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1. Introduction

State estimation over communication networks is in use by many robotic applications in
industry, in defense systems, as well as in several exploration and surveillance tasks. The
incorporation of a communication network in the control loop has enabled to perform
multi-sensor fusion and distributed information processing, thus improving significantly
the autonomy and reliability of robotic systems (Medeiros et al., 2008), (Olfati-Saber, 2006),
(Watanabe & Tzafestas, 1992). It has been shown that scalable distributed state estimation can
be achieved for robotic models, when the measurements are linear functions of the state and
the associated process andmeasurement noise models follow aGaussian distribution (Mahler,
2007), (Nettleton et al., 2003). The results have been also extended to the case of nonlinear
non-Gaussian dynamical systems (Rigatos, 2010a), (Makarenko & Durrant-Whyte, 2006).
An issue which is associated to the implementation of such networked control systems is how
to compensate for randomdelays and packet losses so as to enhance the accuracy of estimation
and consequently to improve the stability of the control loop. The idea of incorporating
delayed measurements within a Kalman Filter framework is a possible solution for the
compensation of network-induced delays and packet losses, and is also known as update with
out-of-sequence measurements (Bar Shalom, 2002). The solution proposed in (Bar Shalom,
2002) is optimal under the assumption that the delayed measurement was processed within
the last sampling interval (one-step-lag problem). There have been also some attempts to
extend these results to nonlinear state estimation (Golapalakrishnan et al., 2011), (Jia et al.,
2008). More recently there has been research effort in the redesign of distributed Kalman
Filtering algorithms for linear systems so as to eliminate the effects of delays in measurement
transmissions and packet drops, while also alleviating the one-step-lag assumption (Xia et al.,
2009). This chapter presents an approach to distributed state estimation-based control
of nonlinear systems, capable of incorporating delayed measurements in the estimation
algorithm while being also robust to packet losses.
First, the chapter examines the problem of distributed nonlinear filtering over a
communication/sensors network, and the use of the estimated state vector in a control
loop. As a possible filtering approach, the Extended Information Filter is proposed (Rigatos,
2010a). In the Extended Information Filter the local filters do not exchange rawmeasurements
but send to an aggregation filter their local information matrices (local inverse covariance
matrices which can be also associated to Fisher Information Matrices) and their associated
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2 Distributed Nonlinear Filtering Under Packet Drops and Variable Delays for Robotic Visual Servoing

local information state vectors (products of the local information matrices with the local state
vectors) (Lee, 2008). The Extended Information Filter performs fusion of state estimates from
local distributed Extended Kalman Filters which in turn are based on the assumption of
linearization of the system dynamics by first order Taylor series expansion and truncation
of the higher order linearization terms. Moreover, the Extended Kalman Filter requires the
computation of Jacobians which in the case of high order nonlinear dynamical systems can be
a cumbersome procedure. This approach introduces cumulative errors to the state estimation
performed by the local Extended Kalman Filter recursion which is finally transferred to
the master filter where the aggregate state estimate of the controlled system is computed.
Consequently, these local estimation errors may result in the deterioration of the performance
of the associated control loop or even risk its stability (Rigatos, 2009),(Rigatos et al., 2009).
To overcome the aforementioned weaknesses of the Extended Information Filter
a derivative-free approach to Extended Information Filtering has been proposed
(Rigatos & Siano, 2010), (Rigatos, 2010c). The system is first subject to a linearization
transformation and next state estimation is performed by applying the standard Kalman
Filter to the linearized model. At a second level, the standard Information Filter is used to
fuse the state estimates obtained from local derivative-free Kalman filters running at the local
information processing nodes. This approach has significant advantages because unlike the
Extended Information Filter (i) is not based on local linearization of the system dynamics (ii)
it does not assume truncation of higher order Taylor expansion terms thus preserving the
accuracy and robustness of the performed estimation, (iii) it does not require the computation
of Jacobian matrices.
At a second stage the chapter proposes a method for the compensation of random delays and
packet drops which may appear during the transmission of measurements and state vector
estimates, and which the can cause the deterioration of the performance of the distributed
filtering-based control scheme (Xia et al., 2009), (Schenato, 2007), (Schenato, 2008). Two cases
are distinguished: (i) there are time delays and packet drops in the transmission of information
between the distributed local filters and the master filter, (ii) there are time delays and packet
drops in the transmission of information from distributed sensors to each one of the local
filters. In the first case, the structure and calculations of the master filter for estimating the
aggregate state vector remain unchanged. In the second case, the effect of the random delays
and packets drops has to be taken into account in the redesign of the local Kalman Filters,
which implies a modified Riccati equation for the computation of the covariance matrix of the
state vector estimation error, as well as the use of a correction (smoothing) term in the update
of the state vector’s estimate so as to compensate for delayed measurements arriving at the
local Kalman Filters.
Finally, the chapter shows that the aggregate state vector produced by a derivative-free
Extended Information Filter, suitably modified to compensate for communication delays and
packet drops, can be used for sensorless control and robotic visual servoing. The problem
of visual servoing over a network of synchronised cameras has been previously studied in
(Schuurman & Capson, 2004). In this chapter, visual servoing over a cameras network is
considered for the nonlinear dynamic model of a planar single-link robotic manipulator. It
is assumed that the network on which the visual servoing loop relies, can be affected by
disturbances, such as random delays or loss of frames during their transmission to the local
processing vision nodes. The position of the robot’s end effector in the cartesian space (and
equivalently the angle of the robotic link) is measured through m cameras. In turn, these
measurements are processed by m distributed derivative-free Kalman Filters thus providing
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Distributed Nonlinear Filtering Under Packet Drops and Variable Delays for Robotic Visual Servoing 3

m different estimates of the robotic link’s state vector. Next, the local state estimates are fused
with the use of the standard Information Filter. After all, the aggregate estimation of the state
vector is used in a control loop which enables the robotic link to perform trajectory tracking.
The structure of the chapter is as follows: In Section 2 the Extended Kalman Filter is
introduced and its use for state estimation of nonlinear dynamical systems is explained. In
Section 3 a derivative-free Kalman Filtering approach to state estimation of nonlinear systems
is analyzed. In Section 4 the derivative-free Extended Information Filter is formulated as
an approach to distributed state estimation for nonlinear systems, capable of overcoming
the drawbacks of the standard Extended Information Filter. In Section 5 the problem of
distributed filtering under random delays and packet drops is analyzed. The results are
also applied to distributed state estimation with the use of the derivative-free Extended
Information Filter. In Section 6 the previously described approach for derivative-free
Extended Information Filtering under communication delays and packet drops is applied
to the problem of state estimation-based control of nonlinear systems. As a case study the
model of a planar robot is considered, while the estimation of its state vector is performed
with the use of distributed filtering through the processing of measurements provided by
vision sensors (cameras). In Section 7 simulation tests are presented, to confirm the efficiency
of the proposed derivative-free Extended Information Filtering method. Finally, in Section 8
concluding remarks are given.

2. Extended Kalman Filtering for nonlinear dynamical systems

2.1 The continuous-time Kalman Filter for the linear state estimation model

First, the continuous-time dynamical system of Eq. (1) is assumed (Rigatos & Tzafestas, 2007),
(Rigatos, 2010d):

{

ẋ(t) = Ax(t) + Bu(t) + w(t), t≥t0

z(t) = Cx(t) + v(t), t≥t0
(1)

where x∈Rm×1 is the system’s state vector, and z∈Rp×1 is the system’s output. Matrices
A,B and C can be time-varying and w(t),v(t) are uncorrelated white Gaussian noises. The
covariance matrix of the process noise w(t) is Q(t), while the covariance matrix of the
measurement noise is R(t). Then, the Kalman Filter is a linear state observer which is given
by











˙̂x = Ax̂+ Bu+ K[z− Cx̂], x̂(t0) = 0

K(t) = PCTR−1

Ṗ = AP+ PAT + Q− PCTR−1CP

(2)

where x̂(t) is the optimal estimation of the state vector x(t) and P(t) is the covariance matrix
of the state vector estimation error with P(t0) = P0. The Kalman Filter consists of the system’s
state equation plus a corrective term K[z−Cx̂]. The selection of gain K corresponds actually to
the solution of an optimization problem. This is expressed as the minimization of a quadratic
cost functional and is performed through the solution of a Riccati equation. In that case the
observer’s gain K is calculated by K = PCTR−1 considering an optimal control problem for
the dual system (AT,CT), where the covariance matrix of the estimation error P is found by
the solution of a continuous-time Riccati equation of the form
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4 Distributed Nonlinear Filtering Under Packet Drops and Variable Delays for Robotic Visual Servoing

Ṗ = AP+ PAT + Q− PCTR−1CP (3)

where matrices Q and R stand for the process and measurement noise covariance matrices,
respectively.

