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1. Introduction

Sensor and Information fusion is recently a major topic, not only in traffic management,
military, avionics, robotics, image processing, and e. g. medical applications, but becomes
more and more important in machine diagnosis and conditioning for complex production
machines and process engineering. Several approaches for multi-sensor systems exist in the
literature, cf. (Hall & Llinas, 2001); (Bossé et al., 2007).
The diagnosis and flaw detection in machines and process plants is a complex task,
which is dependent on many effects. In the past decades, autonomous and automatic
systems have become ubiquitous in our daily life. As famous examples, one may cite
advanced driver-assistance systems in vehicles, quality monitoring in production processes,
or semi-autonomous unmanned aircraft systems in military forces. All these systems have
the common feature that they (partially) capture the state of the environment and generate
fused information based on the data gained. More technically, the analogous environment is
captured applying several sources (sensors, experts, etc.). After obtaining these analogous
signals and experts’ information, they are preprocessed and transformed into the digital
domain, so that they can be processed on computers. In many cases the information captured
from the environment may be imprecise, incomplete or inconsistent. Furthermore, signal
sources may be not reliable. Therefore, it is necessary to extend known fusion concepts
insofar that they are able to handle and to measure imprecision and reliability. In this chapter
we will highlight, to our best knowledge, a new human-centric based fusion framework.
Additionally, an application of the fusion method is shown for printing machines in the area
of quality inspection and machine conditioning. The goal is the early recognition of errors
in machines in order to avoid flaws by combining measuring data from several sensors with
expert knowledge for the improvement of quality by

• using several information sources,

• integrating expert knowledge and perception,

• extracting reasonable features, and

• generating intuitive results.
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This chapter investigates context-based anticipatoric multi-sensor fusion (CBAMSF) using
evidence-based theories. A new algorithmic concept which considers a sensor’s imprecision
and process vagueness is presented and compared with other Fuzzy and Evidence based
algorithms. In particular, the algorithm is inspired by the human behaviour in group-decision
situations. This behaviour enables the algorithm to discount defective sensors. The
performance of the novel fusion algorithm is evaluated with reference to real-life applications.
In this context, the conditions of an intaglio printing machine (banknote printing machine) are
monitored whilst the machine is producing security prints.
The sections are organised as follows: After a short introduction aleatoric (statistical)
uncertainty versus epistemic (subjective, human-oriented) uncertainty is defined and
explained. Furthermore, uncertainty in diagnosis of technical systems is highlighted.
Thereafter, the concept of evidence theories is pointed-out in a short review—namely:
Probability Theory, Belief (Dempster-Shafer) Theory, Fuzzy Set Theory and Possibility Theory. In the
next sub-section we describe fusion algorithms which are based on human decision processes
(Two-Layer Conflict Solving). From these concepts we derive a possibilistic framework for
sensor fusion with reliability strategies. The following sub-section describes and compares a
certain application. The succeeding section concludes the chapter and gives an outlook on
further research topics.

2. Taxonomy of uncertainty

In today’s production world we are able to generate a huge amount of data from analogue
or digital sensors, PLCs, middleware components, control PCs, and, if necessary, from ERP
systems. However, creating reliable knowledge about a machine process is a challenge
because it is a known fact that Data �= Information �= Knowledge.
Insofar, a fusion process must create a low amount of data which creates reliable knowledge.
Usually the main problems in sensor fusion can be described as follows: Too much data,
poor models, bad or too many features, and improperly analysed applications. One
major mis-belief is that machine diagnosis can only be handled based on the generated
data—knowledge about the technical, physical, chemical or other processes are indispensable
for modelling a multi-sensor system.

2.1 Knowledge and ignorance

Specialists in Engineering and Computer Science world accentuate the value of data,
assuming that all necessary information about behaviour of a system, etc. is sufficiently
contained in the data. Insofar, it is believed that information is an equivalent for knowledge.
Therefore, human beings tend intentionally or unintentionally to sweep aside uncertainty in
information or ignorance about a state of affairs of a (technical) system. In this sense, we
overestimate the amount of information in data which is usable. Following these explanations,
it is straightforward to cite Stephen Hawking: “The greatest enemy of knowledge is not ignorance,
it is the illusion of knowledge”. The human knowledge and ignorance behaviour is described
in Fig. 1. Referring to (Ayyub & Klir, 2006), the evolutionary certain knowledge (ECK)
about a system or state of affairs can intrinsically not be interfered or camouflaged due to its
evolutionary nature of this kind of knowledge. The current state of reliable knowledge (RK)
has to be interpreted as trained knowledge under the general condition of provable know-how
within well-grounded reliability levels, cf. Eq. (1).
The intersection of ECK and RK defines the human knowledge base of certain claims
and propositions (CCK). It is assumed that this kind of knowledge withstands any
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Fig. 1. Human evolutionary and trained knowledge. (Ayyub & Klir, 2006)

paradigm change or temporal opinion shifts. It can be formulated as:

CCK = ECK ∩ RK. (1)

Referring to Fig. 1, two types of ignorance can be distinguished: i) ignorance within the RK
circle, based on irrelevance, etc.; and ii) ignorance outside RK, based on unknowns, missing
know-how, etc. An expert (Expert A in Fig. 1), equipped with some know-how about a
system or state of affairs, pictured with ellipses in Fig. 1, can be represented in three ways;
1) equipped with trained, created, or captured knowledge as a subset of ECK; 2) equipped
with self-perceived knowledge by the expert; and 3) equipped with perception by others of
the expert’s knowledge. As (Ayyub & Klir, 2006) pointed out, the ECK of an expert may be
smaller than the self-perceived knowledge, and therefore, the difference of the two types can
be interpreted as a measure of overconfidence. Furthermore, an ellipse can also extend beyond
the RK base as a result of creativity and imagination. The difference between the expert’s
knowledge and the ignorance space outside CCK can be interpreted as a human intuition
process (creative process). It is unquestionable, that other experts will have other individual
ellipses which may or may not overlap each other. If the ellipses of two or more experts do
not overlap, based on a conjoint topic, a conflict situation may occur. Usually two types of
ignorance can be identified: i) blind ignorance with its sub-categories unknowable, irrelevance,
and fallacy (camouflage); ii) conscious ignorance with its sub-categories inconsistency (confusion,
conflict, inaccuracy) and incompleteness (absence, unknowns, uncertainty).
In technical systems the latter ones are of main interest. Inconsistency occurs mainly in the
case of inaccurate measurements and conflict-afflicted sensor information. Incompleteness
of information, in the sense of uncertainty, causes in most instances problems in system
modelling. Uncertainty is defined as intrinsic absence of necessary knowledge. In many cases,
as, e. g. in complex systems, it is usually impossible to acquire all necessary information
to create certain knowledge. Therefore, major attention should be given to this type of
ignorance. As it was stated in (Klir & Wierman, 1998) uncertainty can rarely be avoided,
when dealing with real-word problems. At sensory and pre-processing level, uncertainty is an
inseparable companion of any measurement, resulting from measurement errors, stochastic
effects, such as noise and resolution limits in terms of sampling and quantisation (Lohweg &
Mönks, 2010a). At knowledge level (cognitive level), we are conditioned by vagueness and
ambiguities in the description of processes or natural languages.

193A Possibilistic Framework for Sensor Fusion with Monitoring of Sensor Reliability

www.intechopen.com



4 Will-be-set-by-IN-TECH

The concept of uncertainty was and is philosophically widely discussed in the community of
Bayesian and Probability advocates.
Bayesians argue that it is invariably feasible to design a probability model for any on random
variables based technical task. This argumentation is questionable in a sense that it does not
fulfil a real-world scenario in all cases. Usually at least two kinds of uncertainty species have
to be taken into account: i) the aleatoric uncertainty (random effects, signal noise, etc.); and ii)
the epistemic uncertainty (lack of knowledge or incomplete knowledge regarding a complex
system, etc.), cf. (Hacking, 1975).
The latter one is challenging in problem solving, because the unknown knowledge has to
be modelled in different ways, other than probability based concepts. This argumentation
leads to Shafer (Shafer, 1976), Zadeh (Zadeh, 2008) and others, who stated that the lack
of knowledge is precisely reflected by the situation where the probability of events is
ill-known or expert’s knowledge is necessary. Furthermore, recently Salicone has presented
a possibilistic approach to handle measurement uncertainty in electrical engineering
applications (Salicone, 2007).

2.1.1 Aleatoric uncertainty

If data is complete and intrinsically non-deterministic in nature, it can be assumed as random
(stochastic). The uncertainty is attributed to real-world phenomena and it can not be reduced
or even eliminated by expanding an underlying knowledge base. Probabilistic approaches,
such as classical Probability Theory (frequentist) and Bayesian Probability Theory are an
effective way to model stochastic uncertainties, like measurement noise, etc., cf. (Ayyub &
Klir, 2006). This type of uncertainty is referred to as aleatoric uncertainty (cf. Table 1).

2.1.2 Epistemic uncertainty

In many situations we lack information, that is, not all intrinsically necessary knowledge
is available at state. In this case, the uncertainty range should be reduced by expanding
the underlying knowledge base. When data is scarce the probabilistic approach may not
be appropriate to reduce the system’s uncertainty. Major types of this uncertainty are
inconsistent and incomplete data as well as inconsistent information or knowledge. In many
cases this uncertainty can be reduced by multi-sensory fusion and expert’s knowledge, cf.
(Ayyub & Klir, 2006). This type of uncertainty is referred to as epistemic uncertainty (cf. table
1).

Aleatoric Uncertainty Epistemic Uncertainty

Type irreducible reducible

Data random, stochastic scarce

Origin intrinsic variations in data inconsistent & incomplete data, lack of knowledge

Model Probability Theory Evidence and Fuzzy Theories

Table 1. Classification of aleatoric and epistemic uncertainty.

3. Basics on Evidence Theory

The Evidence Theory was introduced by Glenn Shafer in the 1970s, summarised and
condensed in the book A Mathematical Theory of Evidence in 1976 (Shafer, 1976). He extended
the seminal work of Arthur P. Dempster from the 1960s about upper and lower bounds of
probability measures (Dempster, 1967). Today many quantitative approaches are available to
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model uncertainty and knowledge processing in the light of sensor and information fusion. It
is an interesting fact that many approaches have a common theoretical base.

Fig. 2. Theories embedded in evidence theory.

Dempster-Shafer Theory (sometimes called Belief Theory) serves as an interconnection between
many quantitative approaches, namely: Probability Theory, Possibility Theory, Fuzzy Theory,
and others. The above mentioned theories are (partly) special branches of the Evidence Theory
(Dempster-Shafer Theory). Fig. 2 illustrates symbolically the interconnection of different
approaches insofar they are needed in this chapter.

