbitals do not contribute to the signal transmission so that are not shown here. For py complexes, 112α and 113α orbitals are linear combinations of $4 d_{x^{2}-y^{2}}$ orbitals of Ru atoms. 112β and 113β orbitals are constructed from $4 d_{y z}$ orbitals of Ru atoms and π^{*} orbital of BL. In 112β orbitals, $4 d_{y z}$ and π^{*} forms bonding orbital so that it has lower energy than 113β orbital. Both 114α and 114β orbitals are almost same to the π^{*} orbitals of BL and have anti-bonding character between metals and BL. Similar to the frontier orbitals of py complex, those of bpy complexes are also constructed from $4 d_{y z}$ and $4 d_{x^{2}-y^{2}}$ orbitals of Ru atoms and π^{*} orbital of BL. However, contribution of BL $\pi *$ orbital to 132β orbital in bpy complex is smaller than that of BL $\pi *$ orbital to 112β orbital in py complex. Orbitals of Fe and Os complexes are not shown here but
are qualitatively same to those of Ru complexes. $3 d$ and $5 d$ orbitals contribute to frontier MOs of Fe and Os complexes, respectively.
(a) Py

(b) Bpy

Fig. 5. Frontier molecular orbitals of (a) py and (b) bpy complexes without input charge.

4. Signal transmission

4.1 Input position

The relation between input position and signal transmission behavior is discussed. About Ru complexes with $5+$ charge, switch position $r_{q-\mathrm{Ru}}$ is changed from $5 \AA$ to $15 \AA$. Input charge is switched from $q^{i}=+0.5$ to $q^{\mathrm{f}}=-0.5$.

4.1.1 Ru-py complexes

Fig. 6. Dependence of dynamic behavior on input position. Results of (a) py and (b) bpy complexes.
Figure 6 shows time-evolution of $Q_{1}(t)$ and $Q_{2}(t)$ after the switch of the input. The moment of the switch of input corresponds to $t=0$. Summation of Q_{1}, Q_{2}, and charge of LB is always exactly +5 . Time evolution of the charge of BL is very small so that is not shown here. As time
flows after the switch, Q_{2} decreases and Q_{1} increases, namely, signal (electron) is transmitted from U1 to U2 by the Coulombic repulsion.
In py results shown in Fig. 6(a), Q_{1} becomes almost same to Q_{2} at $t \approx 0.8 \mathrm{fs}$. At $t \approx 1.2 \mathrm{fs}, Q_{1}$ becomes almost same to $Q_{2}(0)$, and Q_{2} becomes almost same to $Q_{1}(0)$. Signal transmission is completed at this time, so that the signal transmission time $\left(t_{\mathrm{st}}\right)$ is estimated as $t_{\mathrm{st}} \approx 1.2 \mathrm{fs}$. After the signal transmission, periodic behavior is repeated with a period of $T \approx 4.3 \mathrm{fs}$.
As a whole, the amplitude of the time evolution (signal amplitude: A) is strongly dependent on $r_{q-\mathrm{Ru}}$, on the other hand, signal transmission time (t_{st}) and period of the evolution (signal period: T) are almost independent of $r_{q-\mathrm{Ru}}$. Charge of BL remains almost constant throughout the time evolution, so that signal transmission is said to occur via a hopping mechanism (26). When $r_{q-\mathrm{Ru}}=5 \AA$, dynamic behavior is a little complicated because that electric field originated from q is so strong that electronic structure is strongly perturbed.

4.1.2 Ru-bpy complexes

Fig. 6(b) shows time-evolution of $Q_{1}(t)$ and $Q_{2}(t)$ after the switch of the input. Charge of BL (not shown) remains almost constant throughout the time evolution, so that signal transmission is said to occur via a hopping mechanism as py complex. At $t \approx 1.8 \mathrm{fs}, Q_{1}$ and Q_{2} become almost the same. At $t \approx 2.6 \mathrm{fs}, Q_{1}$ becomes almost same to $Q_{2}(0)$, and Q_{2} becomes almost same to $Q_{1}(0)$, so that the signal transmission time is estimated as $t_{\mathrm{st}} \approx 2.6 \mathrm{fs}$. Periodic behavior is repeated with $T \approx 9.1 \mathrm{fs}$. A is strongly dependent on $r_{q-\mathrm{Ru}}$, but t_{st} and T are almost independent of $r_{q-\mathrm{Ru}}$. It should be noted that A of bpy complex is a little larger than that of py complex, and $t_{\text {st }}$ and T of bpy complex are about twice as large as those of py complex. Thus, signal transmission through bpy complex with long BL is slower than that through py complex with short BL. From the viewpoint of signal amplitude, bpy complex is better suited for molecular QCA, but from the viewpoint of signal transmission time, dynamic calculation gives the opposite result. This means that for the simulation and design of molecular QCA, dynamic consideration is indispensable.
Signal transmission time t_{st} is $1-2$ fs at the maximum. On the other hand, the period T of nuclear motion is usually several tens - several hundreds fs. Therefore, nuclear vibration will have only a small influence on the signal transmission and can be neglected.

4.1.3 Analysis from molecular orbitals (MOs)

It was found that signal amplitude (A) is strongly dependent on $r_{q-\mathrm{Ru}}$, on the other hand, signal transmission time $\left(t_{\mathrm{st}}\right)$ and signal period (T) are almost independent of $r_{q-\mathrm{Ru}}$. Here, these points are discussed from the viewpoint of MOs and orbitals energies.

4.1.3.1 Molecular orbitals

Figures 7 and 8 show frontier MOs and orbital energies of stationary states of py and bpy complexes before ($q=q^{\mathrm{i}}$) and after $\left(q=q^{\mathrm{f}}\right)$ the switch of the input when $n=5$.
For py complex (Fig. 7), 112 α and 113α orbitals dramatically change before and after the switch. Two $d_{z x}$ orbitals, 112α of (a) and 112α of (b), are originally degenerated when $q=0.0$. This is also applied to a set of 113α of Fig. 7 (a) and 113α of Fig. 7 (b). When $q=+0.5$, one of two orbitals in which U1 has large distribution is stable due to the Coulombic attraction to the positive q. Inversely, when $q=-0.5$, the other orbital in which U 2 has larger distribution is stable due to the Coulombic repulsion to the negative $q .112 \beta$ and 113β are almost same to the 112β and 113β orbitals without input charge shown in Fig. 5 and are constructed mainly from a linear combination of two $4 d_{y z}$ orbitals of two Ru atoms, one bonding and the other anti-bonding. 112β has larger distribution on U 1 when $q=+0.5$ and on U 2 when $q=-0.5$ due

Fig. 7. Frontier molecular orbitals and orbital energies of $\mathbf{p y}$ complex when $n=5$. (a) Initial stationary state $\left(\left|\psi^{\mathrm{i}}\right\rangle\right)$ with $q=q^{\mathrm{i}}=+0.5$ and (b) final stationary state $\left(\left|\psi^{\mathrm{f}}\right\rangle\right)$ with $q=q^{\mathrm{f}}=-0.5$. In this figure, input q is placed at a distance of $r_{q-\mathrm{Ru}}=10 \AA$ on the left of the complexes (also see Fig. 4).