2.2 The discrete-time Kalman Filter for linear dynamical systems

In the discrete-time case a dynamical system is assumed to be expressed in the form of a
discrete-time state model (Rigatos & Tzafestas, 2007), (Rigatos, 2010d):

x(k+ 1) = A(k)x(k) + L(k)u(k) + w(k)
z(k) = Cx(k) + v(k)

(4)

where the state x(k) is a m-vector, w(k) is a m-element process noise vector and A is a m×m
real matrix. Moreover the output measurement z(k) is a p-vector, C is an p×m-matrix of real
numbers, and v(k) is the measurement noise. It is assumed that the process noise w(k) and
the measurement noise v(k) are uncorrelated.
Now the problem of interest is to estimate the state x(k) based on the sequence of output
measurements z(1), z(2), · · · , z(k). The initial value of the state vector x(0), and the initial
value of the error covariance matrix P(0) is unknown and an estimation of it is considered,
i.e. x̂(0)= a guess of E[x(0)] and P̂(0)= a guess of Cov[x(0)].
For the initialization of matrix P one can set P̂(0) = λI, with λ > 0. The state vector
x(k) has to be estimated taking into account x̂(0), P̂(0) and the output measurements Z =
[z(1), z(2), · · · , z(k)]T, i.e. x̂(k) = αn(x̂(0)), P̂(0),Z(k)). This is a linear minimum mean
squares estimation problem (LMMSE) formulated as x̂(k + 1) = an+1(x̂(k), z(k + 1)). The
process and output noise arewhite and their covariancematrices are given by: E[w(i)wT(j)] =
Qδ(i− j) and E[v(i)vT(j)] = Rδ(i− j).
Using the above, the discrete-time Kalman filter can be decomposed into two parts: i) time
update (prediction stage), and ii) measurement update (correction stage). The first part
employs an estimate of the state vector x(k) made before the output measurement z(k) is
available (a priori estimate). The second part estimates x(k) after z(k) has become available (a
posteriori estimate).

• When the set of measurements Z− = {z(1), · · · , z(k− 1)} is available. From Z− an a priori
estimation of x(k) is obtained which is denoted by x̂−(k)= the estimate of x(k) given Z−.

• When z(k) is available, the output measurements set becomes Z = {z(1), · · · , z(k)}, where
x̂(k)= the estimate of x(k) given Z.

The associated estimation errors are defined by e−(k) = x(k) − x̂−(k)= the a priori error,
and e(k) = x(k) − x̂(k)= the a posteriori error. The estimation error covariance matrices

associated with x̂(k) and x̂(k) are defined as P−(k) = Cov[e−(k)] = E[e−(k)e−(k)
T
]

and P(k) = Cov[e(k)] = E[e(k)eT(k)] (Kamen & Su, 1999). From the definition
of the trace of a matrix, the mean square error of the estimates can be written as

MSE(x̂−(k)) = E[e−(k)e−(k)
T
] = tr(P−(k)) and MSE(x(k)) = E[e(k)eT(k) = tr(P(k)).

Finally, the linear Kalman filter equations in cartesian coordinates are
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measurement update:

K(k) = P−(k)CT [C·P−(k)CT + R]−1

x̂(k) = x̂−(k) + K(k)[z(k)− Cx̂−(k)]
P(k) = P−(k)− K(k)CP−(k)

(5)

time update:

P−(k+ 1) = A(k)P(k)AT(k) +Q(k)
x̂−(k+ 1) = A(k)x̂(k) + L(k)u(k)

(6)

2.3 The extended Kalman Filter

State estimation can be also performed for nonlinear dynamical systems using the Extended
Kalman Filter recursion (Ahrens & Khalil, 2005), (Boutayeb et al., 1997). The following
nonlinear state model is considered (Rigatos, 2010a), (Rigatos & Tzafestas, 2007):

x(k+ 1) = φ(x(k)) + L(k)u(k) + w(k)
z(k) = γ(x(k)) + v(k)

(7)

where x∈Rm×1 is the system’s state vector and z∈Rp×1 is the system’s output, while w(k)
and v(k) are uncorrelated, zero-mean, Gaussian zero-mean noise processes with covariance
matrices Q(k) and R(k) respectively. The operators φ(x) and γ(x) are vectors defined as
φ(x) = [φ1(x), φ2(x), · · · ,φm(x)]

T , and γ(x) = [γ1(x),γ2(x), · · · , γp(x)]
T, respectively. It is

assumed that φ and γ are sufficiently smooth in x so that each one has a valid series Taylor
expansion. Following a linearization procedure, φ is expanded into Taylor series about x̂:

φ(x(k)) = φ(x̂(k)) + Jφ(x̂(k))[x(k)− x̂(k)] + · · · (8)

where Jφ(x) is the Jacobian of φ calculated at x̂(k):

Jφ(x) =
∂φ

∂x
|x=x̂(k) =















∂φ1
∂x1

∂φ1
∂x2

· · ·
∂φ1
∂xm

∂φ2
∂x1

∂φ2
∂x2

· · ·
∂φ2
∂xm

...
...

...
...

∂φm
∂x1

∂φm
∂x2

· · ·
∂φm
∂xm















(9)

Likewise, γ is expanded about x̂−(k)

γ(x(k)) = γ(x̂−(k)) + Jγ [x(k)− x̂−(k)] + · · · (10)

where x̂−(k) is the estimation of the state vector x(k) before measurement at the k-th instant
to be received and x̂(k) is the updated estimation of the state vector after measurement at the
k-th instant has been received. The Jacobian Jγ(x) is

Jγ(x) =
∂γ

∂x
|x=x̂−(k) =















∂γ1
∂x1

∂γ1
∂x2

· · · ∂γ1
∂xm

∂γ2
∂x1

∂γ2
∂x2

· · · ∂γ2
∂xm

...
...

...
...

∂γp

∂x1

∂γp

∂x2
· · ·

∂γp

∂xm















(11)
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The resulting expressions create first order approximations of φ and γ. Thus the linearized
version of the system is obtained:

x(k+ 1) = φ(x̂(k)) + Jφ(x̂(k))[x(k)− x̂(k)] + w(k)
z(k) = γ(x̂−(k)) + Jγ(x̂−(k))[x(k)− x̂−(k)] + v(k)

(12)

Now, the EKF recursion is as follows: First the time update is considered: by x̂(k) the
estimation of the state vector at instant k is denoted. Given initial conditions x̂−(0) and P−(0)
the recursion proceeds as:

• Measurement update. Acquire z(k) and compute:

K(k) = P−(k)JTγ (x̂
−(k))·[Jγ(x̂−(k))P−(k)JTγ (x̂

−(k)) + R(k)]−1

x̂(k) = x̂−(k) + K(k)[z(k)− γ(x̂−(k))]
P(k) = P−(k)− K(k)Jγ(x̂−(k))P−(k)

(13)

• Time update. Compute:

P−(k+ 1) = Jφ(x̂(k))P(k)J
T
φ (x̂(k)) + Q(k)

x̂−(k+ 1) = φ(x̂(k)) + L(k)u(k)
(14)

The schematic diagram of the EKF loop is given in Fig. 1.

Fig. 1. Schematic diagram of the EKF loop

3. Derivative-free Kalman Filtering for a class of nonlinear systems

3.1 State estimator design through a nonlinear transformation

It will be shown that through a nonlinear transformation it is possible to design a state
estimator for a class of nonlinear systems, which can substitute for the Extended Kalman
Filter. The results will be generalized towards derivative-free Kalman Filtering for nonlinear
systems. The following continuous-time nonlinear single-output system is considered
(Marino, 1990),(Marino & Tomei, 1992)
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ẋ = f (x) + q0(x, u) +∑
p
i=1θiqi(x, u), or

ẋ = f (x) + q0(x, u) + Q(x, u)θ x∈Rn , u∈Rm, θ∈Rp

z = h(x), z∈R
(15)

with qi : Rn×Rm → Rn, 0≤i≤p, f : Rn→Rn, h : Rn→R, smooth functions, h(x0) = 0,
q0(x, 0) = 0 for every x ∈ Rn; x is the state vector, u(x, t) : R+→Rm is the control which is
assumed to be known, θ is the parameter vector which is supposed to be constant and y is the
scalar output.
The first main assumption on the class of systems considered is the linear dependence on
the parameter vector θ. The second main assumption requires that systems of Eq.(15) are
transformable by a parameter independent state-space change of coordinates in Rn

ζ = T(x), T(x0) = 0 (16)

into the system

ζ̇ = Acζ + ψ0(z, u) +∑
p
i=1θiψi(z, u)⇒

ζ̇ = Acζ + ψ0(z, u) +Ψ(z, u)θ

z = Ccζ

(17)

with

Ac =











0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
...
...