3.1 Dempster-Shafer (Belief) Theory

Data fusion deals with data which is received from sensors, experts or human linguistic
words, etc. Furthermore, much of such knowledge is cognitive and imprecise (incomplete) to
some degree. To deal with uncertain knowledge, various strategies based on Dempster-Shafer
Theory (DST) (Dempster, 1967), (Shafer, 1976), are researched and applied, because DST is
capable of managing uncertainty due to its framework. DST acts as the pioneer in data
fusion algorithms, which was proposed by Dempster and extended by Shafer subsequently.
Serving as a seminal fusion approach, DST stirs up many discussions and studies in data
fusion. DST is a mathematical theory of evidence, which combines independent sources of
information (Dempster, 1967), (Shafer, 1976). With combination of evidence sources obtained
from sensors (experts), more reliable and convincing fusion results are expected. First a finite
frame of discernment, which forms a set Θ, is defined, Θ = {θ1, θ2, ..., θn}, with an arbitrary
event variable (proposition, hypothesis) θi, i ∈ N. A power set, P(Θ) = 2Θ, includes
all the possible combinations of propositions θi. Propositions are regarded to be mutually
exclusive and exhaustive. Thus, the power set contains 2n elements. As an example, assume the
following: Θ = {A, B} → P(Θ) = {∅, A, B, Θ}.
A function m : 2Θ → [0, 1] is called a mass function, also known as Basic Probability (Belief)
Assignment (BPA, BBA) of an event, e. g. A, with

m(∅) = 0, ∑
A⊆P(Θ)

m(A) = 1. (2)

195A Possibilistic Framework for Sensor Fusion with Monitoring of Sensor Reliability
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If there is no element in the BBA, then its mass is zero. On the other hand, as P(Θ) is a power
set composed of all the subsets, the sum of all the masses must be equal to one. Furthermore,
the focal element (mass is larger than zero) is defined as:

{(A, m(A))|A ⊆ Θ and m(A) > 0}. (3)

A belief function, Bel(·): 2Θ → [0, 1], satisfies the following three axioms (cf. Eq. (4) - Eq. (6)):

• Axiom 1:
Bel(∅) = 0. (4)

• Axiom 2:
Bel(Θ) = 1. (5)

• Axiom 3:
Bel(A ∪ B) ≥ Bel(A) + Bel(B) if A ∩ B = ∅. (6)

Contrary to the probability theory, the belief measure is super-additive. That is, the belief of the
union of two propositions may be larger than the addition of the two belief measures of each
proposition A and B.
Belief (Bel) and plausibility function (Pl), Pl(·): 2Θ → [0, 1], are essential concepts in DST,
which are used in decision-making. Plausibility has to be interpreted as the dual function of
the belief.

Bel(A) = ∑
B⊆A

m(B) and Pl(A) = 1 − Bel(Ac), (7)

where Ac is the complement of proposition A.
In DST, Bel(A) has to be interpreted after Shafer (Shafer, 1976) as “a person’s (sensor information)
degree of belief that the truth lies in A”, whereas Pl(A) can be considered as a measure of
maximum support for a proposition A under the constraint of disbelief in A. Thus, Bel(A)
is the total belief mapped to A; Pl(A) is the total mass assignment, which can move into A,
and m(A) is the basic belief assignment, which is exclusively dedicated to A. Furthermore,
plausibility can be derived as follows:

Pl(A) = 1 − Bel(Ac) = 1 − ∑
B⊆Ac

m(B) = ∑
B⊆P(Θ)

m(B)− ∑
B⊆Ac

m(B) = ∑
B∩A �=∅

m(B). (8)

From Eq. (7) the following can be directly derived:

Bel(Ac) + Pl(A) = 1 and Bel(A) + Pl(Ac) = 1. (9)

Bel(·) is, in an early interpretation, called lower bound probability, while Pl(·) is the upper
bound probability, for the reason that Bel(·) is the “must-be”-probability and on the other
hand Pl(·) is the “might-be”-probability. Therefore, Pl(·) includes more mass than Bel(·), which
is illustrated with

Bel(A) ≤ Pl(A). (10)

The Ignorance Igr(A) can be interpreted as

Igr(A) = Pl(A)− Bel(A). (11)

196 Sensor Fusion - Foundation and Applications

www.intechopen.com



A Possibilistic Framework for Sensor Fusion with Monitoring of Sensor Reliability 7

After obtaining the above-mentioned concepts, we are able to use DST to fuse independent
data sources by applying Dempster’s Rule of Combination, cf. (Shafer, 1976). It is also called
normalised conjunctive combination rule:

n
⊕

i=1

mi(A) = K · ∑
A1∩...∩An=A

n

∏
i=1

mi(A). (12)

The term ∑A1∩...∩An=A ∏
n
i=1 mi(A) aggregates the consonant opinions (non-conflicting parts)

from sensors which are subsequently multiplied with conflicting factor K = (1 − kc)−1, where

kc = ∑
A1∩...∩An=∅

n

∏
i=k

mi(Ak). (13)

The variable mi(Ak) denotes the mass of propositions from sensor i. According to the
definition of kc it defines the empty intersection of the propositions of all sensors. Therefore,
it is also called conflicting coefficient.
The DST offers two main advantages: i) belief and possibility model two levels of probability,
generating and assigning ignorance (range of uncertainty) or uncertainty to a proposition A,
furthermore total uncertainty can be modelled by the vacuous belief, that is, m(Θ) = 1; ii) as
the measures are defined on subsets of P(Θ), non-specificity and conflict can be modelled.
In order to demonstrate the concept of DST, let us assume a banknote was given to an expert
for forgery analysis. Is it genuine or is it counterfeit? The proposition A corresponds to the
possibility that the banknote is genuine, whereas the proposition B reflects the proposition
that the banknote is counterfeit; then Θ = {A, B} is the frame of discernment and P(Θ) =
{∅, A, B, Θ} is the corresponding power set. The belief functions Bel(A) and Bel(B) represent
the belief measures in genuineness and counterfeit of the banknote.
As, in this case, B = Ac, Eq. (6) changes to Bel(A ∪ Ac) ≥ Bel(A) + Bel(Ac) and A ∩ Ac =
∅, A ∪ Ac = 1 ⇒ Bel(A) + Bel(Ac) ≤ 1. If the expert assumes the genuineness of the
banknote, one would set Bel(A) near to 1 and—independently of Bel(A)—Bel(Ac) to a low
value. In case one believes in the opposite, one sets Bel(Ac) to a high value and Bel(A) to a
low value. If the expert is uncertain about the decision, but tends to genuineness, one might
vote for Bel(A) = 0.5 and Bel(Ac)= 0.3, and in the desperate case of total uncertainty (total
ignorance), one will set both belief measures to zero.
It has to be pointed out that the literature on DST is manifold. For deeper insights we refer
to, e. g., (Dempster, 1967), (Shafer, 1976), (Yager, 1987), (Hall & Llinas, 2001), (Ayyub & Klir,
2006), (Campos, 2006), (Yager & Liu, 2008).

3.2 Probability Theory

Probability Theory (PT) is the oldest concept for quantifying uncertainty. It is one of the last
major mathematical domains to be formed at the end of the seventeenth century. Based on
a correspondence between Fermat and Laplace about gambling, Probability Theory is also
today an active field of research. PT typically models random phenomena and chance.
Although, PT is an “old” theory, it was put into question in the twentieth century, whether
the Probability Theory can only be viewed as a theory of chance. In every day situations
it is used in two different ways: i) when randomness is assumed; ii) in cases of lacking
knowledge. Therefore, two schools of interpretation can be found: objectivists (frequentists)
and subjectivists (Bayesians). Hacking (Hacking, 1975) calls probability a “Janus-faced”
theory. We refer to the philosopher Karl Popper (Popper, 1934) on the one hand and the
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subjectivists John Maynard Keynes (Keynes, 1921) as well as to Rudolf Carnap (Carnap, 1947)
or Frank P. Ramsey (Ramsey, 1960) on the other hand. The dispute in the community still
exists.
Based on random experiments, like throwing the dice or tossing a coin, classical probability is
defined by the relative frequency of events in the long run. If Θ = {θ1, θ2, ..., θn} denotes the so
called sample space, the discrete, finite, non-empty set of all possible outcomes, then θi, i ∈ N,
are the elementary events (singletons). A non-negative number P(A), P : 2Θ → [0, 1], is
assigned to each subset A ∈ Θ—an event of any collection of outcomes: A = {θ ∈ Θ | θ ∈ A}.
This number is called probability of the event A. The axiomatic approach of probability was
formulated by Kolmogorov in 1933 (Kolmogorov, 1933). The number P(A) must satisfy the
three following axioms; cf. Eq. (14) - Eq. (16):

• Axiom 1:
P(∅) = 0. (14)

• Axiom 2:
P(Θ) = 1. (15)

• Axiom 3:
P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅. (16)

The probability measure of two (or more) is additive. This property, defined by axiom 3, is
one of the key features in Probability Theory. Once a probability P(A) is set, the complement
P(Ac) is fixed. In other words, the event θ ∈ Θ can either be true or false. If for each possible
outcome θ ∈ Θ, the probability p(θ) is given, then a function p : Θ → [0, 1] is called probability
density. The function p(θ) = P({θ}), ∀θ ∈ Θ satisfies the following conditions:

0 ≤ p ≤ 1, (17)

∑
θ∈Θ

p(θ) = 1. (18)

Following the additivity axiom, the probability of A can be determined by its individual
probabilities of each of its elementary events:

P(A) = ∑
θ∈A

p(θ). (19)

Again, we follow the example of genuine or counterfeit banknotes. The proposition A
corresponds to the possibility the banknote is genuine, whereas the proposition B reflects
the proposition that the banknote is counterfeit; then Θ = {A, B} is the set of events.
The probabilities P(A) and P(B) represent the chances in genuineness and counterfeit of the
banknote. As, in this case, B = Ac, Eq. (16) changes to P(A ∪ Ac) = P(A) + P(Ac) and A ∩
Ac = ∅, A ∪ Ac = 1 ⇒ P(A) + P(Ac) = 1. If the expert assumes the genuineness of the
banknote, one sets P(A) near to 1 and P(Ac) = 1 − P(A). In case one believes in the opposite,
one sets P(Ac) to a high value and P(A) = 1 − P(Ac). If the expert is uncertain about his
decision, the only thing one can do, is to set P(A) = 0.5, that is, P(Ac) = 0.5 (total ignorance).
The above mentioned property is essential in Probability Theory.
In the subjective view, the Bayesian view, knowledge and uncertainty is represented based on
probability measures P(· ), where the measure describes a likelihood of the occurrence of an
event A. In this context, P(· ) is often referred to as a-priori probability which is determined
on previous knowledge based on adequate data and taken for granted. The probability
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of an event A is interpreted in a sense of degree of certainty or degree of belief. Knowledge
about the occurrence of an event is either modelled by P(A) = 1 in case of a certain event
or P(A) = 0 for an impossible event. Once an event A is given by a certain probability
P(A), the complement P(Ac) is naturally given. Therefore, the only possibility to model
uncertainty in a set Θ is, as there is no evidence for a certain event, the probability density
p(θ) = 1

|Θ|
, θ ∈ Θ. The cardinality of the set is |Θ|. The modelling of uncertainty is a weakness

of Probability Theory. As wider the set Θ is, as more improbable is a single event θi, but this is
counter-intuitive, because a certain event will occur to p(θi) = 100 % and not to p(θi) =

1
|Θ|

.