Fig. 8. Frontier molecular orbitals and orbital energies of bpy complex when $n=5$. (a) Initial stationary state $\left(\left|\psi^{\mathrm{i}}\right\rangle\right)$ with $q=q^{\mathrm{i}}=+0.5$ and (b) final stationary state $\left(\left|\psi^{\mathrm{f}}\right\rangle\right)$ with $q=q^{\mathrm{f}}=-0.5$.
to the Coulombic interaction to the input (see enlarged figures in Fig. 7). However, 113β has opposite character, that is larger distribution on U2 when $q=+0.5$ and on U1 when $q=-0.5$, because 112β and 113β are a pair of bonding and anti-bonding orbitals. Larger distribution on one unit of 112β naturally results in smaller distribution on the same unit of 113β.

The same interpretation can be applied to results of bpy complex in Fig. 8. 132α and 133α are localized on U1 when $q=+0.5$ and are localized on U2 when $q=-0.5$ due to Coulombic interaction. 132β and 133β have bonding and anti-bonding character, respectively, and are mainly constructed from two $4 d_{y z}$ orbitals.
4.1.3.2 Signal period (T)

Time-dependent part of Equation 11 is extracted as

$$
\begin{equation*}
\sum_{j, j^{\prime} \neq j}^{\text {all }}-A_{u j j^{\prime}} \cos \left(2 \pi t / T_{j j^{\prime}}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
T_{j j^{\prime}} & =2 \pi / \Delta \varepsilon_{j j^{\prime}} \tag{13}\\
A_{u j j^{\prime}} & =\sum_{a \in u}^{\text {Atom Basis all occ. }} \sum_{v \in a} \sum_{\mu} \sum_{n} d_{j n} d_{j^{\prime} n} \cdot c_{j \mu} c_{j^{\prime} v} \cdot s_{\mu v} \tag{14}
\end{align*}
$$

$T_{j j^{\prime}}$ and $A_{u j j^{\prime}}$ are the signal period and signal amplitude of unit u of the time evolution, respectively. The term $-A_{u j j^{\prime}} \cos \left(2 \pi t / T_{j j^{\prime}}\right)$ represents the contribution of the interaction between $\left|\psi_{j}^{\mathrm{f}}\right\rangle$ and $\left|\psi_{j^{\prime}}^{\mathrm{f}}\right\rangle$ to the time evolution of $Q_{u}(t)$. All terms with $j=j^{\prime}$ are excluded because they are time-independent $\left(\Delta \varepsilon_{j j^{\prime}}=0\right)$. In Table 2, two values of $T_{j j^{\prime}}$ are tabulated in order of $\left|A_{u j j^{\prime}}\right|$. For both py and bpy complexes, $\left(j, j^{\prime}\right)=(H, L)$ term is dominant in U1 and U2 so that the transmission character is almost determined by H and L, where H and L denote $\operatorname{HOMO}(\beta)$ and $\operatorname{LUMO}(\beta)$ of the final stationary state $\left(q=q^{\mathrm{f}}=-0.5\right)$. The values of the second largest $A_{u j j^{\prime}}$ are negligibly small. Thus, consideration of only (H, L) term is enough to reproduce Fig. 6.
The $T_{j j^{\prime}}$ (or $\Delta \varepsilon_{j j^{\prime}}$) with the largest $A_{u j j^{\prime}}$ mainly determines the period (T) of the time evolution. $T_{j j^{\prime}}$ is almost independent of $r_{q-\mathrm{Ru}}$ because orbital energies $\varepsilon_{j}^{\mathrm{f}}$ are influenced by the strength of electric field originated from the input but energy gaps $\Delta \varepsilon_{j j^{\prime}}$ between frontier MOs are almost determined by the interaction between Ru atoms, bridging ligand, and ligands, and are little influenced by the strength of electric field originated from the input (see orbitals energies of Figs. 7 and 8).

4.1.3.3 Signal amplitude (A)

In dynamic behavior, signal amplitude (A) is almost determined by the value of $A_{u H L} \cdot A_{u H L}$ is divided into two terms as

$$
\begin{equation*}
A_{u H L}=C_{u H L} D_{H L} \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
C_{u H L} & =\sum_{a \in u} \sum_{v \in a} \sum_{\mu} c_{H \mu} c_{L v} s_{\mu v} \tag{16}\\
D_{H L} & =\sum_{n} d_{H n} d_{L n} . \tag{17}
\end{align*}
$$

Absolute values of $A_{u H L}, C_{u H L}$, and $D_{H L}$ are tabulated in Table 3. As seen from the time evolution in Fig. 6, $A_{u H L}$ sharply decreases as $r_{q-\mathrm{Ru}}$ increases. $C_{u H L}$ changes only a little as

	$r_{q-\mathrm{Ru}}$	Unit 1			Unit 2		
		j, j^{\prime}	$A_{1 j j^{\prime}}$	$T_{i j}$	${ }^{j}, j^{\prime}$	$A_{2 j j^{\prime}}$	
py	$5 \AA$	$112 \beta, 113 \beta$	0.128	4.26	$112 \beta, 113 \beta$	-0.140	4.26
		106 $\alpha, 115 \alpha$	0.006	0.57	$111 \alpha, 114 \alpha$	0.008	1.03
	10Å	$112 \beta, 113 \beta$	0.052	4.47	$112 \beta, 113 \beta$	-0.053	4.47
		$112 \beta, 114 \beta$	0.001	1.47	109 $\alpha, 114 \alpha$	0.002	0.94
	15Å	$112 \beta, 113 \beta$	0.027	4.47	$112 \beta, 113 \beta$	-0.028	4.49
		$109 \alpha, 114 \alpha$	-0.001	0.92	$109 \alpha, 114 \alpha$	0.001	0.92
bpy	$5 \AA$	$132 \beta, 133 \beta$	0.143	9.06	$132 \beta, 133 \beta$	-0.145	9.06
		$123 \beta, 135 \beta$	0.006	0.53	$131 \alpha, 134 \alpha$	0.004	1.04
	10A	$132 \beta, 133 \beta$	0.061	9.34	$132 \beta, 133 \beta$	-0.061	9.34
		$114 \alpha, 135 \alpha$	-0.001	0.44	131 $\alpha, 134 \alpha$	0.001	0.93
	15A	$132 \beta, 133 \beta$	0.033	9.36	$132 \beta, 133 \beta$	-0.033	9.36
		$114 \beta, 135 \beta$	0.000	0.43	130, 134α	0.001	0.91