0 0 0 · · · 0











(18)

Cc =
(

1 0 0 · · · 0
)

(19)

and ψi : R×Rm→Rn smooth functions for i = 0, · · · , p. The necessary and sufficient
conditions for the initial nonlinear system to be transformable into the form of Eq.(17) have
been given in (Marino, 1990),(Marino & Tomei, 1992), and are summarized in the following:

(i) rank{dh(x), dL f
h(x), · · · , dLn−1f

h(x)} = n, ∀x∈Rn (which implies local observability). It

is noted that L f h(x) stands for the Lie derivative L f h(x) = (∇h) f and the repeated Lie

derivatives are recursively defined as L0f h = h for i = 0, Lif h = L f L
i−1
f h = ∇Li−1f h f for i =

1, 2, · · · .

(ii) [adif g, ad
j
f g] = 0, 0≤i, j≤n − 1. It is noted that adif g stands for a Lie Bracket which is

defined recursively as adif g = [ f , adi−1f ]gwith ad0f g = g and ad f g = [ f , g] = ∇g f −∇ f g.

(iii) [qi, ad
i
f g] = 0, 0≤i≤p, 0≤j≤n− 2 ∀ u∈Rm.

(iv) the vector fields adif g, 0≤i≤n− 1 are complete, in which g is the vector field satisfying

<









dh
...

d(Ln−1f h)









, g >=







0
...
1






(20)
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Then for every parameter vector θ, the system

ζ̂ = Ac ζ̂ + ψ0(z, u) +∑
p
i=1θiψi(z, u) + K(z− Ccζ̂)

x̂ = T−1(ζ̂)
(21)

is an asymptotic observer for a suitable choice of K provided that the state x(t) is bounded,
with estimation error dynamics

ė = (Ac − KCc)e =















−k1 1 0 · · · 0
−k2 0 1 · · · 0
...

...
...
...

...
−kn−1 0 0 · · · 1
−kn 0 0 · · · 0















e (22)

The eigenvalues of Ac − KCc can be arbitrarily placed by choosing the vector K, since they
coincide with the roots of the polynomial sn + k1s

n−1 + · · ·+ kn.

3.2 Derivative-free Kalman Filtering for nonlinear systems

Since Eq. (21) provides an asympotic observer for the initial nonlinear system of Eq. (15)
one can consider a case in which the observation error gain matrix K can be provided by
the Kalman Filter equations given initially in the continuous-time KF formulation, or in
discrete-time form by Eq. (5) and Eq. (6). The following single-input single-output nonlinear
dynamical system is considered

x(n) = f (x, t) + g(x, t)u(x, t) (23)

where z = x is the system’s output, and f (x, t), g(x, t) are nonlinear functions. It can be
noticed that the system of Eq. (23) belongs to the general class of systems of Eq. (15).

Assuming the transformation ζi = x(i−1), i = 1, · · · , n, and x(n) = f (x, t) + g(x, t)u(x, t) =
v(ζ, t), i.e. ζ̇n = v(ζ, t), one obtains the linearized system of the form

ζ̇1 = ζ2
ζ̇2 = ζ3
· · · · · ·
ζ̇n−1 = ζn
ζ̇n = v(ζ, t)

(24)

which in turn can be written in state-space equations as













ζ̇1
ζ̇2
· · ·
ζ̇n−1
ζ̇n













=















0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
...
...

0 0 0 · · · 1
0 0 0 · · · 0



























ζ1
ζ2
· · ·
ζn−1
ζn













+













0
0
· · ·
0
1













v(ζ, t) (25)

z =
(

1 0 0 · · · 0
)

ζ (26)

The system of Eq. (25) and Eq. (26) has been written in the form of Eq. (17), which means that
Eq. (21) is the associated asymptotic observer. Therefore, the observation gain K appearing in
Eq. (21) can be found using either linear observer design methods (in that case the elements
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of the observation error gain matrix K have fixed values), or the recursive calculation of the
continuous-time Kalman Filter gain described in subsection 2.2. If the discrete-time Kalman
Filter is to be used then one has to apply the recursive formulas of Eq. (5) and Eq. (6) on the
discrete-time equivalent of Eq. (25) and Eq. (26).

4. Derivative-free Extended Information Filter

4.1 Calculation of local estimations in terms of EIF information contributions

Again the discrete-time nonlinear system of Eq. (7) is considered. The Extended Information
Filter (EIF) performs fusion of local state vector estimates which are provided by local
Extended Kalman Filters, using the Information matrix and the Information state vector (Lee,
2008), (Manyika & Durrant-Whyte, 1994). The Information Matrix is the inverse of the
state vector covariance matrix, and can be also associated to the Fisher Information matrix
(Rigatos & Zhang, 2009). The Information state vector is the product between the Information
matrix and the local state vector estimate

Y(k) = P−1(k) = I(k)

ŷ(k) = P−(k)
−1
x̂(k) = Y(k)x̂(k)

(27)

The update equation for the Information Matrix and the Information state vector are given by

Y(k) = P−(k)−1 + JTγ (k)R
−1(k)Jγ(k)

= Y−(k) + I(k)
(28)

ŷ(k) = ŷ−(k) + JTγ (k)R(k)
−1[z(k)− γ(x(k)) + Jγ(k)x̂−(k)]
= ŷ−(k) + i(k)

(29)

where

I(k) = JTγ (k)R(k)
−1 Jγ(k) is the associated information matrix and

i(k) = JTγ (k)R(k)
−1[(z(k)− γ(x(k))) + Jγ x̂

−(k)] is the information state contribution
(30)

The predicted information state vector and Information matrix are obtained from

ŷ−(k)= P−(k)
−1
x̂−(k)

Y−(k) = P−(k)
−1

= [Jφ(k)P
−(k)Jφ(k)

T + Q(k)]−1
(31)

The Extended Information Filter is next formulated for the case that multiple local sensor
measurements and local estimates are used to increase the accuracy and reliability of the
estimation. It is assumed that an observation vector zi(k) is available for N different sensor
sites i = 1, 2, · · · ,N and each sensor observes a common state according to the local
observation model, expressed by

zi(k) = γ(x(k)) + vi(k), i = 1, 2, · · · ,N (32)

where the local noise vector vi(k)∼N(0,Ri) is assumed to be white Gaussian and uncorrelated
between sensors. The variance of a composite observation noise vector vk is expressed in terms
of the block diagonal matrix

R(k) = diag[R1(k), · · · , RN(k)]T (33)
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10 Distributed Nonlinear Filtering Under Packet Drops and Variable Delays for Robotic Visual Servoing

The information contribution can be expressed by a linear combination of each local
information state contribution ii and the associated information matrix I i at the i-th sensor
site

i(k) = ∑N
i=1 J

i
γ
T
(k)Ri(k)−1[zi(k)− γk(x(k)) + Jiγ(k)x̂

−(k)]

I(k) = ∑N
i=1 J

i
γ
T
(k)Ri(k)−1 Jiγ(k)

(34)

Using Eq. (34) the update equations for fusing the local state estimates become

ŷ(k) = ŷ−(k) +∑N
i=1 J

i
γ
T
(k)Ri(k)−1[zi(k)− γk(x(k)) + Jiγ(k)x̂

−(k)]

Y(k) = Y−(k) +∑N
i=1 J

i
γ
T
(k)Ri(k)−1 Jiγ(k)

(35)

It is noted that in the Extended Information Filter an aggregation (master) fusion filter
produces a global estimate by using the local sensor information provided by each local filter.

Fig. 2. Fusion of the distributed state estimates with the use of the Extended Information
Filter

As in the case of the Extended Kalman Filter the local filters which constitute the Extended
Information Filter can be written in terms of time update and a measurement update equation.