The basis of fusion in PT is well-grounded on the Bayes Rule (Bayes, 1763). Two events A ∈ Θ1

and B ∈ Θ2 are assumed to be conjoint, A ∩ B �= ∅. That is, that the joint probability can be
determined by the joint elements θ in the joint set Θ = Θ1 × Θ2, defined by the cross product,
and is denoted by P(A ∩ B).
The conditional probability P(A|B) is defined as the probability of A being true under the
condition of the event B. It is defined as:

P(A|B) =
P(A ∩ B)

P(B)
, P(B) > 0, P(A) > 0. (20)

The conditional probability is called a-posteriori probability of the event A. That is, that the
probability is not only based on the previous knowledge, but also takes into account the
evidence of the event B.

P(B|A) =
P(B ∩ A)

P(A)
=

P(A ∩ B)

P(A)
=

P(A|B)· P(B)

P(A)
. (21)

In Eq. (21) P(A) is usually defined as the total probability, which is defined as

P(A) =
n

∑
i=1

P(A|Bi)· P(Bi). (22)

It has to be pointed out, that B1, ..., Bn have to be pairwise exclusive and mutually exhaustive.
Furthermore, P(Bi) > 0 ∀i. Now, we show basically how information is fused in the
sense of Bayesian inference. Let Fi be a measured machine readable feature on a banknote
(e. g. a certain coding) which has to be detected by an optical sensor Si as a "true"—Si—or
"false"—Sc

i —information. Furthermore, it can be assumed, that the accuracy of the sensors
P(Si|Fi) may be 0.9, that is, the probability of a correct measurement (the sensor delivers
a correct result under the condition of a correct code) is 90 %. Then, the probability of the
detection of the feature Fi under the condition of the correct sensor information is:

P(Fi|Si) =
(P(Si|Fi)

P(Si)

)

· P(Fi). (23)

With Eq. (20) and Eq. (22) the sensor probability P(Si) = P(Si ∩ Fi) + P(Si ∩ Fc
i ) can readily

be formulated:

P(Fi|Si) =
P(Si|Fi)· P(Fi)

P(Si ∩ Fi) + P(Si ∩ Fc
i )

=
P(Si|Fi)· P(Fi)

P(Si|Fi)P(Fi) + P(Si|F
c
i )P(Fc

i )
. (24)

The a-priori probability P(Fi) is given under the assumption, that it is very likely that the
correct feature is used in the measurement session (e. g. 99.5 %), that is, P(Fc

i ) = 0.005.
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Furthermore, as P(Si|Fi) = 0.9 is assumed, the probability P(Si|F
c
i ) = 0.1, that is, the

detection of a feature which is not present. It has to be pointed out, that all four combinations,
based on the equivalent a-priori probabilities, have to be determined: P(Fi|Si), P(Fi|S

c
i ) (false

positive), P(Fc
i |Si) (false negative), and P(Fc

i |S
c
i ) to get the full picture.

In case of multiple measurements for one feature we get P(F1|S1, S2), which can be
interpreted, e. g., as two temporarily independent measurements P(S1, S2) = P(S1)· P(S2). In
this case we obtain:

P(F1|S1, S2) =
P(S1, S2|F1)· P(F1)

P(S1, S2)
=

P(S1|F1)P(S2|F1)· P(F1)

P(S1)P(S2)
=

P(S2|F1)P(S1|F1)· P(F1)

P(S2)P(S1)
.

(25)
With Eq. (23) P(F1|S1, S2) can be simplified to

P(F1|S1, S2) =

(

P(S2|F1)

P(S2)

)

· P(F1|S1). (26)

The conditional probability P(F1|S1) from the first measurement is combined with the
appropriate probabilities of the second measurement to generate a fused result. The first
conditional probability serves as the new a-priori probability for the second measurement.
This is how Bayesian inference combines old information with new information to update the
belief states.
Probability and its frequentist representations concerns random effects. The events in
Probability Theory are either assumed to be true or false. The probability of an event is
connected directly to the event and to its complement. The Bayesian view leads to modelling
of uncertainties. However, Probability Theory has its weakness in the area of epistemic
uncertainty because of its additivity axiom. A-priori probabilities are the decisive part in PT.
Furthermore, getting these a-priori probabilities is not easy to achieve. Probability Theory
is very well adapted to problems based on independent random variables, but in fusion
processes this independence is seldom to occur. The limitation of Boolean logic in PT leads to
Fuzzy Theory.

3.3 Fuzzy Set Theory

As we have noticed, DST and PT are able to describe epistemic and aleatoric uncertainty.
However, both theories are based on crisp sets of a frame of discernment. In many
measurement or sensor related concepts we have to handle both, noise and systematic effects.
The latter ones are assumed to be systematic errors which can possibly be compensated, as
they are treated like a known bias or offset. Unfortunately, in complex systems it is nearly
impossible to obtain all systematic measurement data. Therefore, in many instances we have
to handle these errors as systematic uncertainties. The normal situation is as follows: The
systematic input is recognised, but the exact information (data, values) is unknown. However,
in most cases it is possible to locate a data value in a closed measurement interval—an interval
of confidence. A systematic contribution to a measurement always takes the same value, even
if unknown, within a certain interval. That is, not each value has the same probability to
occur. A certain unknown value will occur to 100 %, others will definitely not occur. However,
values in the interval have, in absence of further evidence, the possibility to occur. The above
mentioned idea is in contrast to Probability Theory.
This fact leads to Fuzzy Set Theory (Fuzzy Theory, FT). The concept of fuzzy sets was first
introduced by Zadeh in 1965 (Zadeh, 1965) in order to represent incomplete knowledge.
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However, in 1937 the mathematician and philosopher Max Black developed the concept of
vagueness and fuzzy membership (Black, 1937).
The traditional set approach is based on crisp sets. That is, a crisp variable can only take the
value 1 or can be interpreted to be true, if the variable belongs to the set, or 0 (false), if it does
not belong to the set. Fuzzy sets, in contrast, are not based on a Boolean value representation,
but on a membership function, which describes the membership of a variable to its appending
fuzzy set in a closed interval [0, 1]. It represents a multi-valued logic. Fuzzy sets can thus be
described as a generalisation of crisp sets. This is not an antagonism in respect of PT, but rather
an addendum to it, since both theories address a different kind of uncertainty: randomness and
vagueness (fuzziness).
Let Θ be a frame of discernment, then a fuzzy set A of Θ is defined by a membership function
μA : Θ → [0, 1]. The membership function μA(θ) ∈ R is the degree of membership for a fixed
element θ in the fuzzy set A, that is, the degree of belonging x = θ and x ∈ A, the degree
of certainty of the proposition θ ∈ A. The normalised membership function of a fuzzy set A
satisfies the following axioms; cf. Eq. (27) - Eq. (29):

• Axiom 1:
∃x0 ∈ A : μA(x0) = 1. (27)

• Axiom 2:
0 ≤ μA(x) ≤ 1. (28)

• Axiom 3:
∃x, x0 ∈ A∀x �= x0 : μA(x) ≤ 1. (29)

If A is a fuzzy set defined by its membership function μA(x) and B is another fuzzy set defined
by μB(x), then μA(x) ≤ μB(x), iff A is a subset of B:

A ⊆ B ⇒ μA(x) ≤ μB(x). (30)

The membership function μA(x) of a fuzzy variable x can also be described in terms of
α-cuts—different vertical levels α ∈ [0, 1]. Each α-cut is defined as

Aα = {x ∈ A | μA(x) ≥ α}. (31)

The representation of a fuzzy variable in terms of its α-cuts describes a group of nested sets
(consonant sets) Aα in terms of intervals of confidence with its associated levels of certainty α (cf.
Fig. 3). The level of certainty describes how certain a measurement value is—this is the case iff
a crisp value is taken into account. The level of confidence is mapped to a set and represents
the available knowledge based on an unknown value in the range of the set Aα.
Under the assumption of a finite support of A, we can assume that a membership function
is fully represented by its α-cuts. Furthermore, the α-cuts of each fuzzy variable are closed
intervals of real numbers R.
The more the level of certainty increases, the more the interval of confidence decreases. This
fact is in line with the human knowledge representation: If the level of certainty increases, the
level of confidence must decrease. The level of certainty indicates how sure a measurement is,
while the level of confidence specifies the probability that a certain value falls in its interval. In
other words, as higher α is, as lower the level of confidence must be. The level of confidence is
associated to (1 − α). The above mentioned fact will be a subject-matter in Possibility Theory.
In the framework of fuzzy sets, knowledge is represented by membership functions, which
map a measurement value in a sense of a proposition to x = θ ∈ A to μA(x), that is, the belief

201A Possibilistic Framework for Sensor Fusion with Monitoring of Sensor Reliability

www.intechopen.com



12 Will-be-set-by-IN-TECH

Fig. 3. Membership function and α-cut.

in the proposition is expressed by μA(x). This fact corresponds to the concept of vagueness
as a value θ may belong to more than one membership function with different degrees of
membership (e. g, μB(θ) < μA(θ) and A ∩ B �= ∅), cf. Fig. 4).

Fig. 4. Membership functions μA(x) and μB(x) with conjoint subset A ∩ B �= ∅.

Here, set A belongs to μA(x) and set B belongs to μB(x). The value x = θ is a member of both
sets—a value which belongs to the subset A∩ B. As the degree of membership μA(θ) is higher
than the degree of membership μB(θ), the value θ belongs more certain to set A than to set B.
Fuzzy Set Theory can handle vagueness and non-specificity as it is an extension of classical set
theory.
Total uncertainty (total ignorance) is expressed in terms of a rectangular shaped membership
function with μA(θi) = 1 ∀ θi ∈ A.
Aggregation of information is based on elementary fuzzy set operations. The set operators
aim for combining information in order to generate a single fuzzy variable. The basic
operations are the equivalents to the above mentioned operations in classical set theory.
Hence, we are able to define the complement, intersection and union of fuzzy variables.
Following the base fuzzy set operations defined by Zadeh (Zadeh, 1965) the complement of a
normalised membership value of the fuzzy set A is defined as:

μAc (x) = 1 − μA(x). (32)

The complement μAc (x) describes the degree to which x does not belong to the fuzzy set A.
The fuzzy union μA∪B(x), based on a s-norm, s : [0, 1]× [0, 1] → [0, 1], is defined as:

μA∪B(x) = max(μA(x), μB(x)). (33)
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Again, contrary to the probability theory, fuzzy union is non-additive. The fuzzy intersection
μA∩B(x), based on a t-norm, t : [0, 1]× [0, 1] → [0, 1], is defined as:

μA∩B(x) = min(μA(x), μB(x)). (34)

The Eq. (33) and Eq. (34) are based on so-called triangular norms, t-norms and t-conorms (or
s-norms). As many operators exist, we refer to the literature (Klir & Yuan, 1995).
The union and intersection can be interpreted as aggregation operations. In general, aggregation
operations combine several fuzzy sets or membership functions resulting in a single
membership function. The aggregation operator, h : [0, 1]n → [0, 1], generates the output
function by

μagg(x) = h(μA(x), μB(x), ...). (35)