Table 2. Contribution of a set of $\left(j, j^{\prime}\right)$ orbitals to the time-evolution of Mulliken charge. Two values of $T_{j j^{\prime}}(\mathrm{fs})$ are shown in order of $\left|A_{u j j^{\prime}}\right|$ (e). For all complexes, the set of ($\mathrm{HOMO}(\beta)$, $\operatorname{LUMO}(\beta))$ gives the largest $A_{u j j^{\prime}}$.
$r_{q-\mathrm{Ru}}$ increases, but $D_{H L}$ sharply decreases as $r_{q-\mathrm{Ru}}$ increases. Thus, the decrease in $A_{u H L}$ attendant on the increase of $r_{q-\mathrm{Ru}}$ is mainly due to the decrease in $D_{H L}$. Although $D_{H L}$ is defined as a summation over all MOs n as seen in Equation 17, $d_{H H^{\prime}} d_{L H^{\prime}}$ among all $d_{H n} d_{L n}$ has the dominant contribution to $D_{H L}$, where H^{\prime} is $\operatorname{HOMO}(\beta)$ of the initial stationary state ($q=q^{i}=+0.5$), because $d_{H n}$ is almost zero except for $n=H^{\prime}$. Additionally, although the values of $d_{H H^{\prime}}$ are almost constant $\left(0.926<d_{H H^{\prime}}<0.998\right)$ for all BL and $r_{q-\mathrm{Ru}}, d_{L H^{\prime}}$ is strongly dependent on $r_{q-\mathrm{Ru}}$ as shown in Table 3. As $r_{q-\mathrm{Ru}}$ becomes smaller, the values of $d_{H H^{\prime}}$ deviate from 1. The values of $d_{L H^{\prime}} / A_{u H L}$ are almost constant for all $r_{q-\mathrm{Ru}}$. Consequently, we can approximate Equation 15 as

$$
\begin{equation*}
\left|A_{u H L}\right| \propto\left|d_{L H^{\prime}}\right| . \tag{18}
\end{equation*}
$$

H^{\prime} and L have been already shown in Figs. 7 and 8. In both complexes, larger distribution of H^{\prime} is located on U1. Similarly, larger distribution of L is on U1. For both complexes, the function $\psi_{L}^{\mathrm{f}} \psi_{H^{\prime}}^{\mathrm{i}}$ has positive value around U1 and negative value around U2. $\psi_{L}^{\mathrm{f}} \psi_{H^{\prime}}^{\mathrm{i}}$ has larger distribution on U1 than on U2, so that the overlap integral $d_{L H^{\prime}}=\left\langle\psi_{L}^{\mathrm{f}} \mid \psi_{H^{\prime}}^{\mathrm{i}}\right\rangle$ has non-zero value in total. If the input is positioned considerably far from the complex (this situation is equivalent to $q^{\mathrm{i}} \approx q^{\mathrm{f}} \approx 0$), the value of $d_{L H^{\prime}}$ is almost zero because L and H^{\prime} are almost orthogonal. Namely, the input placed nearer to the molecule leads to more asymmetric H^{\prime} and L, so that $d_{L H^{\prime}}$, in other words, $A_{u H L}$ tends to be large. All complexes with bpy BL have small coefficients on BL and MOs distribute mainly on the metal atoms. Thus, the distribution of frontier orbitals of bpy complexes is strongly influenced by the switch of the input and signal amplitude A of bpy complexes is larger than that of py complexes.

4.2 Switch power

The relation between switch power and signal transmission behavior is discussed. Switch power corresponds to the difference between q^{i} and q^{f}. About Ru complexes with $n=5$ and $r_{q-\mathrm{Ru}}=10 \AA$, three kinds of switch, $\left(q^{\mathrm{i}}, q^{\mathrm{f}}\right)=(+0.1,-0.1),(+0.3,-0.3)$, and $(+0.5,-0.5)$, are simulated.

	py		bpy		
$r_{q-\mathrm{Ru}}$	5 Å	10A 15Å	5A	10A	$15 \AA$
$A_{u H L}$	0.128	0.0520 .027	0.143	0.061	0.033
$\mathrm{C}_{u H L}$	0.378	0.4180 .424	0.412	0.444	0.448
$D_{\text {HL }}$	0.338	0.1250 .065	0.348	0.137	0.075
$d_{H H^{\prime}} d_{L H^{\prime}}$	0.338	0.1250 .065	0.348	0.137	0.075
$d_{\text {HH }}{ }^{\prime}$	0.931	0.9920 .998	0.926	0.990	0.997
$d_{L H^{\prime}}$	0.364	0.1260 .065	0.376	0.139	0.075
$d_{\text {LH' }} / A_{u H L}$	2.84	$2.42 \quad 2.41$	2.63	2.28	2.27

Table 3. Absolute values of $A_{u H L}, C_{u H L}, D_{H L}, d_{H H^{\prime}} d_{L H^{\prime}}, d_{H H^{\prime}}, d_{L H^{\prime}}$, and $d_{L H^{\prime}} / A_{u H L}$ of unit 2.

4.2.1 Ru-py and Ru-bpy complexes

Figure 9(a) shows the results of py complex. Signal period (T) is 4.3 fs and signal transmission time $\left(t_{\mathrm{st}}\right)$ is 1.2 fs , and both are independent of $\left(q^{\mathrm{i}}, q^{\mathrm{f}}\right)$. On the other hand, signal amplitude (A) decreases as $\left(q^{\mathrm{i}}, q^{\mathrm{f}}\right)$ becomes small. This is because that MOs become more symmetric as (q^{i}, q^{f}) becomes small so that values of $d_{L H^{\prime}}$ becomes small. Figure $9(\mathrm{~b})$ shows the results of bpy complex. Signal period (T) is 9.1 fs and signal transmission time $\left(t_{\mathrm{st}}\right)$ is 2.6 fs . Dependence of A and T on the switch power is same to the result of $\mathbf{p y}$ complex.

Fig. 9. Dependence of dynamic behavior on switch power. Results of (a) py and (b) bpy complexes

4.2.2 Analysis from MOs

In Table 4, the largest $\left|A_{u j j^{\prime}}\right|$ and corresponding $T_{j j^{\prime}}$ are tabulated. Similar to the discussion about the input position, $\left(j, j^{\prime}\right)=(H, L)$ term is dominant so that the transmission behavior is almost determined by H and L. The $T_{j j^{\prime}}$ (or $\Delta \varepsilon_{j j^{\prime}}$) with the largest $A_{u j j^{\prime}}$ mainly determines the period (T) of the time evolution of Figure 9 .
Absolute values of $A_{u H L}, C_{u H L}$, and $D_{H L}$ are tabulated in Table 5. We can see that the order of $D_{H L}$ qualitatively correspond to that of $A_{u H L}$. Therefore, the analysis of $D_{H L}$ is necessary for understanding the values of $A_{u H L}$. $d_{H H^{\prime}} d_{L H^{\prime}}$ term among all $d_{H n} d_{L n}$ terms has the dominant contribution to $D_{H L}$. Although the values of $d_{H H^{\prime}}$ are almost an unit $\left(0.990<d_{H H^{\prime}}<1.000\right)$ for all complexes, $d_{L H^{\prime}}$ is strongly dependent on the switch power.