Measurement update: Acquire z(k) and compute

Y(k) = P−(k)−1 + JTγ (k)R(k)
−1 Jγ(k)

or Y(k) = Y−(k) + I(k) where I(k) = JTγ (k)R
−1(k)Jγ(k)

(36)

ŷ(k) = ŷ−(k) + JTγ (k)R(k)
−1[z(k)− γ(x̂(k)) + Jγ(k)x̂−(k)]

or ŷ(k) = ŷ−(k) + i(k)
(37)

Time update: Compute

Y−(k+ 1) = P−(k+ 1)
−1

= [Jφ(k)P(k)Jφ(k)
T + Q(k)]−1 (38)
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y−(k+ 1) = P−(k+ 1)
−1
x̂−(k+ 1) (39)

Fig. 3. Schematic diagram of the Extended Information Filter loop

4.2 Extended Information Filtering for state estimates fusion

In the Extended Information Filter each one of the local filters operates independently,
processing its own localmeasurements. It is assumed that there is no sharing ofmeasurements
between the local filters and that the aggregation filter (Fig. 2) does not have direct access to
the raw measurements giving input to each local filter. The outputs of the local filters are
treated as measurements which are forwarded to the aggregation fusion filter (Lee, 2008).
Then each local filter is expressed by its respective error covariance and estimate in terms of
information contributions given in Eq.(48)

Pi
−1(k) = P−i (k)

−1
+ JTγ (k)R(k)

−1 Jγ(k)

x̂i(k) = Pi(k)(P
−
i (k)−1 x̂−i (k)) + JTγ (k)R(k)

−1[zi(k)− γk(x(k)) + Jiγ(k)x̂
−
i (k)]

(40)

It is noted that the local estimates are suboptimal and also conditionally independent given
their own measurements. The global estimate and the associated error covariance for the
aggregate fusion filter can be rewritten in terms of the computed estimates and covariances
from the local filters using the relations

JTγ (k)R(k)
−1 Jγ(k) = Pi(k)

−1 − P−i (k)−1

JTγ (k)R(k)
−1[zi(k)− γk(x(k)) + Jiγ(k)x̂

−(k)] = Pi(k)
−1 x̂i(k)− Pi(k)

−1 x̂i(k− 1)
(41)

For the general case of N local filters i = 1, · · · ,N, the distributed filtering architecture is
described by the following equations

P(k)−1 = P−(k)−1 +∑N
i=1[Pi(k)

−1 − P−i (k)−1]

x̂(k) = P(k)[P−(k)−1 x̂−(k) +∑N
i=1(Pi(k)

−1 x̂i(k)− P−i (k)−1 x̂−i (k))]
(42)
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It is noted that again the global state update equation in the above distributed filter can be
written in terms of the information state vector and of the information matrix

ŷ(k) = ŷ−(k) +∑N
i=1(ŷi(k)− ŷ−i (k))

Ŷ(k) = Ŷ−(k) +∑N
i=1(Ŷi(k)− Ŷ−

i (k))
(43)

The local filters provide their own local estimates and repeat the cycle at step k+ 1. In turn the
global filter can predict its global estimate and repeat the cycle at the next time step k+ 1when
the new state x̂(k + 1) and the new global covariance matrix P(k + 1) are calculated. From
Eq. (59) it can be seen that if a local filter (processing station) fails, then the local covariance
matrices and the local state estimates provided by the rest of the filters will enable an accurate
computation of the system’s state vector.

4.3 Local estimations in terms information contributions for the derivative-free EIF

After applying the transformation described in Section 3, the nonlinear discrete-time model
of the dynamical system given in Eq. (15) can be substituted by a linear model of the form
given in Eq. (1). For this linearized model, the Information Filter (IF) performs fusion of the
local state vector estimates which are provided by the local Kalman Filters, using again the
Information matrix and the Information state vector (Rao & Durrant-Whyte, 1991). In place of the
Jacobian matrix Jφ matrix Ad is used, (discretized equivalent of matrix Ac, which appears in
Eq. (18)), while in place of the Jacobian matrix Jγ, matrix Cd is used (discretized equivalent of
matrix Cc, which appears in Eq. (19)). As defined before, the Information Matrix is the inverse
of the state vector covariance matrix, and can be also associated to the Fisher Information
matrix (Rigatos & Zhang, 2009). The Information state vector is the product between the
Information matrix and the local state vector estimate

Y(k) = P−1(k) = I(k)

ŷ(k) = P−(k)
−1
x̂(k) = Y(k)x̂(k)

(44)

The update equation for the Information Matrix and the Information state vector are given by

Y(k) = P−(k)−1 + Cd
T(k)R−1(k)Cd(k)

= Y−(k) + I(k)
(45)

ŷ(k) = ŷ−(k) + Cd
T(k)R(k)−1[z(k)− γ(x(k)) + Cd x̂

−(k)]
= ŷ−(k) + i(k)

(46)

where

I(k) = CT
d (k)R(k)

−1Cd(k) is the associated information matrix and
i(k) = CT

d (k)R(k)
−1[(z(k)− Cd(k)x(k)) + Cd x̂

−(k)] is the information state contribution
(47)

The predicted information state vector and Information matrix are obtained from

ŷ−(k)= P−(k)
−1
x̂−(k)

Y−(k) = P−(k)
−1

= [Ad(k)P
−(k)Ad(k)

T + Q(k)]−1
(48)

The derivative-free Extended Information Filter is next formulated for the case that multiple
local sensormeasurements and local estimates are used to increase the accuracy and reliability
of the estimation. It is assumed that an observation vector zi(k) is available for N different
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sensor sites i = 1, 2, · · · ,N and each sensor observes a common state according to the local
observation model, expressed by

zi(k) = Cd(k)x(k) + vi(k), i = 1, 2, · · · ,N (49)

where the local noise vector vi(k)∼N(0,Ri) is assumed to be white Gaussian and uncorrelated
between sensors. The variance of a composite observation noise vector vk is expressed in terms
of the block diagonal matrix

R(k) = diag[R1(k), · · · , RN(k)]T (50)

The information contribution can be expressed by a linear combination of each local
information state contribution ii and the associated information matrix I i at the i-th sensor
site

i(k) = ∑N
i=1C

i
d

T
(k)Ri(k)−1[zi(k)− Ci

d(x(k)) + Ci
d(k)x̂

−(k)]

I(k) = ∑N
i=1C

i
d

T
(k)Ri(k)−1Ci

d(k)
(51)

Using Eq. (34) the update equations for fusing the local state estimates become

ŷ(k) = ŷ−(k) +∑N
i=1 J

i
γ
T
(k)Ri(k)−1[zi(k)− Cd(k)(x(k)) + Ci

d(k)x̂
−(k)]

Y(k) = Y−(k) +∑N
i=1C

i
d

T
(k)Ri(k)−1Ci

d(k)
(52)

It is noted that, as in the Extended Information Filter case, an aggregation (master) fusion filter
produces a global estimate by using the local sensor information provided by each local filter.
The local filters which constitute the Information Filter can be written in terms of time update
and a measurement update equation.

Measurement update: Acquire z(k) and compute

Y(k) = P−(k)−1 + CT
d (k)R(k)

−1Cd(k)
or Y(k) = Y−(k) + I(k) where I(k) = CT

d (k)R
−1(k)Cd(k)

(53)

ŷ(k) = ŷ−(k) + CT
d (k)R(k)

−1[z(k)− Cd(x̂(k)) + Cd x̂
−(k)]

or ŷ(k) = ŷ−(k) + i(k)
(54)

Time update: Compute

Y−(k+ 1) = P−(k+ 1)
−1

= [Ad(k)P(k)Ad(k)
T + Q(k)]−1 (55)

y−(k+ 1) = P−(k+ 1)
−1
x̂−(k+ 1) (56)

4.4 Derivative-free information filtering for state estimates fusion

The outputs of the local Kalman Filters described in subsection 4.3 are treated as
measurements which are fed into the aggregation fusion filter (Rao & Durrant-Whyte, 1991).
Then each local filter is expressed by its respective error covariance and estimate in terms of
information contributions given in Eq.(48)

Pi
−1(k) = P−i (k)

−1
+ CT

d (k)R
(k)−1Cd(k)

x̂i(k) = Pi(k)(P
−
i (k)−1 x̂−i (k)) + CT

d (k)R(k)
−1[zi(k)− Ci

d(k)x(k) + Ci
d(k)x̂

−
i (k)]

(57)
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As explained in subsection 4.2, the local estimates are suboptimal and also conditionally
independent given their own measurements. The global estimate and the associated error
covariance for the aggregate fusion filter can be rewritten in terms of the computed estimates
and covariances from the local filters using the relations

CT
d (k)R(k)

−1Cd(k) = Pi(k)
−1 − P−i (k)−1

CT
d (k)R(k)