The aggregation operator h is a bounded, monotonic, increasing, symmetric, and idempotent
operator (Klir & Yuan, 1995). Beside the fuzzy union and intersection, which can be defined
in different ways, the so called averaging operators play an important role in aggregation.
A mapping M : [0, 1] × [0, 1] → [0, 1] is an averaging operation iff it is continuous and
satisfies the properties Symmetry: M(x0, x1) = M(x1, x0); Idempotency: M(x0, x0) = x0;
Monotonicity: M(x0, x1) ≤ M(x2, x3) if x0 ≤ x2 and x1 ≤ x3; Boundaries: M(0, 0) = 0 and
M(1, 1) = 1; xi ∈ [0, 1] (Dujmović & Larsen, 2007). Furthermore, the following inequality is
valid for all averaging operators

min(μA(x), μB(x)) ≤ M(μA(x), μB(x)) ≤ max(μA(x), μB(x)). (36)

By applying different averaging operators it is possible to construct a more “and-like” (min)
or a more “or-like” (max) aggregation. Often the following operators are used: Harmonic
mean, Geometric mean, and Arithmetic mean which are certain forms of the generalised mean.
Another important basic operator covers the full range of Eq. (36). This class of operators
is called ordered weighted averaging operators (OWA) (Dujmović, 1974), (Yager, 1988), and
(Dujmović & Larsen, 2007). A weighting vector �w = (w0, w1, ..., wN−1) with wi ∈ [0, 1] with
the constraint

N−1

∑
i=0

wi = 1. (37)

The OWA operator hOWA is defined by first ordering the membership functions μi(x) in
non-increasing order, denoted with index (i), for a given value x = θ, based on their individual
fuzzy sets A, B, ..., and then applying

μagg(�w, θ) =
N−1

∑
i=0

wi· μ(i)(θ). (38)

OWA aggregation can be freely positioned between the borders of Eq. (36). Dujmović
(Dujmović, 1974) introduced a measure (degree of disjunction) that indicates how much an
operator is near to the max-operation. Yager (Yager, 1988) called this operator orness. The
operator models any degree of orness between 1 (pure OR) and 0 (pure AND) by adjustment
of its corresponding parameters, the OWA weights after Eq. (37).

orness(hOWA(�w)) =
1

N − 1

N−1

∑
i=0

(N − i)·wi. (39)
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t-norms averaging operators t-conorms

OWA operators

min max

All

(pure AND)

Most

of

At least

a few

At least one

(pure OR)
Quantifier:

Operator type:

Important operators:

arithmetic mean

algebraic

product

algebraic

sum

Stronger (less restrictive) operator direction

Fig. 5. Different rules of aggregation, with their associated operators (Larsen, 1999).

The andness degree is defined as: andness(hOWA) = 1 − orness(hOWA).
Fuzzy Set Theory operates with vague and non-specific information, based on a
human-centred way of thinking. Usually, knowledge is represented by membership functions
and their aggregation. In contrary to PT the propositions are multi-valued. The construction
of membership function can be established by different concepts; e. g. cf. (Bocklisch & Priber,
1986), (Klir & Yuan, 1995), (Bossé et al., 2007), (Lohweg & Mönks, 2010a).

3.4 Possibility Theory

Possibility Theory (PosT) was introduced in 1978 by Zadeh (Zadeh, 1978). As imprecision and
vagueness are rather possibilistic than probabilistic (frequentist’s view) in its description (... it
is possible that we will have snow in summer, however, it is highly improbable...), it is reasonable
to describe the meaning of information, especially the meaning of incomplete information
within a possibilistic framework. Possibility Theory reflects Probability Theory insofar, as
it is also based on set-functions. Instead of one function, PosT is based on two functions,
which are called possibility measure and necessity measure. We will concentrate on numerical
possibility theory with its special branches based on consonant (nested) sets (Shafer, 1976)
and on membership functions (Zadeh, 1978).
It has to be pointed out that PosT has been exhaustively studied by Dubois and Prade;
e. g. (Dubois & Prade, 1978; 1983; 2000; 2003). Possibility Theory can be interpreted as
a framework for handling incomplete information and aggregate information coming from
multiple sources (sensors, experts, databases, etc.). If Θ = {θ1, θ2, ..., θn} denotes the so called
finite frame of discernment, θi, i ∈ N, then a possibility measure Π is a mapping Π : 2Θ → [0, 1],
which follows the axioms (cf. Eq. (40) - Eq. (42)):

• Axiom 1:
Π(∅) = 0. (40)

• Axiom 2:
Π(Θ) = 1. (41)

• Axiom 3:
Π(A ∪ B) = max(Π(A), Π(B)). (42)

The measure Π(A) denotes the possibility that an element θ belongs to the crisp set A. As it
can be noted from Eq. (42) the union of two sets is non-additive. The necessity measure N(A) is
the dual set-function of Π(A):

N(A) = 1 − Π(Ac). (43)

The intersection of two sets (Eq. (44)) is determined as follows:

N(A ∩ B) = min(N(A), N(B)). (44)

204 Sensor Fusion - Foundation and Applications

www.intechopen.com



A Possibilistic Framework for Sensor Fusion with Monitoring of Sensor Reliability 15

Interpreting Eq. (43), the necessity measure describes the fact that N(A) is entirely true, iff
the “complement of A” is impossible. The following implications hold for possibility and
necessity measures:

N(A) > 0 ⇒ Π(A) = 1,

Π(A) < 1 ⇒ N(A) = 0.

A fuzzy variable can be interpreted as a representation of an element of a fuzzy set with
a graded membership within its set. The membership function can also be interpreted
differently: Let μ(θ) be a possibility level for which θ ∈ A represents an existing, but unknown
element (incomplete information) within in the crisp set A. We describe an unknown element
(number, measurement value, etc.) with a certain level of certainty (μ(x) | x = θ). In this case
the normalised fuzzy set is called possibility distribution πx(θ), where x is a fuzzy variable of Θ,
and θ or θi are appointed values of Θ that x can take. A possibility distribution is a mapping
π : Θ → [0, 1] with at least one π(θi) = 1, θi ∈ Θ.
Possibility and necessity measures are represented by the associated possibility distribution
(θ ∈ A), that is,

Π(A) = max(πx(θ)), (45)

N(A) = min(1 − πx(θ)). (46)

If Θ is infinite, then Π(A) = supθ∈A(πx(A)) and N(A) = infθ∈A(1 − πx(A)).
Now, we will give a short insight in the interconnection between PosT and DST in the case that
the focal elements within particular sets are nested, that is, the sets are ordered in a way that
each is contained in the next one. Belief and Plausibility functions are termed to be consonant
(Shafer, 1976). Let Θ be the frame of discernment with its subsets Ai = {θ0, θ1, ..., θi−1} for
i = 0, 1, ..., N − 1. The subsets Ai match the relationship:

Θ ≡ A0 ⊂ A1 ⊂ A2 ⊂ ... ⊂ AN−1 (47)

In the case of nested sets Belief and Plausibility satisfy the following relationship with A, B ∈
P(Θ), cf. Eq. (42), Eq. (44):

Pl(A ∪ B) = max(Pl(A), Pl(B)), Bel(A ∩ B) = min(Bel(A), Bel(B)). (48)

When Plausibility and Belief functions satisfy Eq. (48), they are called Possibility and
Necessity functions. Possibility Theory is defined axiomatically via Eq. (40) - Eq. (42) as
an independent theory, though, as a second branch it can be defined by the possibility
distribution as a special form of the membership function (Zadeh, 1978) .

πx(θ) = μx(θ). (49)

However, it has to be pointed out that the membership function may not be readily
interpreted as a possibility distribution function, because the meaning of both functions is
completely different. Whereas the membership function describes a fuzzy variable θ ∈ A,
the possibility distribution function characterises a representation of what is known (expert,
sensor measurement, etc.) about the value of some quantity θ ranging on A ⊆ Θ (not
necessarily a random quantity). The function πx(θ) reflects the more or less plausible values
of the unknown quantity roughly. We tend to another notation proposed by Dubois and Prade
to circumvent any ambiguity:

πx(θ | A) = μx(A | θ). (50)
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The possibility that x = θ, knowing that θ ∈ A is πx(θ | A), whereas μx(A | θ) is the level of
possibility for θ ∈ A. An interesting interrelationship exists between α-cuts (cf. Eq. (31)), basic
belief assignments m, possibility distributions πx(θ | A), and membership functions μx(A | θ)
iff the sets are nested (cf. Eq. (47)) . Let αi be a certain value of μx(Aαi | θ), then Aαi denotes
it corresponding α-cut. The associated possibility function is then defined by (Klir & Yuan,
1995):

πx(θ) =
N−1

∑
i=0,

θ∈Aαi

m(Aαi ), (51)

under the condition, that
m(Aαi ) = αi − αi+1

and i = 0, 1, ..., N − 1, and αN = 0. Furthermore, keeping in mind, the higher αi, the lower the
possibility is that an element θ will fall in its associated α-cut, that is, Π(Ac

αi
) = αi. Therefore,

with Eq. (43),
N(Aαi ) = 1 − αi

— the level of confidence. For details refer to Salicone (Salicone, 2007).
Possibility Theory is well suited for sensor and information fusion. Let πA(x) and πB(x) be
two possibility distributions from two different signal sources, then, proposed by Dubois and
Prade (Dubois & Prade, 1994), the sources are fused by:

πAB(x) = max
[ t(πA(x), πB(x))

1 − kc(πA(x), πB(x))
, min[1 − kc(πA(x), πB(x)), s(πA(x), πB(x))]

]

. (52)

The functions t(· ) and s(· ) are t-norms and s-norms, where K(· ) is the conflicting factor
known from Dempster’s rule of combination (cf. Eq. (13)). The fusion concept takes into
account the reliability of different sources. If both sources are reliable an “and-like” fusion is
applied; otherwise, an “or-like” fusion is executed.
Possibility Theory provides a promising framework for sensor and information fusion based
on incomplete or party unknown data. It is able to handle uncertainty, ignorance, and
vagueness based on crisp sets instead of fuzzy sets. However, being a distinct theory, its
branches interconnect Dempster-Shafer Theory, Fuzzy Set Theory, and Probability Theory.
Insofar PosT can be interpreted as an unifying Theory.

4. Human behaviour based sensor fusion

Human beings have remarkable potential for reasoning and rational decision-making, even
when confronted with such uncertain data. Therefore, it is highly desirable to design technical
systems in a way which is inspired by human behaviour. Zadeh called this human level
machine intelligence (HLMI), cf. (Zadeh, 2008). Although HLMI has been intensively
investigated under the umbrella of artificial intelligence (AI) and its subdivision multi-source
data fusion for the past fifty years, it is still a hot research topic (Zadeh, 2008).