$\left(q^{\mathrm{i}}, q^{\mathrm{f}}\right)$		Unit 1	Unit 2
		$j_{, j^{\prime}} \quad A_{1 j j^{\prime}} T_{j j^{\prime}}$	${ }_{j, j^{\prime}} \quad A_{2 j j^{\prime}} T_{i j j^{\prime}}$
py	(+0.1,-0.1)	$112 \beta, 113 \beta 0.0114 .50$	112 $\beta, 113 \beta-0.0114 .50$
	(+0.3,-0.3)	$112 \beta, 113 \beta 0.0324 .49$	112 $\beta, 113 \beta-0.0324 .49$
	(+0.5,-0.5)	$112 \beta, 113 \beta 0.0524 .47$	112 $\beta, 113 \beta-0.0534 .47$
bpy	(+0.1,-0.1)	$132 \beta, 133 \beta 0.0129 .37$	$132 \beta, 133 \beta-0.0129 .37$
	(+0.3,-0.3)	$132 \beta, 133 \beta 0.0379 .36$	132 $\beta, 133 \beta-0.0379 .36$
	(+0.5,-0.5)	$132 \beta, 133 \beta 0.0619 .34$	132 $\beta, 133 \beta-0.0619 .34$

Table 4. Dependence of dynamic parameters, $\left|A_{u j j^{\prime}}\right|$ and $T_{j j^{\prime}}$, on switch power.
Consequently, we can qualitatively discuss the values of $\left|A_{u H L}\right|$ from those of $\left|d_{L H^{\prime}}\right|$. As the switch power increases, asymmetry of H^{\prime} and L increases. Therefore, signal amplitude A also increase. These discussions about switch power are qualitatively same to those of input position in the subsection 4.1. Thus, a decrease in $\left(q^{\mathrm{i}}, q^{\mathrm{f}}\right)$ is equivalent to an increase in $r_{q-\mathrm{Ru}}$.

	py				bpy		
$\left(q^{\mathrm{i}}, q^{\mathrm{f}}\right)$	$(+0.1,-0.1)(+0.3,-0.3)(+0.5,-0.5)$	$(+0.1,-0.1)(+0.3,-0.3)(+0.5,-0.5)$					
$A_{u H L}$	0.011	0.032	0.053	0.012	0.037	0.061	
$C_{u H L}$	0.429	0.429	0.429	0.449	0.448	0.445	
$D_{H L}$	0.025	0.075	0.125	0.028	0.083	0.137	
$d_{H H^{\prime}} d_{L H^{\prime}}$	0.025	0.075	0.125	0.028	0.083	0.137	
$d_{H H^{\prime}}$	1.000	0.997	0.995	1.000	0.997	0.990	
$d_{L H^{\prime}}$	0.025	0.075	0.126	0.028	0.083	0.139	
$d_{L H^{\prime}} / A_{u H L}$	2.27	2.34	2.38	2.33	2.24	2.28	

Table 5. Absolute values of $A_{u H L}, C_{u H L}, D_{H L}, d_{H H^{\prime}} d_{L H^{\prime}}, d_{H H^{\prime}}, d_{L H^{\prime}}$, and $d_{L H^{\prime}} / A_{u H L}$ of U 2 .

4.3 Complex charge

The relation between complex charge and signal transmission behavior is discussed about Ru complexes. Complex charge $n+$ is set at $4+, 5+$, and $6+$. Electronic structures of complexes with $n+=4+, 6+$ charges were obtained by the single point calculations of the complex with the optimized geometry in $n+=5+$ charged state. Complex with $5+$ charge is open-shell systems, and those with $4+$ and $6+$ are closed-shell system. In the calculation, other parameters are fixed at $r_{q-\mathrm{Ru}}=10 \AA$ and $\left(q^{\mathrm{i}}, q^{\mathrm{f}}\right)=(+0.5,-0.5)$.

4.3.1 Ru-py and Ru-bpy complexes

Figure 10(a) shows time evolution of $Q_{1}(t)$ and $Q_{2}(t)$ of py complexes with $4+, 5+$, and $6+$ charges. Signal transmission time t_{st} is estimated as $0.3 \mathrm{fs}(4+)<1.2 \mathrm{fs}(5+)<1.5 \mathrm{fs}(6+)$ and values of signal amplitude A are estimated as $0.01 \mathrm{e}(6+)<0.02 \mathrm{e}(4+)<0.05 \mathrm{e}(5+)$. After the signal transmission, periodic behavior is repeated with a period (T) of $1.5 \mathrm{fs}(4+)<4.5 \mathrm{fs}$ $(5+)<5.7 \mathrm{fs}(6+)$. From the viewpoint of operation speed of QCA device, $4+$ complex is most useful. On the other hand, from the viewpoint of signal amplitude of QCA device, 5+ complex is most useful.
Figure 10(b) shows time evolution of $Q_{1}(t)$ and $Q_{2}(t)$ of bpy complexes. Signal transmission time $t_{\text {st }}$, signal amplitude A, and signal period T are estimated as $0.2 \mathrm{fs}(4+)<2.2 \mathrm{fs}(5+) \approx$

Fig. 10. Dependence of dynamic behavior on complex charge. Results of (a) py and (b) bpy complexes
$2.2 \mathrm{fs}(6+$), $0.01 \mathrm{e}(4+)<0.02 \mathrm{e}(6+)<0.06 \mathrm{e}(5+$), and $1.4 \mathrm{fs}(4+)<8.3 \mathrm{fs}(6+)<9.3 \mathrm{fs}(5+$), respectively. From the viewpoint of operation speed of QCA device, $4+$ complex is most useful. On the other hand, from the viewpoint of signal power of QCA device, $5+$ complex is most useful. This result is qualitatively same to the results of py complex.

4.3.2 Analysis from MOs

Figures 11 and 12 show frontier MOs and orbital energies of stationary states of py and bpy complexes before and after the switch of the input. Only HOMO and LUMO are shown here since other orbitals play almost no role in signal transmission (24). These MOs are almost same to the orbitals shown in Fig. 5. However, LUMO of 6+ complexes are different between initial and final stationary states for py and bpy complex.

Fig. 11. Frontier molecular orbitals and orbital energies of $\mathbf{p y}$ complex. (a) Initial stationary state ($\left|\psi^{\mathrm{i}}\right\rangle$) with $q=q^{\mathrm{i}}=+0.5$ and (b) final stationary state $\left(\left|\psi^{\mathrm{f}}\right\rangle\right)$ with $q=q^{\mathrm{f}}=-0.5$.

Fig. 12. Frontier molecular orbitals and orbital energies of bpy complex. (a) Initial stationary state $\left(\left|\psi^{\mathrm{i}}\right\rangle\right)$ with $q=q^{\mathrm{i}}=+0.5$ and (b) final stationary state $\left(\left|\psi^{\mathrm{f}}\right\rangle\right)$ with $q=q^{\mathrm{f}}=-0.5$.