−1[zi(k)− Ci
d(x(k)) + Ci

d(k)x̂
−(k)] = Pi(k)

−1 x̂i(k)− Pi(k)
−1 x̂i(k− 1)

(58)

For the general case of N local filters i = 1, · · · ,N, the distributed filtering architecture is
described by the following equations

P(k)−1 = P−(k)−1 +∑N
i=1[Pi(k)

−1 − P−i (k)−1]

x̂(k) = P(k)[P−(k)−1 x̂−(k) +∑N
i=1(Pi(k)

−1 x̂i(k)− P−i (k)−1 x̂−i (k))]
(59)

It is noted that, once again, the global state update equation in the above distributed filter can
be written in terms of the information state vector and of the information matrix

ŷ(k) = ŷ−(k) +∑N
i=1(ŷi(k)− ŷ−i (k))

Ŷ(k) = Ŷ−(k) +∑N
i=1(Ŷi(k)− Ŷ−

i (k))
(60)

The local filters provide their own local estimates and repeat the cycle at step k + 1. In turn
the global filter can predict its global estimate and repeat the cycle at the next time step k+ 1
when the new state x̂(k + 1) and the new global covariance matrix P(k + 1) are calculated.
From Eq. (59) it can be seen again that if a local filter (processing station) fails, then the local
covariance matrices and the local state estimates provided by the rest of the filters will enable
an accurate computation of the system’s state vector.

5. Distributed nonlinear filtering under random delays and packet drops

5.1 Networked Kalman Filtering for an autonomous system

The structure of networked Kalman Filtering is shown in Fig. 4. The problem of distributed
filtering becomesmore complicated if random delays and packet drops affect the transmission
of information between the sensors and local processing units (filters), or between the local
filters and the master filter where the fused state estimate is computed. First, results on the
stability of the networked linear Kalman Filter will be presented (Xia et al., 2009). The general
state-space form of a linear autonomous time-variant dynamical system is given by

x(k) = Ax(k− 1) + w(k, k− 1) (61)

where x(k)∈Rm×1 is the system’s state vector, A∈Rn×n is the system’s state transition matrix,
and w(k, k − 1) is the white process noise between time instants k and k − 1.The sensor
measurements are received starting at time instant k≥1 and are described by the measurement
equation

z(k) = Cx(k) + v(k) (62)

where C∈Rp×m, z(k)∈Rp×1 and v(k) is the white measurement noise. Measurements z(k) are
assumed to be transmitted over a communication channel.
To denote the arrival or loss of a measurement to the local Kalman Filter, through the
communication network, one can use variable γk∈{0, 1}, where 1 stands for successful
delivery of the packet, while 0 stands for loss of the packet.

90 Robot Arms

www.intechopen.com



Distributed Nonlinear Filtering Under Packet Drops and Variable Delays for Robotic Visual Servoing 15

Thus, in the case of packet losses, the discrete time Kalman Filter recursion that was described
in Eq. (5) (measurement update) is modified as

K(k) = γkP
−(k)CT [CP−(k)CT + R]−1 (63)

where γk∈{0, 1}. This modification implies that the value of the estimated state vector x̂(k)
remains unchanged if the a packet drop occurs, i.e. when γk = 0.
It is assumed that the system [A,C] is observable. Next, the following time sequences {τk}
and {βk} are defined τ1 = inf{k : k > 1, γk = 0}. Time τ1 denotes the first time instant
when the transmission over the communication channel is interrupted (loss of connection).
On the other hand, time sequence βk is defined as β1 = inf{k : k > τ1,γk = 1}. Time
βk denotes the k-th time instant in which the transmission over the communication channel
is restored (reestablishment of connection). Therefore, for time sequences τk and βk it holds
1 < τ1 < β1 < τ2 < β2 < · · · < τk < βk < · · · .
Thus, 1 is the beginning of tranmission, τ1 is the time instant at which the connection is lost
for the first time, β1 is the time instant at which the connection is re-established after first
interruption, τ2 is the time instant at which the connection is lost for second time, β2 is the time
instant at which the connection is re-established after second interruption,etc. The following
variable is also defined β−k = βk− 1, where β−k is the last time instant in a period of subsequent

packet losses. Time β−k is useful for analyzing the behavior of the Kalman Filter in case of a
sequence of packet losses (deterioration of the estimation error covariance matrix). It is noted
that in the case of the filtering procedure over the communication network, the sequence of
covariance matrices Pβk is stable if supk>1E||Pβk || < ∞ (Xia et al., 2009). Equivalently, it can be
stated that the networked system satisfies the condition of peak covariance stability (Xia et al.,
2009).

Fig. 4. Distributed filtering over sensors network with communication delays and packet
drops

5.2 Processing of the delayed measurements for an autonomous system

Now, the processing of the delayed measurements for the networked linear Kalman Filter
proceeds as follows: it is assumed that for all local filters the packet losses and time delays
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have the same statistical properties. It is also assumed that measurement zi(k − N) should
have arrived at the i-th local filter at time instant k − N. Instead of this, the measurement
arrives at time instant k+ 1. The delayed measurement zi(k− N) must be integrated in the
estimation which has been performed by each local Kalman Filter (see Fig. 5 and Fig. 6).

Fig. 5. Distributed filtering diagram implemented with the use of local filters and a master
(aggregation) filter

Fig. 6. Delayed measurement over the communication channel

This means that the estimation x̂i(k|k) and the associated state estimation error covariance
matrix Pi(k|k) have to be modified. The transition matrices between different time instances
of the discrete-time system of Eq. (61) are defined

A(k, k− j) = A(k, k− 1)· · ·A(k− j+ 1, k− j), j∈Z+ (64)

Using the system’s dynamic equation in transition matrix form, i.e

x(k) = A(k, k− 1)x(k− 1) + w(k, k− 1)
zi(k) = Ci(k)x(k) + vi(k)

(65)

one has

x(k) = A(k, k− N)x(k− N) + w(k, k− N) (66)

where
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w(k, k− N) = ∑N
j=1A(k, k− j+ 1)w(k− j+ 1, k− j) (67)

which means that knowing the state estimation x(k− N) and the sequence of noises from time
instant k− N to time instant k one can calculate an estimation of the state vector at time instant
k. Denoting Φ1(k − N, k) = A(k, k − N)−1 and wa(k − N, k) = −A(k, k− N)−1w(k, k − N)
then, from Eq. (66) one obtains

x(k− N) = Φ1(k− N, k)x(k) + wa(k− N, k) (68)

To incorporate the delayed measurement zi(k− N) which arrives at the i-th local filter at time
instant k+ 1, a state estimation is created first for instant k− N using Eq. (68), i.e.

x̂i(k− N, k) = Φ1(k− N, k)x̂i(k|k) + ŵa(k− N, k|k) (69)

where x̂i(k|k) is the state estimation of the i-th local filter at time instant k and ŵi(k− N, k|k) is
the noise sequence for the i-th local filter, at time instant k− N. For the measurement (output)
equation one has from Eq. (65)

zi(k− N) = Ci(k− N)x(k− N) + vi(k− N) (70)

while substituting x(k− N) from Eq. (68) one gets

zi(k− N) = Ci(k− N)Φ1(k− N, k)x(k) + Ci(k− N)wai(k− N, k) + vi(k− N) (71)

Next, using the current state estimate x̂(k|k) and Eq. (71) one can find the measurement
estimate ẑi(k− N|k) for the i-th local filter, i = 1, · · · ,M:

ẑi(k− N) = Ci(k− N)Φ1 i(k− N, k)x̂(k|k) + Ci(k− N)ŵαi(k− N, k) (72)

Defining, z̃i(k|j) = zi(k)− ẑi(k|j) (innovation), x̃i(k|j) = x(k)− x̂i(k|j) (state estimation error),
and w̃i(k− N, k|k) = w(k− N, k)− ŵi(k− N, k) (noise estimation error) one obtains

z̃i(k− N|k) = Ci(k− N)Φ1 i(k− N, k)x̃i(k|k) + Ci(k− N)w̃ai(k− N, k|k) + vi(k− N) (73)

The innovation z̃i(k− N, k) at time instant k− N will be used to modify the estimation x̂i(k|k)
into

x̂∗i (k|k) = x̂i(k|k) +Miz̃i(k− N|k) (74)

Thus, one can update (smooth) the state estimate at time instant k by adding to the current
state estimate x̂i(k|k) the corrective term