206 Sensor Fusion - Foundation and Applications

www.intechopen.com



A Possibilistic Framework for Sensor Fusion with Monitoring of Sensor Reliability 17

4.1 Two-layer Conflict Solving Fusion

Dempster-Shafer based fusion creates counter-intuitive results in high conflict situations.
If two sensors, that are measuring the same effect, deliver different information, then a
conflict situation occurs. This inherent defect pointed out by Zadeh (Zadeh, 1986), brings
criticism to the DST. Therefore, many other alternatives were researched. For instance, we
refer to Campos’ rule (Campos, 2006) and the work of Dezert and Smarandache (DSmT)
(Smarandache & Dezert, 2006). No matter whether the original DST rule or other ad-hoc
rules are applied, none of them have been regarded as a superior method compared to others.
Therefore, a Two-Layer Conflict Solving (TLCS) data fusion approach is suggested, which
includes two layers to combine pieces of evidence. The conflict is solved in some degree
during combination—therefore, it is named as conflict solving. The first layer resolves the
conflict in some extent, and the second continues to solve it and achieves more stable results.
Psychologically, as clearly stated in (Lipshitz et al., 2001) ,“Decision making has been traditionally
studied at three levels: individual, group and organizational.”, also cf. (Sunita, 1999). This shows
that decision is made at three layers, in which conflict is unavoidable to be considered and
solved: The individual level is the basic element that holds conflict; group level has a larger
range which includes conflict while organisational level is the largest. The latter can be
instantiated by connecting several layer 2 outputs via TLCS to generate a higher hierarchical
level—the organisational one. In such a way, humans believe that conflict can be solved in
an straightforward way, although it is impossible to totally eliminate its negative impacts.
The approach is also applicable if several groups of sensors are considered in a larger system.
Fig. 6 depicts the scheme of TLCS. In Fig. 6, layer 1 is regarded as working at the individual

Fig. 6. Two-Layer Conflict Solving System.

level because the Conflict-Modified DST (CMDST) is an approach which combines every two
sensors’ data so that a conflict is considered and solved between two individuals. After
receiving the results from the previous layer, layer 2 collects all sensors’ original information
and fuses it with the combined results from the CMDST. The conflict is further resolved at a
group level.

4.1.1 Aggregation rules

Especially due to the inherent defect residing in the DST (Zadeh, 1986), (Campos, 2006),
many other authors have proposed their own data fusion approaches which serve as ad-hoc

207A Possibilistic Framework for Sensor Fusion with Monitoring of Sensor Reliability

www.intechopen.com



18 Will-be-set-by-IN-TECH

alternatives. Just to name only a few, e. g., Murphy’s rule (Murphy, 2000)

mM =
m1(A) + m2(A)

2
, (53)

is a trade-off rule, which takes the arithmetic average value of two masses m1(A) and m2(A).
Yager’s rule (Murphy, 2000) regards that the universal set Θ should include the mass from the
conflicting parts, so that the universal set (set with all propositions) is always introduced in
Yager’s rule:

mY(C) = ∑
A,B∈2Θ ,A∩B=C

m1(A)m2(B), (54)

mY(Θ) = m1(Θ)m2(Θ) + ∑
A,B∈2Θ ,A∩B=∅

m1(A)m2(B). (55)

Campos’ rule

mC(Ai) =
DST

1 + log

⎛

⎜

⎜

⎜

⎜

⎝

1

1 − ∑
A1∩..∩An=∅

n

∏
i=1

mi(Ai)

⎞

⎟

⎟

⎟

⎟

⎠

, (56)

is explained in (Campos, 2006). Dezert-Smarandache Theory (DSmT) is rather a
comprehensive theory; we refer to (Smarandache & Dezert, 2006).

4.1.2 Conflict-modified DST

Based on the idea of DST, CMDST calculates the conflict in a different manner as shown in the
formula:

kcm = ∑
A1∩A2=∅,A1∩A3∅,...,

Ai∩Ak=∅,...,An−1∩An=∅

n

∏
i=k

mi(Ak). (57)

Within this definition, conflicts are calculated between every two sensors instead of all the
sensors together (which is used in DST). This difference can be seen from the condition of
summation in Eq. (13), A1 ∩ ... ∩ An = ∅ and A1 ∩ A2 = ∅, A1 ∩ A3 = ∅, ..., A1 ∩ An =
∅, ..., An−1 ∩ An = ∅. Due to the specified way of determining conflicts in Eq. (57), this
kind of conflict will very likely be larger than one, whereas in DST the denominator is 1 − kc.
Therefore, the denominator in DST must also be modified. First of all, the denominator is
modified as:

(

n

2

)

− kcm =

(

n

2

)

− ∑
A1∩A2=∅,A1∩A3=∅,...,

A1∩An=∅,...,An−1∩An=∅

n

∏
i=k

mi(Ak). (58)

The reason for choosing (n
2) = Bc(n) (binomial coefficient) is that there are Bc(n) possible

combinations for calculating conflicts (n is the number of sensors). Thus, Kcm (K in DST) is:

Kcm =
1

Bc(n)− ∑
A1∩A2=∅,A1∩A3=∅,...,

Ai∩Ak=∅,...,An−1∩An=∅

n

∏
i=k

mi(Ak)

(59)
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with 1
Bc

≤ Kcm ≤ ∞. The CMDST is formed as:

CMDST(A) =
n

⊕

i=1

mi(A) = Kcm ∑
A1∩A2=A,...
A1∩A3=A,...
An−1∩An=A

n

∏
i=1

mi(A). (60)

4.1.3 Group Conflict Redistribution

As pointed out in (Sunita, 1999), decision making is also studied in a group level. Hence,
Group Conflict Redistribution (GCR, layer 2 in Fig. 6) acts as group conflict solving strategy,
solving a conflict in a larger extent compared to individual level (CMDST). Distinguishing
from layer 1 (CMDST), GCR combines sensors’ propositions in a group manner, which means
all sensors will participate in this procedure (Li & Lohweg, 2008):

m(a) =

∑
A1∩..∩An=A

mi(A) + (Bc(n) + |log(Bc(n)− kcm)|) · CMDST(A)

n + Bc(n) + |log(Bc(n)− kcm)|
. (61)

The variable n defines the number of sensors and log(x) is logarithm to the base 10. The
denominator includes the number of sensors and how many combinations Bc(n) among
sensors are possible as well as conflict evaluation term |log(Bc(n)− kcm)|. In the numerator
part, sensors’ original propositions ∑A1∩..∩An=A mi(A) are calculated with corresponding
CMDST results, which are obtained from layer 1. Finally, the sum of final fused results remains
’1’. Numerical examples on TLCS which describe the aggregation effect can be found in (Li &
Lohweg, 2008).

4.1.4 Balanced TLCS

The intention to optimise the TLCS concept is threefold. Balanced TLCS (BalTLCS) intends
to cover three topics: First, the general TLCS approach should be utilised again. Second, the
result for two information sources (sensors, cognitive knowledge) should generate intuitive
results. Third, the conflict redistribution scheme for data fusion should be adapted and
simplified in a way that the fusion process i) should be an additive function of all inputs and
ii) could be extended to multiple sources and focal elements (masses). The approach is based
on the normalised version of CMDST. The normalisation is based on the Eq. (57) - Eq. (60).
The normalised conflicting factor NKcm is defined as follows:

NKcm =
Bc(n)

Bc(n)− kcm + ǫ
< ∞ (62)

where ∀ǫ > 0, ∀n > 1, n ∈ N, kcm = 0 ∃ L ∈ R : L = (1 − NKcm) < ǫ. Therefore, as
0 ≤ kcm ≤ Bc(n), the normalised conflict factor ranges between

Bc(n)

Bc(n) + ǫ
≤ NKcm ≤ Bc(n) · ǫ−1

< ∞. (63)

The non-conflicting part is determined and coupled with the conflicting part according to
Eq. (60) as

NCMDST(A) =
n

⊕

i=1

mi(A) =
NKcm

Bc(n)
∑

A1∩A2=A,...
A1∩A3=A,...
An−1∩An=A

n

∏
i=1

mi(A). (64)
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The BalGCR (Balanced Group Conflict Redistribution) approach combines the sensors’
propositions in a group manner which implies that in this case all sensors will participate
additively in this procedure.
The intention is to utilise the inverse of the normalised conflict factor as a control parameter.
If no conflict has occurred, mainly the NCMDST fusion result should contribute to the overall
result. If the conflict is high, then all different information sources have to be taken into
account. None of the information sources is allowed to dominate the other ones, and none
of them is allowed to play a part in the overall result with more than 1

n .
Furthermore, in a strong conflict case it is not intended to shift the information content
(hypotheses) to the universal set Θ, defining ambiguity or ignorance, because a conflict has
to be solved in any case. As the set must be complete regarding the sources, all information
sources (hypotheses) which can appear must be covered in a set. The only situation where
hypotheses can be transferred to the universal set Θ occurs when a source delivers no reliable
data. Formally BalGCR fusion consists of two parts. The first one describes the non-conflicting
part:

mnc =
NK−1

cm · CMDST(A) =
1

Bc(n)
∑

A1∩A2=A,...
A1∩A3=A,...
An−1∩An=A

n

∏
i=1

mi(A). (65)

The second part characterises the conflicting part. Eq. (65) tends to zero in heavy conflicts
(kcm → Bc(n)). Therefore, it is proposed here that all masses supporting a certain hypothesis
have to be averaged to fulfil the above mentioned statements. Furthermore, the average value
has to be controlled, e. g., by the normalised conflicting factor or coefficient. It is proposed to
use

mc(A) =
kcm

Bc(n)
·

1

n

n

∑
i=1

mi(A) (66)

for the conflicting part. It can be recognised that, in the case of maximum conflict, the average
value of all sensory hypotheses is determined. In the case of minimum conflict mc(A) → 0
both parts (Eq. (65) and Eq. (66)) are additively connected.

m(A) = mc(A) + mnc(A) =
kcm

Bc(n)
·

1

n

n

∑
i=1

mi(A) +
1

Bc(n)
∑

A1∩A2=A,...
A1∩A3=A,...
An−1∩An=A

n

∏
i=1

mi(A). (67)

This equation describes the data fusion approach by the balanced TLCS concept. All masses
are fused regarding their pro-and-con-hypotheses. Finally, the sum of final fused results
remains always ’1’, if all sensors deliver acceptable results in the sense of an adequately
functioning sensor. As the fusion process is based on averaging, the final result is relatively
insensitive against noise effects. The fused mass of the universal set is determined for n
sensors as follows:

m(Θ) = 1 − [m(A) + m(B) + m(C) + ...] . (68)

The masses take into account all information from the hypotheses. For further details and
results we refer to (Li & Lohweg, 2008) and (Lohweg & Mönks, 2010b).
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4.2 Majority-Observation-Guided Possibilistic Fusion

One promising mathematical theory that appears to be capable of (partially) modelling a
human-like decision process is Possibility Theory. Although Possibility Theory was introduced
in 1978 by Zadeh (Zadeh, 1978) and has been primarily advanced by Dubois and Yager
over the past few decades (Dubois & Prade, 2000; Yager, 2004), it is still in its infancy.
This section is focused on possibilistic multi-sensor systems for industrial automation. With
reference to the Sect. 4.1, Dempster-Shafer Theory-based fusion approaches were recently
applied to this problem statement and reached satisfactory results (Lohweg & Mönks, 2010b).
On the contrary, possibilistic approaches are rarely applied to those industrial-automation
processes that can be classified under the problem theme of context-based anticipatoric
machine conditioning. As Possibility Theory appears to be crucial for modelling the human
behaviour when confronted with vague data (Zadeh, 2008), this section presents a novel
possibilistic multi-source data fusion approach, the so-called Majority-Observation-Guided
Possibilistic Fusion Rule (MOGPFR). The MOGPFR is capable of handling the imprecision of
sensors. Moreover, it has the ability of merging imprecise, incomplete or inconsistent data in
a human-like group-decision process.
The rest of this section is organised as follows: Section 4.2.1 provides the basics needed for the
understanding of the framework. Sections 4.2.2– 4.2.6 introduce the novel possibilistic fusion
rule.