In Table 6, two values of $T_{j j^{\prime}}$ are tabulated in order of $\left|A_{u j j^{\prime}}\right|$. Except for bpy complex with 4+ charge, $\left(j, j^{\prime}\right)=(H, L)$ term is dominant so that the transmission behavior is almost determined by H and L except for bpy complex with $4+$ charge. The $T_{j j^{\prime}}\left(\right.$ or $\left.\Delta \varepsilon_{j j^{\prime}}\right)$ with the largest $A_{u j j^{\prime}}$ mainly determines the period (T) of the time evolution of Figure 10. H-L energy gap $\left(\varepsilon_{H L}\right)$ of $4+$ complexes is very large so that signal period T is very short.

		Unit 1			Unit 2	
	$n+$	j, j^{\prime}	$A_{1 j j^{\prime}}$	$T_{i j}$	j, ${ }^{\prime}$	$A_{2 j j^{\prime}} T_{i j^{\prime}}$
py	4+	113,114	0.005	1.45	113,114	-0.004 1.35
		106,119	0.001	0.48	101, 117	0.0000 .45
		$112 \beta, 113 \beta$	0.052	4.47	$112 \beta, 113 \beta$	-0.053 4.47
		$112 \beta, 114 \beta$	0.001	1.47	109 $2,114 \alpha$	0.0020 .94
	6+	112,113	0.015	5.74	112,113	-0.015 5.74
		102,115	0.001	0.58	101, 116	-0.001 0.53
bpy	4+	133,134	0.003	1.36	130,134	-0.001 1.24
		124,143	0.002	0.47	133, 134	-0.001 1.36
	5+	$132 \beta, 133 \beta$	0.061	9.34	$132 \beta, 133 \beta$	-0.061 9.34
		114 $\alpha, 135 \alpha$	-0.001	0.44	131 $\alpha, 134 \alpha$	0.0010 .93
	6+	132,133	0.017	8.29	132,133	-0.017 8.29
		125,133	0.002	2.11	125,133	0.0022 .11

Table 6. Dependence of dynamics parameters, $\left|A_{u j j^{\prime}}\right|$ and $T_{j j^{\prime}}$, on complex charge.
Absolute values of $A_{u H L}, C_{u H L}$, and $D_{H L}$ are tabulated in Table 7. In previous sections, the values of $\left|A_{u H L}\right|$ were proportional to those of $\left|d_{L H^{\prime}}\right|$ since the values of $C_{u H L}$ were almost constant for all cases (24). In this section, however, the values of $\left|A_{u H L}\right|$ are not exactly proportional to those of $\left|d_{L H^{\prime}}\right|$ since the values of $C_{u H L}$ also depend on the number of occupied
orbitals. We can see that the order of $D_{H L}$ qualitatively corresponds to that of $d_{L H^{\prime}} .4+$ and $6+$ complexes have much smaller $d_{L H^{\prime}}$ than $5+$ complexes. This is because that $4+$ and $6+$ complexes have closed-shell electronic structures, therefore, input switch has little influence on the shapes of H^{\prime} and L. On the other hand, 5+ complexes have open-shell electronic structures, so that the molecular orbital is sensitive to the input charge. These results mean that mixed-valence complexes are suitable for QCA application.

	py			bpy		
$n+$	4+	5+	$6+$	4+	5+	6+
$A_{u H L}$	0.004	0.053	0.015	0.001	0.061	0.017
$\mathrm{C}_{u \mathrm{HL}}$	0.122	0.429	0.461	0.037	0.445	0.428
$D_{\text {HL }}$	0.029	0.125	0.033	0.023	0.137	0.039
$d_{H H^{\prime}} d_{L H^{\prime}}$	0.025	0.088	0.033	0.009	0.137	0.039
$d_{\text {H }{ }^{\prime}}$	0.926	0.996	0.999	0.497	0.990	0.999
$d_{L H^{\prime}}$	0.027	0.088	0.033	0.018	0.139	0.039

Table 7. Absolute values of $A_{u H L}, C_{u H L}, D_{H L}, d_{H H^{\prime}} d_{L H^{\prime}}, d_{H H^{\prime}}$, and $d_{L H^{\prime}}$ of U2

4.4 Kind of metals

The relation between metal atoms and signal transmission behavior is discussed. Metal is changed Fe, Ru, and Os. Complex charge and switch power are selected as $5+$ and $(+0.5,-0.5)$, respectively.

4.4.1 M-py and M-bpy complexes

Figure 13(a) shows time evolution of $Q_{1}(t)$ and $Q_{2}(t)$ of py complexes after the switch of the input from $q=+0.5$ to $q=-0.5$. Signal transmission time $t_{\text {st }}$ is estimated as $0.6 \mathrm{fs}(\mathrm{Fe})<0.7 \mathrm{fs}$ $(\mathrm{Os})<1.1 \mathrm{fs}(\mathrm{Ru})$. After the signal transmission, periodic behavior is repeated with a period (T) of $2.0 \mathrm{fs}(\mathrm{Fe})<2.5 \mathrm{fs}(\mathrm{Os})<4.5 \mathrm{fs}(\mathrm{Ru})$. From the Figures, values of signal amplitude A are estimated as $0.05 \mathrm{e}(\mathrm{Fe})<0.06 \mathrm{e}(\mathrm{Os})<0.10 \mathrm{e}(\mathrm{Ru})$. All t_{st}, T, and A are dependent on the kind of metal. From the viewpoint of operation speed of QCA device, Fe complex is most useful. On the other hand, from the viewpoint of signal power of QCA device, Ru complex is most useful.
Figure 13(b) shows time-evolution of $Q_{1}(t)$ and $Q_{2}(t)$ of bpy complexes. Signal transmission time $t_{\text {st }}$ is estimated as $1.4 \mathrm{fs}(\mathrm{Fe})<1.7 \mathrm{fs}(\mathrm{Os})<2.5 \mathrm{fs}(\mathrm{Ru})$. After the signal transmission, periodic behavior is repeated with a period (T) of $5.2 \mathrm{fs}(\mathrm{Fe})<6.3 \mathrm{fs}(\mathrm{Os})<9.3 \mathrm{fs}(\mathrm{Ru})$. These values of T are almost twice as large as those of py complexes, and are valid considering the difference in molecular size between py and bpy bridging ligands. The values of A are estimated as $0.11 \mathrm{e}(\mathrm{Os})<0.12 \mathrm{e}(\mathrm{Ru})<0.13 \mathrm{e}(\mathrm{Fe})$. From the viewpoints of both operation speed and signal power of QCA device, Fe complex shows good result.

4.4.2 Analysis from MO

Figures 14 and 15 show frontier MOs and orbital energies of stationary states of py and bpy complexes before (a) and after (b) the switch of the input. Only HOMO and LUMO with β spin are shown here since other orbitals play almost no role in signal transmission (24). These MOs are mainly constructed from π^{*} orbital of BL and $d_{y z}$ orbital of M atom. HOMOs have larger distribution on U 1 when $q=+0.5$ e due to the Coulombic attraction. On the other hand, when $q=-0.5 \mathrm{e}, \mathrm{HOMOs}$ have smaller distribution on U1 due to the Coulombic repulsion.