Miz̃i(k− N, k) (75)

where Mi is a gain matrix to be defined in the sequel, and z̃i(k − N, k) is the innovation
between the measurement zi(k − N) taken at time instant k − N and the output estimate
ẑi(k− N) which has been calculated in Eq. (72).
The main difficulty in Eq. (74) is that one has to calculate first the noise estimation error
w̃ai(k− N, k|k), which means that one has to calculate an estimate of the process noise ŵai(k−
N, k).
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The following theorem has been stated in (Xia et al., 2009), and is also applicable to the
distributed filtering approach presented in this chapter:

Theorem 1: It is assumed that the observation error (innovation) at the i-th information
processing unit (local filter), at time instant k− n where n∈[0,N], is given by

z̃(k− n) = zi(k− n)− ẑi(k− n) (76)

and that the covariance matrix of the white process noise wa(k− j+ 1, k− j) is

Q(k− j+ 1, k− j) = E{wa(k− j+ 1, k− j)wa(k− j+ 1, k− j)T} (77)

while the estimation error for the noise wai(k− N, k|k) is

w̃ai(k− N, k|k) = wai(k− N, k)− ŵai(k− N, k|k) (78)

Moreover, the covariance matrix for the error of the white estimated noise vector w̃ai(k −
N, k|k) is

Q∗
i (k− N, k) = E{w̃ai(k− N, k|k)w̃ai(k− N, k|k)T} (79)

Then, one can obtain the noise estimate ŵai(k− N, k) from the relation

ŵai(k− N, k|k) = −Φ1(k− N, k)∑N−1
n=0

C̃i(n)[Ci(k− n)Pi(k− n|k− n− 1)Ci(k− n)T + Ri(k− n)]−1z̃i(k− n)
(80)

where

C̃i(n) = {A(k, k− n)Q(k− n, k− n− 1) +∑N
j=n+2A(k, k− j+ 1)Q(k− j+ 1, k− j)×

×[∏
j−1
m=n+1A(k−m+ 1, k−m)[I − Ki(k−m)Ci(k−m)]]T}Ci(k− n)T

(81)

while the covariance matrix of the estimated white noise wαi(k− N, k) is calculated as

Q∗
i (k− N, k) = Q(k− N, k)−Φ1(k− N, k)×

×∑N−1
n=0 C̃i(n)[Ci(k− n)Pi(k− n|k− n− 1)Ci(k− n)T + Ri(k− n)]−1×

×C̃i(n)
T
Φ1(k− N, k)T

(82)

where

Q(k− N, k) = Φ1(k− N, k)[∑N
j=1A(k, k− j+ 1)×

×Q(k− j+ 1, k− j)A(k, k− j+ 1)T ]Φ1(k− N, k)T
(83)

Next, a theorem is given about the calculation of covariance matrix Mi appearing in the
modified state estimation of Eq. (74). The theorem comes from (Xia et al., 2009) and is also
applicable to the distributed filtering approach which is presented in this chapter.

Theorem 2: It is assumed that the modified state estimation error at time instant k is

x̃∗i (k|k) = x(k)− x̂i(k|k) (84)

and that the covariance matrix of the modified state estimation error is
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P∗i (k|k) = E{x̃∗i (k|k)x̃
∗
i (k|k)

T} (85)

and that the cross-covariance between x̃i(k|k) and w̃i(k− N, k|k) is

Px̃w̃i (k|k) = E{x̃i(k|k)w̃i(k− N, k|k)T} (86)

Then, the optimal filter for the processing of the delayed measurements is given by Eq. (74),
i.e.

x̂∗i (k|k) = x̂i(k|k) +Mi[zi(k− N)− ẑi(k− N|k)] (87)

where

Mi = [Pi(k|k)Φ1(k− N, k)T + Px̃w̃i ]Ci(k− N)TW−1
i (88)

In that case, the covariance matrix of the modified state estimation error becomes

P∗i (k|k) = Pi(k|k)− [Px̃w̃i + Pi(k|k)Φ1(k− N, k)T ]×

×Ci(k− N)TW−1
i Ci(k− N)×

×[Px̃w̃i + Pi(k|k)Φ1(k− N, k)T ]T
(89)

where matricesWi and Px̃w̃i are defined as

Wi = Ci(k− N){Φ1(k− N, k)Pi(k|k)Φ1(k− N, k)T+
+Φ1(k− N, k)Px̃w̃i + [A(k− N, k)Px̃w̃i ]T +Q∗

i (k− N, k)}
×Ci(k− N)′ + Ri(k− N)

(90)

Px̃w̃i = Φ1(k− N, k)∑N−1
n=0 Pi(k− N|k− N)Di(n)

T×

×[Ci(k− n)Pi(k− n|k− n− 1)Ci(k− n)T + Ri(k− n)]−1×
×C̃i(n)

TΦ1(k− N, k)T − A(k, k− N)Q∗
i (k− N, k)

(91)

and matrix DT
i (n) is defined as

Di(n) =











Ci(k− n)A(k− n, k− n− 1), if N = 1

Ci(k− n)A(k− n, k− n− 1)∏N−2
j=n [I− Ki(k− j− 1)Ci(k− j− 1)]×

×A(k− j− 1, k− j− 2), if N > 1

(92)

5.3 Processing of the delayed measurements for a linear non-autonomous system

5.3.1 The case of a time-variant linear system

In the case of a linear non-autonomous system, in place of Eq. (61) one has

x(k) = A(k, k− 1)x(k− 1) + B(k, k− 1)u(k− 1) + w(k, k− 1) (93)

Setting w1(k, k− 1) = B(k, k− 1)u(k− 1) + w(k, k− 1) one obtains

x(k) = A(k, k− 1)x(k− 1) + w1(k, k− 1) (94)

and consequently it holds

x(k) = ∏N
j=1A(k− j+ 1, k− j)x(k− N)+

+∑N−1
m=1∏

m
j=1A(k− j+ 1, k− j)w1(k−m, k−m− 1) + w1(k, k− 1)

(95)
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where

w1(k−m+ 1, k−m) = B(k−m+ 1, k−m)u(k−m) + w(k−m+ 1, k−m) (96)

Thus, one can obtain a more compact form

x(k) = Φ(k, k− N)x(k− N) +w1(k, k− N) (97)

with

Φ(k, k− N) = ∏N
j=1A(k− j+ 1, k− j), and

w1(k, k− N) = ∑N−1
m=1∏

m
j=1A(k− j+ 1, k− j)w1(k−m, k−m− 1) +w1(k, k− 1)

(98)

5.3.2 The case of a time-invariant linear system

For a linear time-invariant non-autonomous system

x(k) = Ax(k− 1) + Bu(k− 1) + w(k− 1) (99)

it holds

x(k) = ANx(k− N) +
N

∑
j=1

AN−jBu(k− N+ j− 1) +
N

∑
j=1

AN−jw(k− N + j− 1) (100)

Denoting AN = Φ(k, k− N) one has

x(k) = Φ(k, k− N)x(k− N) +
N

∑
j=1

AN−jBu(k− N + j− 1) +
N

∑
j=1

AN−jw(k− N + j− 1) (101)

Setting

w1(k, k− N) =
N

∑
j=1

AN−jBu(k− N + j− 1) +
N

∑
j=1

AN−jw(k− N+ j− 1) (102)

one has that Eq. (101) can be written in a more compact form as

x(k) = Φ(k, k− N)x(k− N) +w1(k, k− N) (103)

Using that matrix Φ(k, k− N) is invertible, one has

x(k− N) = Φ(k, k− N)−1x(k)−Φ(k, k− N)−1w1(k, k− N) (104)

The following notation is used Φ1(k − N, k) = Φ(k, k− N)−1 while for the retrodiction of
w1(k, k− N) it holds wa(k− N, k|k) = −Φ(k, k− N)−1w1(k, k− N). Then, to smooth the state
estimation at time instant k− N, using the measurement of output zi(k− N) received at time
instant k+ 1 one has the state equation

x̂(k− N, k) = Φ1(k− N, k)x̂(k|k) + ŵa(k− N, k|k) (105)

while the associated measurement equation becomes
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z(k− N) = Cx(k− N) + v(k− N) (106)

Substituting Eq. (104) into Eq. (106) provides

z(k− N) = CΦ1(k− N, k)x(k) + Cwa(k− N, k) + v(k− N) (107)

and the associated estimated-output at time instant k− N is

ẑ(k− N) = CΦ1(k− N, k)x̂(k|k) + Cŵa(k− N, k) (108)