4.2.1 Fusion operators

As pointed out in Sect. 3.4, conjunctive aggregation of possibility distributions is debatable
when not all sources are completely reliable. In this context, when all sources are completely
unreliable, the disjunctive rule is most appropriate. However, when confronted with a group
of reliable and unreliable sources the class of averaging operators, which lies between the
conjunctive and the disjunctive rule (cf. Fig. 5), might be beneficial. OWA operators consider
all fuzzy sets equally important. However, in multi-criteria decision problems, such as data
fusion, different criteria, represented by different fuzzy sets, might have different importance.
Hence, the effect on the overall outcome of satisfying a criterion should decrease as the
importance of satisfying the criterion decreases. To meet this desire, the concept of OWA
aggregation is expanded by attaching a so-called importance weight, wi, to each criteria, ai to
the importance weighting vector �v of a n-dimensional attribute A. This leads to the class of
Importance Weighted Ordered Weighted Averaging (IWOWA) operators as defined below:

λIWOWA(�v, �w,�a) =
n

∑
i=1

wib(i), (69)

where i is a permutation on {1, ..., i, ..., n}, such that b(1) ≥ ... ≥ b(i) ≥ ... ≥ b(n) and bi =

hα
OWA(vi, ai) (Larsen, 1999). Larsen has shown (Larsen, 1999) that the class of IWOWA operators

is order equivalent to the Weighted Arithmetic Mean (WAM) (Yager, 1994). Order-equivalence
is sufficient when the operator is applied to provide preference ordering (Larsen, 2002).
However, in situations where the aggregated value is used for other purposes, such as
multi-source data fusion, a full equivalence to the WAM is needed. This property can be
obtained by normalizing Eq. (69) in the interval of λIWOWA(�v, �w, 0) and λIWOWA(�v, �w, 1), which
leads to the class of Implicative Importance Weighted Ordered Weighted Averaging (IIWOWA)
operators as defined as follows (Larsen, 2002):

λIIWOWA(�v, �w,�a) =
λIWOWA(�v, �w,�a)− λIWOWA(�v, �w, 0)

λIWOWA(�v, �w, 1)− λIWOWA(�v, �w, 0)
. (70)
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4.2.2 Possibilistic fusion frameworks

Various multi-source data-fusion frameworks based on the Possibility Theory have been
proposed in the past thirty years (Yager, 1979; 1994). These frameworks were mainly
influenced and developed by Dubois and Yager (Dubois et al., 2001). Therefore, this section
introduces the two possibilistic fusion frameworks previously mentioned.
Dubois’ adaptive fusion is grounded on the discussions on the usefulness of the maximum
specificity principle. It is based on the supposition that j ≤ n sources of a n-dimensional fusion
problem are reliable. First, the j reliable sources are combined conjunctively. Secondly, the
intermediate result of the combination of the j reliable sources is combined disjunctively with
the (n − j) unreliable sources. However, in real-life, a precise number of reliable sources is
sometimes unknown or is complex to evaluate. For this reason, a good alternative is an
optimistic estimation, jo, and a pessimistic estimation, jp, of the number of reliable sources
using the following derivation (Dubois et al., 2004): Let T ⊆ S be a subset of sources,
S = {S1, ..., Si, ..., Sn} be the set of sources to be combined, and h be the consistency index

h(π1
v(x), π2

v(x)) = sup
x∈X

[

min[π1
v(x), π2

v(x)]
]

(71)

of the subset T. Then, jo and jp are determined as stated below:

Tp = sup[T|h(T) = 1], (72)

To = sup[T|h(T) > 0], (73)

jp = |Tp| , (74)

jo = |To| , (75)

where Eq. (72) describes the biggest subset in S that satisfies h(T) = 1, that is, it is completely
consistent; and Eq. (73) describes the biggest subset in S that satisfies h(T) > 0, that is, it is
not completely inconsistent. With reference to Eq. (72) and Eq. (74), it is feasible that at least
jp sources are reliable, because jp represents the number of sources with full agreement. With
this in mind, the numerical adaptive combination rule can be stated as follows (cf. Eq. (52)):

π1,...,n
v (x) = max

[

π
jo
v

h(To)
, min

[

π
jp
v , 1 − h(To)

]

]

. (76)

Yager’s fusion approach (Yager, 1979) is based on Zadeh’s extension principle (Zadeh, 1978)
and is defined as follows:

π1,...,n
v (x) =

⎧

⎨

⎩

min
[

πi
v(xi)

]

F(x1, x2, ..., xn)

⎫

⎬

⎭

, (77)

where xi ∈ X and F(x) is an averaging operator. One problem that arises in blindly using
the extension principle is that the aggregated possibility distribution may not be satisfactory
because it does not reflect any of the source’s opinion. For example, if there are two estimates
of a person’s age, p1 = 30 and p2 = 50, then the average is 40. However, this is a value that is
not very compatible with either of the estimates. The reason for this lack of compatibility is the
attempt to aggregate disparate values. To solve this problem, Yager introduced an "intelligent"
component, the so-called compatibility relationship, R, in the merging process to address
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conflicts in the data to be fused. In this context, the compatibility relationship is defined by
expert knowledge. Fusion by considering compatibility is defined as follows (Yager, 1994):

π1,...,n
v (x) =

⎧

⎨

⎩

min
[

R(x1, x2, ..., xn), min
[

πi
v(xi)

]]

F(x1, x2, ..., xn)

⎫

⎬

⎭

, (78)

where xi ∈ X, R(x1, x2, ..., xn) = mini,j

[

R(xi, xj)
]

, and F is an averaging operator. As

observed in Eq. (78), the merging of incompatible data is indicated by a low possibility degree.

4.2.3 Fusion rule

The possibilistic frameworks introduced in Sect. 4.2.2 offer a promising setting for merging
observations from different sensors. However, both approaches do not consider sensor’s
reliability. In case of highly unreliable or defective sensors, this might affect the fusion
result negatively, which makes both approaches less suited to real-life machine conditioning
applications. To overcome the drawbacks mentioned before, this section presents a novel
possibilistic data-fusion approach, which is based on Yager’s and Dubois’ frameworks for data
fusion (Dubois et al., 2001; Yager, 2004) and the theory of collective group decisions (Eisenführ,
2003). It is an extended close-to-practice approach, which has the ability of considering sensor
reliability. Before defining the fusion rule in detail, the hypotheses based on Yager’s and
Dubois’s concepts have been widened are discussed in the following paragraphs.

H1. In real life, group decision-making by humans is mainly driven by the concept of majority
opinion. This is derived from the fact that unanimous consensus rarely occurs during
group decisions. Hence, it is natural to provide a fusion approach for the ability of
majority-guided aggregation.

H2. During group decision-making processes, decision-makers might have different
priorities or reliabilities. It is natural that group decisions are mainly based on the voting
of prioritised and reliable decision-makers.

Undoubtedly, the desired characteristics are intrinsically vague. Accordingly, different fuzzy
approaches assessing majority-guided decisions are ideally suited. In this context, the class
of IIWOWA operators, introduced in Sect. 4.2.1, is relevant. However, the IIWOWA operator
cannot be applied directly to sensors’ observations, because it is explicitly defined for inputs in
the range of [0, 1]. Therefore, the sensor observations are fuzzified to make the data measured
applicable to IIWOWA operators. The fuzzification of the sensor observations is accomplished
using the Modified-Fuzzy-Pattern-Classifier (Lohweg & Mönks, 2010a). In addition to the
necessity of fuzzification because of application of an IIWOWA operator, the fuzzification of
the measurement scale has an important practical benefit: the fuzzification process facilitates
the usage of different sensors that measure different physical quantities on the same attribute.
Considering the preceding discussion, the so-called Majority-Opinion-Guided Possibilistic
Fusion Rule (MOGPFR) is defined as follows:

π1,...,n
v (x) = max

i

[

ρi
]

· π̂1,...,n
v (x) + 1 − max

i

[

ρi
]

, (79)

where

π̂1,...,n
v (x) =

{

λIIWOWA (�v, �wp, �πv)

λIIWOWA(�v, �wm,�μ)

}

, (80)
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�πv =
(

π1
v(x1), ..., πi

v(xi), ..., πn
v (xn)

)

,

�μ = (μ1(x1), ..., μi(xi), ..., μn(xn)).

The variable μi(xi) represents the fuzzified sensor observation xi of the ith sensor Si.
Furthermore, πi

v(xi) represents the corresponding possibility distribution. The characteristics
of IIWOWA operators can be flexibly adjusted by modifying the importance weighting vector
�v and the weighting vectors �wp and �wm (Larsen, 1999).
The following paragraphs describe the methods for a problem-dependent evaluation of these
parameters, so that the stated hypotheses are satisfied:
Consider a n-dimensional fusion problem of a set of n sensors, S = {S1, ..., Si, ..., Sn}, with
their associated reliabilities, {ρ1, ..., ρi, ..., ρn}. Then, the following properties, which have to
be fulfilled by the MOGPFR, can be derived from H1 and H2:

Lemma 1. If at least one sensor is completely reliable, the MOGPFR combines the possibility
distributions conjunctively, whereas when all sources are unreliable, the MOGPFR combines the
possibility distributions disjunctively (cf. Sect. 4.2.2).

Lemma 2. The fusion approach of the MOGPFR proceeds progressively from the conjunctive to
the disjunctive mode, when the highest reliability among all sources decreases from one to zero
(cf. Sect. 4.2.2).

The function defined by Eq. (79) satisfies Lemma 1 and 2 iff the andness-degree of the
IIWOWA operator of Eq. (80) used for fusing the possibility distributions is determined as
follows:

αp = min
i∈1,...,n

[

ρi
]

. (81)

Proof. The satisfaction of Lemma 1 and 2 follows directly from the definition of the OWA and
IIWOWA operators (Larsen, 1999; Yager, 1994).

Lemma 3. If only one source is fully reliable and all other sources are totally unreliable, the fusion
result of the MOGPFR models the possibility distribution provided by the reliable source (cf. H2).

The function defined by Eq. (79) satisfies Lemma 3 iff the importance weighting vector �v of
Eq. (80) is defined as stated below:

�v =
(

ρ1, ..., ρi, ..., ρn
)

. (82)

Proof. Consider that S1 is totally reliable and all other sources, {S2, ..., Si, ..., Sn}, are
completely unreliable. Hence, with reference to Eq. (82), the importance weighting vector
accounts to �v = (1, 0, ..., 0) and Eq. (79) results in

π1,...,n
v (x) = π̂1,...,n

v (x), ∀ x ∈ X.

Consider the definition of IIWOWA operators (Larsen, 1999), the importance weighting
function mutates to

h(0, πi
v) = I ∀ i �= 1,

h(1, π1
v) = π1

v.

Therefore, the importance weighting function models for all sources except S1 the identity

element I and hence, π1,...,n
v (x) = π̂1,...,n

v (x) = π1
v(x) ∀ x ∈ X.