Fig. 13. Dependence of dynamic behavior on metal atoms. Results of (a) py and (b) bpy complexes.

In Table 8, the largest $\left|A_{u j j^{\prime}}\right|$ and corresponding value of $T_{j j^{\prime}}$ are tabulated. For all complexes, $\left(j, j^{\prime}\right)=(H, L)$ term is dominant so that the transmission behavior is almost determined by H and L. The $T_{j j^{\prime}}$ (or $\Delta \varepsilon_{j j^{\prime}}$) with the largest $A_{u j j^{\prime}}$ mainly determine the period (T) of the time evolution of Figure 13. Orbital energies $\varepsilon_{j}^{\mathrm{f}}$ are influenced by the strength of electric field originated from the input, but energy gaps $\Delta \varepsilon_{j j^{\prime}}$ between frontier MOs are almost determined by the interaction between metal atoms, bridging ligand, and ligands. Difference in the kind of metal atoms results in the difference in this interaction $\left(\Delta \varepsilon_{j j^{\prime}}\right.$ and $\left.T_{j j^{\prime}}\right)$.
Absolute values of $A_{u H L}, C_{u H L}$, and $D_{H L}$ are tabulated in Table 9. We can see that the order of $D_{H L}$ qualitatively correspond to that of $A_{u H L}$. Therefore, the analysis of $D_{H L}$ is necessary for understanding the values of $A_{u H L} . d_{H H^{\prime}} d_{L H^{\prime}}$ term among all $d_{H n} d_{L n}$ terms has the dominant contribution to $D_{H L}$. Additionally, although the values of $d_{H H^{\prime}}$ are almost an unit $\left(0.980<d_{H H^{\prime}}<0.996\right)$ for all complexes, $d_{L H^{\prime}}$ is strongly dependent on the kind of metal. Consequently, we can qualitatively discuss the values of $\left|A_{u H L}\right|$ from that of $\left|d_{L H^{\prime}}\right| . H^{\prime}$ and L have been already shown in Figures 14 and 15. The values of $\left|A_{u H L}\right|$ are not exactly proportional to those of $\left|d_{L H^{\prime}}\right|$ since the values of $C_{u H L}$ also depend on the kind of metal atoms. In all complexes, larger distribution of H^{\prime} is located on U1 (left-hand side). Similarly,
(a) Initial State
(b) Final State

Fig. 14. Frontier molecular orbitals and orbital energies of py complex. (a) Initial stationary state $\left(\left|\psi^{\mathrm{i}}\right\rangle\right)$ with $q=q^{\mathrm{i}}=+0.5$ and (b) final stationary state $\left(\left|\psi^{\mathrm{f}}\right\rangle\right)$ with $q=q^{\mathrm{f}}=-0.5$.
(a) Initial State
(b) Final State

Fig. 15. Frontier molecular orbitals and orbital energies of bpy complex. (a) Initial stationary state $\left(\left|\psi^{\mathrm{i}}\right\rangle\right)$ with $q=q^{\mathrm{i}}=+0.5$ and (b) final stationary state $\left(\left|\psi^{\mathrm{f}}\right\rangle\right)$ with $q=q^{\mathrm{f}}=-0.5$.
larger distribution of L is on U1. For all complexes, $\psi_{L}^{\mathrm{f}} \psi_{H^{\prime}}^{\mathrm{i}}$ has larger distribution on U1 than on U2, so that the overlap integral $d_{L H^{\prime}}=\left\langle\psi_{L}^{\mathrm{f}} \mid \psi_{H^{\prime}}^{\mathrm{i}}\right\rangle$ has non-zero value in total.
About py complexes, H^{\prime} and L of Ru complex have large distribution on the Ru metal but those of Fe complex have small distribution on the Fe metal from Figure 7. Therefore,

M		Unit 1				nit 2	
		j, j^{\prime}		$T_{i j j^{\prime}}$	j, j^{\prime}	$A_{2 j j^{\prime}}$	
	Fe	94 $\beta, 95 \beta$	0.021	2.00	94 $\beta, 95 \beta$	-0.026	2.00
		$112 \beta, 113 \beta$	0.052		$112 \beta, 113 \beta$	-0.053	4.47
	Os	84 $\beta, 85 \beta$	0.031		84 $\beta, 85 \beta$	-0.033	2.48
bpy	Fe	$114 \beta, 115 \beta$	0.065	5.15	$114 \beta, 115 \beta$	-0.071	5.15
		$132 \beta, 133 \beta$	0.061	9.34	$132 \beta, 133 \beta$	-0.061	9.34
		$104 \beta, 105 \beta$	0.056	6.26	$104 \beta, 105 \beta$	-0.057	6.26

Table 8. Dependence of dynamics parameters, $\left|A_{u j j^{\prime}}\right|$ and $T_{j j^{\prime}}$, on kind of metals.

M	py			bpy		
	Fe	Ru	Os	Fe	Ru	Os
$A_{u H L}$	0.026	0.053	0.033	0.071	0.061	0.057
$\mathrm{C}_{u \mathrm{HL}}$	0.295	0.429	0.352	0.372	0.445	0.401
$D_{\text {HL }}$	0.088	0.125	0.093	0.192	0.137	0.141
$\overline{d_{H H^{\prime}} d_{L H^{\prime}}}$	0.088	0.125	0.093	0.192	0.137	0.141
$d_{\text {HH }}{ }^{\prime}$	0.996	0.992	0.996	0.980	0.990	0.990
$d_{L H^{\prime}}$	0.088	0.126	0.094	0.195	0.139	0.143

Table 9. Absolute values of $A_{u H L}, C_{u H L}, D_{H L}, d_{H H^{\prime}} d_{L H^{\prime}}, d_{H H^{\prime}}$, and $d_{L H^{\prime}}$ of U2.
the distribution of frontier orbitals of Ru complexes is strongly influenced by the switch of the input. Consequently, strongly deformed H^{\prime} and L give large $d_{L H^{\prime}}$ and A. About bpy complexes, simple interpretation like py complexes are a little difficult because the difference in MO coefficients between metals of by complexes is smaller than that of $\mathbf{p y}$ complexes. All complexes with bpy BL have small coefficients on BL and MOs distribute mainly on the metal atoms. Thus, signal amplitude A of bpy complexes is larger than that of py complexes and the difference in A between bpy complexes is small.

5. Summary

With a view to analysing the dynamic behavior of molecular QCA device and designing molecular QCA candidate, a new theoretical approach from frontier molecular orbitals are discussed. From the detailed analysis of the dynamic behavior based on MOs and orbital energies, the following three general points were found:

- Signal amplitude (A) through the complexes strongly depends on $\left(q^{i}, q^{\mathrm{f}}\right)$ and $r_{q-\mathrm{M}}$, and its magnitude is explained from the asymmetry of MOs due to the input charge and the overlap between MOs.
- Signal period (T) is independent of $\left(q^{i}, q^{\mathrm{f}}\right)$ and $r_{q-\mathrm{M}}$ because T is determined from energy gaps between MOs ($\Delta \varepsilon$) which is independent of $\left(q^{i}, q^{\mathrm{f}}\right)$ and $r_{q-\mathrm{M}}$.
- Signal transmission time $\left(t_{\mathrm{st}}\right)$ is determined depending on the balance of A and T.