From Eq. (108) and Eq. (107) the innovation for the delayed measurement can be obtained

z̃(k− N) = z(k− N)− ẑ(k− N) (109)

i.e. z̃(k − N) = CΦ1(k − N)x̃(k|k) + Cw̃a(k − N), where x̃(k|j) = x(k) − x̂(k|j) is the state
estimation error and ŵa(k− N, k|k) = wa(k− N, k)− ŵa(k− N, k) is the estimation error for
wα. With this innovation the estimation of the state vector x(k|k) at time instant k is corrected.
The correction (smoothing) relation is

x̂∗(k|k) = x(k|k) +Mz̃(k− N, k) (110)

Therefore, again the basic problem for the implementation of the smoothing relation provided
by Eq. (110) is the calculation of the termwa(k−N, k) i.e. wa(k−N) = Φ(k, k− N)−1w1(k, k−
N). This in turn requires the estimation of the term w1(k− N, k) which, according to Eq. (80),
is provided by

ŵ1(k− N, k) = −Φ1(k− N, k)∑N−1
n=0 ·

·C̃(n)[C(k− n)P(k− n|k− n− 1)C(k− n)]T + R(k− n)]−1z̃(k− n)
(111)

where z̃(k− n) = z(k− n)− ẑ(k− n) is the innovation for time-instant k− n, while, as given
in Eq. (81)

C̃(n) = {A(k, k− n)Q(k− n, k− n− 1) +∑N
j=n+2A(k, k− j+ 1)Q(k− j+ 1, k− j)×

×[∏
j−1
m=n+1A(k−m+ 1, k−m)[I − Ki(k−m)C(k−m)]T ]}C(k− n)T

(112)

5.4 Derivative-free Extended Information Filtering under time-delays and packet drops

It has been shown that using a suitable transform (diffeomorphism), the nonlinear system of
Eq. (15) can be transformed into the system of Eq. (17). Moreover, it has been shown that for
the systems of Eq. (23) and Eq. (24) one can obtain a a state-space equation of the form
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v(ζ, t) (113)

z =
(

1 0 0 · · · 0
)

ζ (114)

where v(t) = f (x, t) + g(x, t)u(t), with u(t) being the control input of the dynamical system.
The description of the initial system of Eq. (17) in the form of Eq. (113) and Eq. (114) enables
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the application of the previous analysis for the compensation of time-delays and packet-drops
through smoothing in the computation of the linear Kalman Filter. The fact that the system of
Eq. (113) and Eq. (114) is a time invariant one, facilitates the computation of the smoothing
Kalman Filter given in Eq. (100) to Eq. (112). Thus, one has to use the time invariant matrices
Ac and Cc defined in Eq. (18) and Eq. (19), while for matrix Bc it holds according to Eq. (25)
that Bc = [0, 0, · · · , 0, 1]T. The discrete-time equivalents of matrices Ac, Bc and Cc are noted
as Ad, Bd and Cd, respectively. It is also noted that due to the specific form of matrix Bc, the
term Bu(k− 1) appearing in Eq. (99) is a variable of small magnitude with mean value close
to zero. Thus the term w1(k, k− 1) = Bu(k− 1) + w(k, k− 1) differs little from w(k, k− 1).
It also becomes apparent that through the description of the initial system of Eq. (17) in the
form of Eq. (113) and Eq. (114), the application of the derivative-free Extended Information
Filter can be performed in a manner that enables the compensation of time-delays and packet
drops. Writing the controlled system in the form of Eq. (113) and Eq. (114) permits to develop
local linear Kalman Filters that smooth the effects of delayed sensor measurement or the loss
of measurement packets. Moreover, the application of the standard Information Filter for
fusing the estimates provided by the local Kalman Filters, permits to avoid the approximation
errors met in the Extended Information Filter algorithm.

6. Distributed filtering under time-delays and packet drops for sensorless control

6.1 Visual servoing over a network of synchronized cameras

Visual servoing over a network of synchronized cameras is an example where the efficiency of
the proposed distributed filtering approach under time delays and packet drops can be seen.
Applications of vision-based robotic systems are rapidly expanding due to the increase in
computer processing power and low prices of cameras, image grabbers, CPUs and computer
memory. In order to satisfy strict accuracy constraints imposed by demanding manufacturing
specifications, visual servoing systems must be fault tolerant. This means that despite failures
in its components or the presence of disturbances, the system must continue to provide valid
control outputs which will allow the robot to complete its assigned tasks (DeSouza & Kak,
2004),(Feng & Zeng, 2010),(Hwang & Shih, 2002),(Malis et al., 2000).
The example to be presented describes the control of a planar robot with the use of a
position-based visual servo that comprises multiple fixed cameras. The chapter’s approach
relies on neither position nor velocity sensors, and directly sets the motor control current
using only visual feedback. Direct visual servoing is implemented using a distributed filtering
schemewhich permits to fuse the estimates of the robot’s state vector computed by local filters,
each one associated to a camera in the cameras network (see Fig. 7). The cameras’ network can
be based on multiple RS-170 cameras connected to a computer with a frame grabber to form
a vision node. Each vision node consists of the camera, the frame grabber and the filter which
estimates motion characteristics of the monitored robot joint. The vision nodes are connected
in a network to form a distributed vision system controlled by a master computer. The master
computer is in turn connected to a planar 1-DOF robot joint and uses the vision feedback to
perform direct visual servoing (see Fig. 7).
The master computer communicates video synchronization information over the network to
each vision node. Typical sources of measurement noise include charge-coupled device (CCD)
noise, analog-to-digital (A/D) noise and finite word-length effects. Under ideal conditions,
the effective noise variance from these sources should remain relatively constant. Occlusions
can be also considered as a noise source. Finally, communication delays and packet drops
in the transmission of measurements from the vision sensors to the information processing
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Fig. 7. Distributed cameras network and distributed information processing units for visual
servoing

nodes induce additional disturbances which should be compensated by the virtual servoing
control loop.

6.2 Distributed filtering-based fusion of the robot’s state estimates

Fusion of the local state estimates which are provided by filters running on the vision
nodes can improve the accuracy and robustness of the performed state estimation, thus also
improving the performance of the robot’s control loop (Sun et al., 2011),(Sun & Deng, 2005).
Under the assumption of Gaussian noise, a possible approach for fusing the state estimates
from the distributed local filters is the derivative-free Extended Information Filter (DEIF). As
explained in Section 4, the derivative-free Extended Information Filter provides an aggregate
state estimate byweighting the state vectors produced by local Kalman Filterswith the inverse
of the associated estimation error covariance matrices.
Visual servoing over the previously described cameras network is considered for the nonlinear
dynamic model of a single-link robotic manipulator. The robot can be programmed to execute
a manufacturing task, such as disassembly or welding (Tzafestas et al., 1997). The position of
the robot’s end effector in the cartesian space (and consequently the angle for the robotic link)
is measured by the aforementionedm distributed cameras. The proposedmulti-camera based
robotic control loop can be also useful in other vision-based industrial robotic applications
where the vision is occluded or heavily disturbed by noise sources, e.g. cutting. In such
applications there is need to fuse measurements from multiple cameras so as to obtain
redundancy in the visual information and permit the robot to complete safely and within the
specified accuracy constraints its assigned tasks (Moon et al, 2006),(Yoshimoto et al., 2010).
The considered 1-DOF robotic model consists of a rigid link which is rotated by a DC motor,
as shown in Fig. 8. The model of the DC motor is described by the set of equations: Lİ =
−keω − RI +V, Jω̇ = ke I − kdω − Γd, with the following notations L : armature inductance,
I : armature current, ke : motor electrical constant, R : armature resistance, V : input voltage,
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Fig. 8. Visual servoing based on fusion of state estimates provided by local derivative-free
nonlinear Kalman Filters

taken as control input, J : motor inertia, ω : rotor rotation speed, kd : mechanical dumping
constant, Γd : disturbance or external load torque. It is assumed that Γd = mgl·sin(θ), i.e.
that the DC motor rotates a rigid robotic link of length l with a mass m attached to its end.
Then, denoting the state vector as [x1, x2, x3]