214 Sensor Fusion - Foundation and Applications

www.intechopen.com



A Possibilistic Framework for Sensor Fusion with Monitoring of Sensor Reliability 25

Lemma 4. When all sources are completely unreliable, then the MOGPFR models total ignorance
(cf. Sect. 4.2.2).

The function defined by Eq. (79) satisfies Lemma 4.

Proof. Consider that all sources are totally unreliable. Hence, with reference to Eq. (82), the
importance weighting vector accounts to �v = (0, ..., 0) and Eq. (79) can be written as follows:

π1,...,n
v (x) = 1, ∀ x ∈ X.

Thus, Eq. (79) models total ignorance.

Lemma 5. If there is a conflict between sources, it is solved by the MOGPFR so that the majority
observation is prioritised (cf. H1).

To meet the requirement postulated in Lemma 5, the majority observation of the sensors has
to be evaluated. The evaluation of the majority observation is discussed in Sect. 4.2.4.

4.2.4 Data consistency

The evaluation of the majority observation, necessity to satisfy Lemma 5, arises the need
of a consistency measurement amongst sensors’ observations, which is introduced in the
following: Consider a set of sensors S = {S1, ..., Si, ..., Sn} with their corresponding reliabilities
{ρ1, ..., ρi, ..., ρn}. Let each sensor provide an observation through a possibility distribution
πi

v, i ∈ {1, ..., n}. Then, the largest set of sensors Tc, which forms a consensus observation is
defined as follows:

Tc = sup [T|h(T) > 0] , (83)

where T ⊆ S, h(T) is the consistency index as defined in Eq. (71).
Naturally, observations of sensors which are elements of Tc are completely consistent with the
consensus observation and therefore, their consistency should be equal to one. In the same
way, the consistency of an observation should decrease when the distance to the consensus
observation increases. Hence, the measurement of consistency rises the need for evaluating
the range of the consensus observation and an appropriate definition for measuring the
distance amongst observations.
To simplify the measure of consistency, the possibility distribution (observation) of each
sensor is defuzzified using its centre of gravity, denoted as C (Klir & Yuan, 1995). The range of
the consensus observation, [cmin, cmax], can then be calculated as follows:

cmin = min
Si∈Tc

[

C
(

πi
v

)]

, (84)

cmax = max
Si∈Tc

[

C
(

πi
v

)]

. (85)

Knowing the extent of the consensus observation, the measure of consistency can be defined
by the following:

Coc

(

πi
v, Tc

)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∣

∣

∣
cmin − C

(

πi
v

)∣

∣

∣ , C
(

πi
v

)

< cmin,
∣

∣

∣
cmax − C

(

πi
v

)∣

∣

∣
, C

(

πi
v

)

> cmax,

1, otherwise.

(86)
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Considering Eq. (86) sensors that have their centres of gravity within the range of the consensus
observation are 100% consistent and, thus, are modelled by Coc(πi

v, Tc) = 1. Furthermore,
when the distance of a sensor’s observation to the boundaries of the consensus observation
increases, the consistency of the observation with reference to the consensus observation
decreases, and hence, Coc(πi

v, Tc) = [0, 1).
However, in practical applications, no consensus observation may be found amongst all the
sensors, e. g. |Tc| = 1. Then, the measurement of consistency, as defined by Eq. (86), becomes
inadequate. Nevertheless, a consistency measure that evaluates the amount of conflict among
the sensors is both obvious and adequate. It should be noted that reliabilities amongst sensors
can vary. It is debatable whether a reliable sensor, that is in conflict with an unreliable sensor
should be considered inconsistent. Accordingly, the consistency measurement should take the
reliabilities of sensors into account. WAM meets the desired features stated above and thus, is
used as follows:

Coa(π
i
v, π∗

v) = max

[

1 − max
j �=i

[

rj

]

, λWAM

(

�ρi, �di

)

]

, (87)

where
π∗

v = {π
j
v}j �=i,

�ρi = (ρj)j �=i, �di = (di,j)j �=i,

and
di,j = 1 −

∣

∣

∣C
(

πi
v

)

− C
(

π
j
v

)∣

∣

∣ . (88)

With reference to Eq. (87), the consistency of a sensor’s observation is the weighted average of
all distances from the observation of the ith sensor πi

v to the observations of all other sensors
π∗

v . The weighting vector of the weighted arithmetic mean corresponds to the reliabilities of
the sensor’ observations π∗

v . Moreover, due to the max-operator in Eq. (87), the consistency
of πi

v will be equal to one, if all observations of π∗
v are completely unreliable. Both versions

of evaluating the consistency of a sensor’s observation are brought together in the following
equation:

Co(πi
v) =

{

Coc(πi
v, Tc), |Tc| > 1,

Coa(πi
v, π∗

v), otherwise.
(89)

After determining the consistency of each observation it is natural to consider this information
during the fusion process. Thus, an observation with a low consistency should contribute little
to the fusion result and vice versa. Therefore, the MOGPFR is modified, so that the consistency
index of each observation is explicitly taken into account.
From Eq. (80), it follows that the determination of the weighting vector�v as defined in Eq. (82)
has to be modified to meet the desired features mentioned above and stated in Lemma 5. A
functional description, that meets the needs postulated previously is called credibility, denoted
as Cr(ρi, Co(πi

v)) = min[ρi, Co(πi
v)] (Yager & Kelman, 1996). Thus, Eq. (82) is modified as

follows:
�v =

(

Cr(ρ1, Co(π1
v)), ..., Cr(ρn, Co(πn

v ))
)

. (90)

Next, whether Eq. (90) is in accordance with Lemma 2 is checked.

Proof. The modification of Eq. (82) does not violate Lemma 2, since if all sources {S2, ...Sn}
except S1 are unreliable, e. g. �v = (1, 0, ..., 0) (cf. Eq. (82)) then

�v =
(

Cr(1, Co(π1
v)), ..., Cr(0, Co(πn

v ))
)

= (1, 0, ..., 0) .

With respect to the proof of Lemma 2, only π1
v is considered.
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Using Eq. (90) for determining the importance weighting vector �v of Eq. (79) satisfies Lemma 5.

Proof. Consider a n-dimensional fusion problem of a set of n sources S = {S1, ..., Si, ..., Sn}
and let all sources be reliable, e. . �v = (1, ..., 1). Moreover, let Tc = {S1, ..., Sk}. With reference
to Eq. (89), the importance weighting vector �v becomes �v = (1, ..., 1, ak+1, ..., an), where
{ak+1, ..., an} < 1 and therefore, the group of sources building the consensus observation,
that is the majority observation, is prioritised.

4.2.5 Sensor reliability

As information provided by physical sensors can vary in quality, reliability is important for the
success of multi-source data fusion. Two general concepts of obtaining source’s reliability are
established in literature (Rogova & Nimier, 2004): static and dynamic reliability. Static reliability
indicates the probability that a source is working correctly. However, it does not consider
unpredictable disturbances, such as environmental influences, mis-applications, or failures
caused by accidents. Paying no heed to those ascendancies effectively lowers the performance
of a fusion system. That is why here both static reliability, based on expert know-how, and
consensus-driven dynamic reliability estimation are used.
Consensus-driven approaches presume that unreliable sources result in conflicting situations.
In this context, it is assumed that a higher conflict results in a larger distance from the
consensus observation. Accordingly, the measurement of consistency (cf. Eq. (89)) is ideally
suited for the determination of the reliability of a source. If there are unreliable sources that
do not cause conflicts, consensus-driven reliability estimation methods become inadequate.
The consistency of a source can vary widely between fusion steps, because of noise in real-life
fusion problems. Therefore, it makes sense to smooth the reliability of a source by considering
its former reliabilities. The family of exponential moving average filters, introduced below, allows
modelling the needs postulated herein.
The exponential moving average filter can be classified under infinite impulse response filters
and is defined as follows:

y[n] = ω · x[n] + (1 − ω) · y[n − 1], (91)

where ω ∈ [0, 1]. The filter output y[n] and the filter input x[n] are defined for the discrete
time step n. Moreover, y[n − 1] is the filter output at the previous discrete time step [n − 1].
Exponential filtering of the consistency of a source allows modelling of its dynamic reliability,
ρi

d[n], intuitively. Additionally, the static reliability, ρi
s[n], can be used as a convex envelope

for the smoothed consistency of a source. This leads to the following definition of dynamic
reliability:

ρi
d[n] = min

[

ρi
s[n], ρ̂i

d[n]
]

, (92)

where
ρ̂i

d[n] = ω · Co(πi
v) + (1 − ω) · ρ̂i

d[n − 1], (93)

and
ρ̂i

d[n] = 1, ∀ n < 0. (94)

The inertia of a process monitored by a source can be taken into account by aligning ω. Thus,
a high inertia should be accounted by a small ω and vice versa. To illustrate the effect of
exponential filtering, Fig. 7 depicts the filtered and non-filtered reliability of an arbitrary
source. It is clearly visible that the influence of process noise is considerably reduced due
to exponential averaging.
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Fig. 7. The smoothed and non-smoothed reliability of an arbitrary source. The dashed line
visualises the non-smoothed reliability. The thick line illustrates the smoothed reliability
when an exponential moving average filter with ω = 0.2 is applied.

4.2.6 Trustworthiness of the fusion result

An important problem after obtaining a fusion result is the question of its trustworthiness.
Delmotte et al. (Delmotte, 2007) proposed an approach that measures the trustworthiness
of a fusion result by considering internal contradictions and reliabilities of sources. Here,
Delmotte’s idea of determining the trustworthiness of fusion results is captured and modified
so that it qualifies for the MOGPFR.
In Sect. 4.2.4, the measurement of credibility was introduced. Here, the average credibility
of all sensors is accounted for the trustworthiness of the fusion result. In this context,
a high overall credibility should result in a high trustworthiness and vice versa. As
reliabilities among sources can vary, it is natural that the trustworthiness should mainly be
influenced by highly reliable sources, whereas sources with low reliability should influence
the trustworthiness of the fusion result only to a small amount. Consequently, the weighted
arithmetic mean is appropriate for calculating the trustworthiness. In this context, the
importance weighting vector �v equals the reliabilities of the sources to be merged.
With reference to the MOGPFR, the consistency index h(Tc), (cf. Eq. (71)), contains information
about the trustworthiness of the fusion result too. That is, a high consistency index indicates
a high agreement amongst the sources that build the consensus observation. On the contrary,
a low consistency index indicates a low harmony in the consensus observation. Accordingly,
a high consistency index should result in a high trust in the fusion result and vice versa.
As both the overall credibility of the sources and the consistency index are equally important
to the trustworthiness of a fusion result, denoted by Tr, it is defined as the average of both the
indexes:

Tr
(

π1,...,n
v (x)

)

= 0.5 · h(Tc) + 0.5 · λWAM (�ρ,�c) , (95)

where
�c =

(

Cr(ρ1, Co(π1
v)), ..., Cr(ρn, Co(πn

v ))
)

,
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and
�ρ =

(

ρ1, ..., ρn
)

.