For dinuclear complexes discussed in this Chapter, discussions mainly about $d_{L H^{\prime}}$ and $\Delta \varepsilon_{H L}$ are valid except for only one system, bpy complex with $4+$ charge. These results could be useful guidelines for molecular design of molecular QCA candidates. Generally, Class III
complexes with large A (large overlap) and small T (large $\Delta \varepsilon$) tend to give small $t_{\text {st }}$, and could be good molecular QCA candidates.
This analysis method was applied to many varieties of QCA pattern, input position, switch power, complex charge, and kind of metals, and we found that

- bpy complexes generally have stronger signal amplitude (A), but waste longer time $\left(t_{\mathrm{st}}\right)$ for signal transmission than py complexes
- Strong switch power $\left(q^{\mathrm{i}}, q^{\mathrm{f}}\right)$ results in the large signal amplitude (A). Change in switch power corresponds to the change in input position $\left(r_{q-\mathrm{M}}\right)$.
- MOs of mixed-valence complexes $(n=5)$ are sensitive to the change in input charge q. Thus, these complexes are suitable for molecular QCA from the viewpoint of signal amplitude (A).
- Large MO coefficient on metal atoms leads to the large A since shapes of such MOs are greatly influenced by the switch.
Lastly, it should be noted that these method can be easily applied to the reverse switch (24). Results by HF method can be discussed similarly, but signal transmission is difficult to occur since HF method tends to overestimate the electron localization.

6. Acknowledgements

Theoretical research shown in this Chapter was supported by the Joint Studies Program (2010) of the Institute for Molecular Science (IMS). The author would like to thank Dr. Hiroshi Kawabata of Hiroshima University for helpful comments to this chapter. Theoretical calculations were mainly carried out using the computer facilities at Research Center for Computational Science (Okazaki, Japan) and Research Institute for Information Technology, Kyushu University (Fukuoka, Japan).

7. References

[1] Zhirnov, V.V.; Hutchby, J.A.; Bourianoff, G.I.; Brewer, J.E. Emerging research logic devices. An assessment of new field-effect transistor, resonant tunnel device, single-electron transistor, and quantum cellular automata technologies. IEEE Circ. Dev. Mag. 2005, 21, 37-46.
[2] Lent, C.S.; Tougaw, P.D.; Porod, W.; Bernstein, G.H. Quantum cellular automata. Nanotechnology 1993, 4, 49-57.
[3] Orlov, A.O.; Amlani, I.; Berstein, G.H.; Lent, C.S.; Snider, G.L. Realization of a functional cell for quantum-dot cellular automata. Science 1997, 277, 928-930.
[4] Amlani, I.; Orlov, A.O.; Toth, G.; Berstein, G.H.; Lent, C.S.; Snider, G.L. Digital logic gate using quantum-dot cellular automata. Science 1999, 284, 289-291.
[5] Lent, C.S. Molecular electronics: Bypassing the transistor paradigm. Science 2000, 288, 1597-1599.
[6] Lau, V.C.; Berben, L.A.; Long, J.R. $\left[(C y c l e n)_{4} \mathrm{Ru}_{4}(\mathrm{pz})_{4}\right]^{9+}$: A Creutz-Taube square. J. Am. Chem. Soc. 2002, 124, 9042-9043.
[7] Yao, H.; Sabat, M.; Grimes, R.N.; de Biani, F.F.; Zanello, P. Metallacarborane-based nanostructures: A carbon-wired planar cctagon. Angew. Chem. Int. Ed. 2003, 42, 1002-1005.
[8] Jiao, J.; Long, G.J.; Grandjean, F.; Beatty, A.M.; Fehlner, T.P. Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. J. Am. Chem. Soc. 2003, 125, 7522-7523.
[9] Jiao, J.; Long, G.J.; Rebbouh, L.; Grandjean, F.; Beatty, A.M.; Fehlner, T.P. Properties of a mixed-valence $(\mathrm{Fe}(\mathrm{II}))_{2}(\mathrm{Fe}(\mathrm{III}))_{2}$ square cell for utilization in the quantum cellular automata paradigm for molecular electronics. J. Am. Chem. Soc. 2005, 127, 17819-17831.
[10] Berben, L.A.; Faia, M.C.; Crawford, N.R.M.; Long, J.R. Angle dependent electronic effects in 4,4-bipyridine-bridged Ru_{3} triangle and Ru_{4} square complexes. Inorg. Chem. 2006, 45, 6378-6386.
[11] Qi, H.; Sharma, S.; Li, Z.; Snider, G.L.; Orlov, A.O.; Lent, C.; Fehlner, T.P. Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 2003, 125, 15250-15259.
[12] Qi, H.; Gupta, A.; Noll, B.C.; Snider, G.L.; Lu, Y.; Lent, C.; Fehlner, T.P. Dependence of field switched ordered arrays of dinuclear mixed-valence complexes on the distance between the redox centers and the size of the counterions. J. Am. Chem. Soc. 2005, 127, 15218-15227.
[13] Wei, Z.; Guo, S.; Kandel, S.A. Observation of single dinuclear metal-complex molecules using scanning tunneling microscopy. J. Phys. Chem. B 2006, 110, 21846-21849.
[14] Manimaran, M.; Snider, G.L.; Lent, C.S.; Sarveswaran, V.; Lieberman, M.; Li, Z.; Fehlner, T.P. Scanning tunneling microscopy and spectroscopy investigations of QCA molecules. Ultramicroscopy 2003, 97, 55-63.
[15] Lu, Y.; Quardokus, R.; Lent, C.S.; Justaud, F.; Lapinte, C.; Kandel, S.A. Charge Localization in Isolated Mixed-Valence Complexes: An STM and Theoretical Study. J. Am. Chem. Soc. 2010, 132, 13519-13524
[16] Guo, S.; Kandel, S.A. Scanning Tunneling Microscopy of Mixed Valence Dinuclear Organometallic Cations and Counterions on $\mathrm{Au}(111)$. J. Chem. Phys. Lett. 2010, 1, 420-424.
[17] Braun-Sand, S.B.; Wiest, O. Theoretical studies of mixed-valence transition metal complexes for molecular computing. J. Phys. Chem. A 2003, 107, 285-291.
[18] Braun-Sand, S.B.; Wiest, O. Biasing mixed-valence transition metal complexes in search of bistable complexes for molecular computing. J. Phys. Chem. B 2003, 107, 9624-9628.
[19] Lent, C.S.; Isaksen, B.; Lieberman, M. Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 2003, 125, 1056-1063.
[20] Lent, C.S.; Isaksen, B. Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 2003, 50, 1890-1896.
[21] Lu, Y.; Lent, C.S. Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 2005, 4, 115-118.
[22] Timler, J.; Lent, C.S. Maxwell's demon and quantum-dot cellular automata. J. Appl. Phys. 2003, 94, 1050-1060.
[23] Lu, Y.; Liu, M.; Lent, C. Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics. J. Appl. Phys. 2007, 102, 034311-1-6.
[24] Tokunaga, K. Signal transmission through molecular quantum-dot cellular automata: A theoretical study on Creutz-Taube complexes for molecular computing. Phys. Chem. Chem. Phys. 2009, 11, 1474-1483.
[25] Remacle, F.; Levine, R.D. The time scale for electronic reorganization upon sudden ionization of the water and water-methanol hydrogen bonded dimers and of the weakly bound NO dimer. J. Chem. Phys. 2006, 125, 133321-1-7.
[26] Remacle, F.; Levine, R.D. Time-resolved electrochemical spectroscopy of charge migration in molecular wires: computational evidence for rich electron dynamics. J. Phys. Chem. C 2007, 111, 2301-2309.
[27] Tokunaga, K. Metal dependence of signal transmission through molecular quantum-dot cellular automata (QCA): A theoretical study on Fe, Ru, and Os mixed-valence complexes. Materials 2010, 3, 4277-4290.
[28] Mulliken, R.S. Electronic population analysis on LCAO-MO molecular wave function, I. J. Chem. Phys. 1955, 23, 1833-1840.
[29] Creutz, C.; Taube, H. Binuclear complexes of ruthenium ammines. J. Am. Chem. Soc. 1973, 95, 1086-1094.
[30] Tom, G.M.; Creutz, C.; Taube, H. Mixed valence complexes of ruthenium ammines with 4,4'-bipyridine as bridging ligand. J. Am. Chem. Soc. 1974, 96, 7827-7829.
[31] At the moment of the switch, $h^{\mathrm{f}}(0)$ is not exactly equal to h^{f} of Equation 2 because one-electron Hamiltonian itself depends on $\left|\psi_{n}\right\rangle$. After the switch, $h^{\mathrm{f}}(t)$ gradually approaches h^{f}.
[32] Szabo, A.; Ostlund, N.S. (1982) Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Macmillan (New York).
[33] The $e^{i \Delta \varepsilon_{i j \prime} t}$ term gives not only cosine term but also sine term. The sine term is neglected in this work because imaginary charge represented by the term has no physical meaning.
[34] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, Jr., J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian 03, Revision C.02. Wallingford CT, 2004.
[35] Hardesty, J.; Goh, S.K.; Marynick, D.S. A comparative DFT-MP2 study of the Creutz-Taube ion and related systems. J. Mol. Struct. (Theochem) 2002, 588, 223-226.
[36] Zhange, L.-T.; Ko, J.; Ondrechen, M.J. Electronic structure of the Creutz-Taube ion. J. Am. Chem. Soc. 1987, 109, 1666-1671.
[37] Sizova, O.V.; Panin, A.I.; Ivanova, N.V.; Baranovskii, V.I. Electronic structure, spectrum, and intramolecular electron transfer model of $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Ru}-\left(4,4^{\prime} \text {-bipy }\right)-\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+}$. J. Struct. Chem. 1997, 38, 366-374.
[38] Bencini, A.; Ciofini, I.; Daul, C.A.; Ferretti, A. Ground and excited state properties and vibronic coupling analysis of the Creutz-Taube ion, $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Ru} \text {-pyrazine- } \mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right)^{5+}$, using DFT. J. Am. Chem. Soc. 1999, 121, 11418-11424.
[39] Broo, A; Larsson, S. Ab initio and semi-empirical studies of electron transfer and spectra of binuclear complexes with organic bridges. Chem. Phys. 1992, 161, 363-378.
[40] Robin, M.B.; Day, P. Mixed valence chemistry - A survey and classification. Adv. Inorg. Chem. Radiochem. 1967, 10, 247-422.
[41] Creutz, C. Mixed valence complexes of d5-d6 metal centers. Prog. Inorg. Chem. 1983, 30, 1-73.
[42] Beattie, J.K.; Hush, N.S.; Taylor, P.R.; Raston, C.L.; White, A.H. Crystal structure of μ-pyrazine-bis(penta-ammineruthenium) penta-(bromide chloride)-water ($1 / 4$). J. Chem. Soc., Dalton Trans. 1977, 1121-1124.
[43] Fürholz, U.; Fürgi, H-.B.; Wagner, F.E.; Stebler, A.; Ammeter, J.H.; Krausz, E.; Clark, R.J.H.; Stead, M.J.; Ludi, A. The Creutz-Taube complex revisited. J. Am. Chem. Soc. 1984, 106, 121-123.