4.3 Two-Layer Possibilistic Fusion

Complex fusion tasks, such as condition monitoring of printing machines, require the fusion
of different attributes, because sophisticated processes cannot be described sufficiently by
one attribute. In general, an attribute describes the state of a variable that influences the
condition of a process to be monitored. Furthermore, an attribute consists of several criteria
that determine the attribute’s condition. These criteria are monitored by a set of sensors. Thus,
the fusion of highly sophisticated processes is a twofold process: i) the criteria corresponding
to one particular attribute are fused; ii) the attributes are aggregated into one evidence about
the condition of the machine. The fusion approach introduced in this section is called the
Two-Layer Possibilistic Fusion Rule (TLPFR). The TLPFR is presented in an application-oriented
manner for the purpose of machine conditioning. However, other applications of the TLPFR
are also conceivable.
Consider a n-dimensional fusion problem of a set of n attributes A = {A1, ..., Ai, ..., An}.
Furthermore, let each attribute Ai consist of mi criteria observed by mi sources SAi

=
{SAi,1

, ..., SAi,j
, ..., SAi,mi

}. Moreover, let each source SAi,j
provide its observation using a

possibility distribution π
j
Ai
(x). Thus, the fusion of mi criteria into one result about the

condition of one particular attribute Ai can be considered as a mi-dimensional possibilistic
fusion problem. The fusion on the first layer, the so-called criteria-fusion layer, is accomplished
using the MOGPFR. Furthermore, the compound consequence about the state of a particular
attribute Ai is defuzzified using the mean of maxima (Klir & Yuan, 1995) and additionally, the
attribute’s trustworthiness (cf. Eq. (95)) is considered. Thus, for each attribute, one obtains
numerical values indicating its current condition xAi

and its corresponding trustworthiness

Tr
(

π1,...,mi

Ai
(x)

)

. Figure 8 illustrates the criteria-fusion layer in its lower part.

After obtaining the condition of each attribute and its related trustworthiness, the attributes’
conditions are merged on the second layer. In this context, it is obvious that when one attribute
of the machine indicates that the machine is in a ”bad” condition, then the holistic condition of
the machine should accommodate this condition up to a certain degree. This degree depends
on the trustworthiness of an attribute’s observation. That is to say, if the trustworthiness of
an attribute is high, the holistic condition accounts for this condition to a high degree and
vice versa. Therefore, the fusion method on the second layer, denoted as attribute-fusion layer,
should pay attention to the trustworthiness of an attribute’s observation and should model a
high degree of pessimism. Once again, the class of IIWOWA operators qualifies for the fusion
on the second layer. The attribute-fusion layer method is defined as follows:

xA1,...,An
= λIIWOWA

(

�t, �w, �π
)

, (96)

where
�π =

(

π1,2,...,m1

A1
(x), ..., π1,2,...,mn

An
(x)

)

,

�t =
(

Tr(π1,2,...,m1

A1
(x)), ..., Tr(π1,2,...,mn

An
(x))

)

,

where �w is determined with reference to the desired andness degree, using O’Hagens
approach of maximum entropy (O’Hagen, 1987). The second layer of the TLPFR is depicted
in the upper part of Fig. 8.
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Fig. 8. The TLPFR for machine conditioning.

5. Application example

Nowadays, security prints, such as banknotes are highly sophisticated and exhibit many
security features. To reach this high security level, several printing methods like line offset,
letter-press printing, foil printing, and intaglio printing are applied. Especially the latter
one named printing technique—intaglio printing—is of major importance for the security of
banknotes. The term “intaglio” is of Italian origin and means “to engrave”. The printing
method of the same name uses a metal plate with engraved characters and structures. Large
areas and differences in brightness are produced by different hatchings. During the printing
process the engraved structures are filled with ink and pressed under huge pressure directly
onto the paper. As a result, a tactile relief and fine lines are formed, unique to the intaglio
printing process and almost impossible to reproduce through commercial printing methods.

5.1 Experiments

In the steel engraving machine the wiping unit is the most observed part. It is responsible
for removing surplus ink around the engravings. Even small parameter manipulations cause
errors on products (cf. Fig. 9). Experienced machine operators are able recognise errors before
they occur and stabilise the production by changing mainly the wiping unit parameters. In

Fig. 9. Wiping error (right) in an intaglio printing process (Glock et al., 2011).

total, six sensors are mounted on the intaglio printing machine. The main focus of attention
is on the wiping process of the printing machine, because here a large number of printing
flaws can be caused (Lohweg & Mönks, 2010a). The following functional components are
monitored:

220 Sensor Fusion - Foundation and Applications

www.intechopen.com



A Possibilistic Framework for Sensor Fusion with Monitoring of Sensor Reliability 31

• The motor current (MC) of the machine’s main drive. It is mainly influenced by the friction
between the wiping and the plate cylinder.

• The printing pressure of side 11 (PPS1) and the printing pressure of side 2 (PPS2).

• The pressure of the drying blade onto the wiping cylinder of side 1 (DBPS1) and side 2
(DBPS2).

• The flow rate of the wiping solution (WSFR), that is, the amount of wiping solution that is
sprayed onto the wiping cylinder.

An experiment was performed by measuring all six sensor signals when the intaglio printing
machine was running (Dyck et al., 2007). The test was performed in two steps: i) the machine
was operated in “good” production mode; ii) the wiping pressure was decreased little-by-little
until the machine printed only flawed sheets. For both experiments, a sample frequency of
7 kHz was used and the production rate kept constant at 6500 sheets per hour. During the
first and the second experiment, 479 sheets (within approximately 4.4 minutes) and 796 sheets
(within approximately 7.4 minutes) were printed (Dyck et al., 2007).
Sensors with equal causal relationships were arranged to the same attribute. The causality
relationships were determined using expertise of the printing machine manufacturer. In
this context, a specific machine attribute is related to one particular malfunction, which may
cause printing errors and may give rise to machine faults. In this experiment, three machine
attributes were monitored. They are stated in the following:

A1. Drying Blade Pressure
A misalignment of the drying blade pressure, that is, the pressure between the wiping
cylinder and the drying blade, may cause so-called wiping errors. In particular, an excessive
pressure may ruin the drying blade, whereas an undersized pressure may directly cause
flaw print errors. The drying blade pressure is proportional to the motor current (MC) and
of course, can be measured by the DBPS1 and DBPS2 sensors.

A2. Cleanness of the Wiping Cylinder
A dirty wiping cylinder may provoke another type of wiping error. Naturally, the cleaning
power of the wiping unit is influenced by the amount of detergent (wiping solution) that is
sprayed onto the wiping cylinder. This flow of detergent is monitored by the WSFR sensor.
Moreover, dried ink that adheres onto the wiping cylinder rubs against the drying blade
and increases the friction between the wiping cylinder and the drying blade. This leads to
an increase of the drying blade pressure that can be detected using the DBPS1 and DBPS2
sensors.

A3. Printing Pressure
A misalignment of the printing pressure may bring out imperfect printed structures.
Naturally, the printing pressure is monitored by the PPS1 and PPS2 sensors.

5.2 Performance evaluation of the Two-Layer Possibilistic Fusion Rule

With reference to Fig. 10, it is clearly observable that the holistic machine condition decreases
gradually because the wiping pressure is decreased little-by-little. With reference to the optical
inspection system (the green line in Fig. 10) from sheet number 560 onward, the printing
machine produced only low-quality products, that is, wiping errors occurred. Consider a
threshold of 50 % (0.5) of max(π(x)) = 1; the TLPFR diagnosed this ”bad” machine condition

1 In the field of printing machines, the side where the machine’s main drive is located is called “side 1”
and the side where the machine’s control centre is located is called “side 2”.
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approximately 160 sheets, or 1.47 minutes, prior to the occurrence of the wiping errors.
The ”bad” machine condition was detected by the machine’s attributes A1 and A2 (wiping
pressure and cleanness of the wiping cylinder), whilst attribute A3 indicated a ”good”
machine condition. This behaviour of the machine’s attributes is intuitive, because the wiping
pressure was decreased little-by-little, whilst the printing pressure was kept constant.
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Fig. 10. The fusion results of the wiping error experiment. In the plot above, the blue line
illustrates the holistic machine condition determined by the TLPFR; and the green line
illustrates the membership grades of the optical inspection system. The plots underneath
depict the conditions of the attributes.

The fuzzyfied values of all the sensors obtained during the wiping error experiment are
depicted in Fig. 11. With reference to Fig. 11 (a), all sensors that describe attribute A1
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Fig. 11. The membership grades of the sensors during the wiping error experiment. Panel (a)
illustrates the fuzzified sensor outputs of attribute A1, (b) – of attribute A2, and (c) – of
attribute A3.

detected the wiping error. Furthermore, the motor current was highly afflicted with additive
noise, which caused slight conflicts. This arose with a decrease of the trustworthiness of A1

(cf. Fig. 12 (a)) and in a discounted reliability of the motor current sensor (cf. Fig. 12 (d)).
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The conflicts were mainly solved at sheet number 560, that is, when the printing machine was
producing only erroneous sheets. Therefore, the reliability of the MC sensor was upgraded.
Considering Fig. 11 (b), the WSFR sensor did not detect the decrease of the wiping pressure,
whereas the DBPS1 and the DBPS2 sensors did detect. As a result, the reliability of the
WSFR sensor was decreased, until it was considered totally unreliable from sheet number 600
onwards. The trustworthiness of A2 was lowered because of the conflict between the WSFR
sensor and both DBPS sensors. From sheet number 600 onwards, that is, when the reliability
of the WSFR sensor accounted to zero, the trustworthiness of A2 increased steadily until it
accounted to one, because the observation of the WSFR sensor was no longer considered
during the fusion. As mentioned above, the third attribute did not detect the loss of the wiping
pressure. Thus, the membership grades of both sensors remained constant and accounted to
one (cf. Fig. 11 (c)). Therefore, no conflicts occurred, and the reliability of both sensors, as
well as the trustworthiness of the attribute accounted constantly to one (cf. Fig. 12 (c) and (f)).
The decrease of the wiping pressure was clearly indicated in the holistic machine condition,
because of the high degree of pessimism (α = 0.8) for the fusion of the attributes, although it
was not detected by A3.
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Fig. 12. The trustworthiness of the attributes conditions and the reliabilities of the sensors
during the wiping error experiment. Panel (a) illustrates the trustworthiness of attribute A1,
(b) – of A2, and (c) – of A3. Furthermore, panel (d) illustrates the reliabilities of the sensors
forming attribute A1, (e) – of A2, and (f) – of A3.

Considering the discussions in this section, one can conclude that the TLPFR is insofar
superior to an optical inspection system in respect of print flaws generated by machine errors.
This is mainly because faulty machine conditions can be detected prior to the occurrence of
printing errors. This makes it possible to readjust the printing machine to avoid print flaws.
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6. Conclusion and outlook

In this chapter we have reviewed the nature of knowledge perceived by experts and the
representation of incomplete, inconsistent, and vague information in technical systems. Based
on various theories, namely: Probability Theory, Evidence Theory, Fuzzy Set Theory, and
Possibility Theory, different concept of information fusion in the appearance of incomplete
and unreliable data was presented. Furthermore, two human-centric fusion approaches were
characterised. In particular, a new possibilistic framework for sensor fusion was presented. In
the future we will concentrate on implementation aspects of the above mentioned framework.
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