Cellular Automata－Innovative Modelling for Science and Engineering

Edited by Dr．Alejandro Salcido

ISBN 978－953－307－172－5
Hard cover， 426 pages
Publisher InTech
Published online 11，April， 2011
Published in print edition April， 2011

Modelling and simulation are disciplines of major importance for science and engineering．There is no science without models，and simulation has nowadays become a very useful tool，sometimes unavoidable，for development of both science and engineering．The main attractive feature of cellular automata is that，in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation，as a detailed and complete mathematical analysis in principle，they are able to exhibit a wide variety of amazingly complex behaviour．This feature of cellular automata has attracted the researchers＇attention from a wide variety of divergent fields of the exact disciplines of science and engineering，but also of the social sciences，and sometimes beyond．The collective complex behaviour of numerous systems，which emerge from the interaction of a multitude of simple individuals，is being conveniently modelled and simulated with cellular automata for very different purposes．In this book，a number of innovative applications of cellular automata models in the fields of Quantum Computing，Materials Science，Cryptography and Coding，and Robotics and Image Processing are presented．

How to reference

In order to correctly reference this scholarly work，feel free to copy and paste the following：

Ken Tokunaga（2011）．Quantum－Chemical Design of Molecular Quantum－Dot Cellular Automata（QCA）：A New Approach from Frontier Molecular Orbitals，Cellular Automata－Innovative Modelling for Science and Engineering，Dr．Alejandro Salcido（Ed．），ISBN：978－953－307－172－5，InTech，Available from： http：／／www．intechopen．com／books／cellular－automata－innovative－modelling－for－science－and－ engineering／quantum－chemical－design－of－molecular－quantum－dot－cellular－automata－qca－a－new－approach－ from－frontier－

INTECH

open science｜open minds

InTech Europe

University Campus STeP Ri
Slavka Krautzeka 83／A
51000 Rijeka，Croatia
Phone：＋385（51） 770447
Fax：＋385（51） 686166
www．intechopen．com

InTech China

Unit 405，Office Block，Hotel Equatorial Shanghai
No．65，Yan An Road（West），Shanghai，200040，China
中国上海市延安西路65号上海国际贵都大饭店办公楼405单元
Phone：＋86－21－62489820
Fax：＋86－21－62489821
© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use, distribution and reproduction for non-commercial purposes, provided the original is properly cited and derivative works building on this content are distributed under the same license.