T = [θ, θ̇, θ̈]T, a nonlinear model of the DC motor
is obtained

ẋ = f (x, t) + g(x, t)u (115)

where f (x, t) = [ f1(x, t), f2(x, t), f3(x, t)]
T is a vector field function with elements: f1(x, t) =

x2, f2(x, t) = x3, f3(x, t) = − k2e+kdR
JL x2 −

RJ+KdL
JL x3 −

Rmgl
JL sin(x1)−

mgl
J cos(x1)x2. Similarly,

for function g(x, t) it holds that g(x, t) = [g1(x, t), g2(x, t), g3(x, t)]
T, i.e. it is a vector field

function with elements: g1(x, t) = 0, g2(x, t) = 0, g3(x, t) = ke
JL . Having chosen the joint’s

angle to be the system’s output, the state space equation of the 1-DOF robot manipulator can
be rewritten as

x(3) = f̄ (x) + ḡ(x)u (116)

where functions f̄ (x) and ḡ(x) are given by f̄ (x) = − k2e+kdR
JL x2 −

RJ+KdL
JL x3 −

Rmgl
JL sin(x1)−

mgl
J cos(x1)x2, and ḡ(x) = ke

JL . This is a system in the form of Eq. (23), therefore a

state estimator can be designed according to the previous results on derivative-free Kalman
Filtering.
The controller has to make the system’s output (angle θ of the motor) follow a given reference
signal xd. For measurable state vector x and uncertain functions f (x, t) and g(x, t) an
appropriate control law for the 1-DOF robotic model is

u = 1
g(x,t)

[x
(n)
d − f (x, t)− KTe+ uc] (117)

100 Robot Arms

www.intechopen.com



Distributed Nonlinear Filtering Under Packet Drops and Variable Delays for Robotic Visual Servoing 25

with e = x − xd, e
T = [e, ė, ë, · · · , e(n−1)]T, KT = [kn, kn−1, · · · , k1], such that the polynomial

e(n) + k1e
(n−1) + k2e

(n−2) + · · ·+ kne is Hurwitz. The previously defined control law results

into e(n) = −KTe+ uc+ d̃, where the supervisory control term uc aims at the compensation of
modeling errors as well as of the additive disturbance d̃ (Rigatos & Tzafestas, 2007). Suitable
selection of the feedback gain K assures that the tracking error will converge to limt→∞e(t) =
0. In case of state estimation-based (sensorless control), and denoting, x̂ as the estimated state
vector and ê = x̂− xd as the estimated tracking error one has

u =
1

g(x̂, t)
[x

(n)
d − f (x̂, t)− KT ê+ uc] (118)

7. Simulation tests

The fusion of the distributed state estimates for the robotic model was performedwith the use
of the derivative-free Extended Information Filter. First, it was assumed that the transmission
of measurements from the vision sensors (cameras) to the local information processing
units, where the state estimators (filters) were running, was not affected by time delays or
packet drops. At the local vision nodes, Kalman filters were used to produce estimations
of the robot’s state vector as well as the associated covariance matrices, after carrying out a
linearization of the robot’s nonlinear dynamic model through the transformation described in
subsection 3.2 and processing the local xy position measurements. This standard Information
Filter provided the overall estimate of the robot’s state vector, through weighting of the local
state vectors by the local covariance matrices. The obtained results are depicted in Fig.
9(a) and Fig. 9(b) in case of a sinusoidal and a see-saw reference trajectory (both reference
trajectories are denoted with the red line).
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Fig. 9. Control of the robotic manipulator with fusion of position measurements from
distributed cameras through the use of the derivative-free Extended Information Filter (a)
when tracking of a sinusoidal trajectory (b) when tracking of a see-saw trajectory
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Next, time-delays were assumed in the transmission of image frames from the distributed
cameras to the associated local vision nodes, where the local derivative-free Kalman Filters
were running. For both vision nodes the delays in the transmission of measurements varied
randomly between 6 and 25 sampling periods. Longer delays could be also handled by the
proposed distributed filtering algorithm. The variation of measurement transmission delays
with respect to time, is depicted in Fig. 10.
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Fig. 10. Variation in time (in multiples of the sampling period) of the measurement delays
appearing at the local information processing nodes 1 and 2.

The delayed measurements were processed by the Kalman Filter recursion according to the
stages explained in subsection 5.3. The smoothing of the delayed measurements that was
performed by the Kalman Filter was based on Eq. (74), i.e. x̂∗(k|k) = x(k|k) +Mỹ(k− N, k).
As explained in subsection 5.3, matrix M is a gain matrix calculated according to Eq. (88).
The innovation is given by z̃(k − N) = z(k − N) − ẑ(k − N). The tracking accuracy of the
distributed filtering-based control loop is depicted in Fig. 11 to Fig. 13.
Additionally, some performance metrics were used to evaluate the distributed filtering-based
control scheme. Table I, shows the variation of the traces of the covariance matrices at the
local filters and at the master filter with respect to delay levels (d1, d2 = k·Ts i.e. multiples of
the sampling period Ts), as well as with respect to the probability of delay occurrence in the
transmission of the measurement packets (p∈ [0, 1]).
Moreover, the variation of the tracking error of the three state variables xi , i = 1, · · · , 3 with
respect to delay levels as well as with respect to the probability of delay occurrence in the
transmission of the measurement packets is given in Tables II to IV.
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Fig. 11. Estimation of the motion of the robotic manipulator under transmission delays at the
first local measurement processing node, (a) when tracking a sinusoidal trajectory (b) when
tracking a see-saw trajectory
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Fig. 12. Estimation of the motion of the robotic manipulator under transmission delays at the
second local measurement processing node, (a) when tracking a sinusoidal trajectory (b)
when tracking a see-saw trajectory

It can be noticed that the smoothing performed by the distributed filtering algorithm,
through the incorporation of out-of-sequence-measurements, enhances the robustness of the
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Fig. 13. Control of the robotic manipulator under measurement transmission delays and
using the derivative-free Extended Information Filter for state estimation, (a) tracking of a
sinusoidal trajectory (b) tracking of a see-saw trajectory

Table I: Traces of the covariance error matrices for various delay levels
d1 d2 p Tr(P∗1 ) Tr(P∗2 ) Tr(P)

0 0 0.0 2.780·10−2 2.780·10−2 6.720·10−3

6 8 0.8 2.782·10−2 2.777·10−2 6.730·10−3

9 10 0.8 2.782·10−2 2.783·10−2 6.730·10−3

12 15 0.8 2.782·10−2 2.776·10−2 6.730·10−3

18 20 0.6 2.782·10−2 2.775·10−2 6.730·10−3

25 30 0.6 2.780·10−2 2.783·10−2 6.730·10−3

Table II: RMSE tracking error at the 1st local filter for various delay levels

d1 d2 p x1 − xd1 x2 − xd2 x3 − xd3
0 0 0.0 4.419·10−3 5.490·10−3 1.125·10−2

6 8 0.8 4.413·10−3 5.504·10−3 1.129·10−2

9 10 0.8 4.392·10−3 5.437·10−3 1.121·10−2

12 15 0.8 4.402·10−3 5.465·10−3 1.117·10−2

18 20 0.6 4.474·10−3 5.707·10−3 1.151·10−2

25 30 0.6 4.433·10−3 5.655·10−3 1.144·10−2

estimation. Despite the raise of the delay levels in the transmission of measurements from
the sensors (cameras) to the local information processing nodes (local derivative-free Kalman
Filters) only slight variations of the tracking errors for state variables xi, i = 1, · · · , 3 were
observed. Similarly, the changes of the traces of the estimation error covariance matrices, both
at the local filters and at the master filter, were small.
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Table III: RMSE tracking error at the 2nd local filter for various delay levels

d1 d2 p x1 − xd1 x2 − xd2 x3 − xd3
0 0 0.0 4.390·10−3 5.453·10−3 1.116·10−2

6 8 0.8 4.380·10−3 5.468·10−3 1.114·10−2

9 10 0.8 4.441·10−3 5.495·10−3 1.118·10−2

12 15 0.8 4.451·10−3 5.521·10−3 1.125·10−2

18 20 0.6 4.508·10−3 5.744·10−3 1.161·10−2

25 30 0.6 4.432·10−3 5.755·10−3 1.150·10−2

Table IV: RMSE tracking error at the master filter for various delay levels

d1 d2 p x1 − xd1 x2 − xd2 x3 − xd3
0 0 0.0 4.416·10−3 5.452·10−3 1.101·10−2

6 8 0.8 4.504·10−3 5.505·10−3 1.130·10−2

9 10 0.8 4.473·10−3 5.493·10−3 1.106·10−2

12 15 0.8 4.408·10−3 5.423·10−3 1.094·10−2

18 20 0.6 4.533·10−3 5.785·10−3 1.139·10−2

25 30 0.6 4.529·10−3 5.755·10−3 1.149·10−2

8. Conclusions

This chapter has proposed a solution to the problem of state estimation-based control under
communication delays and packet drops. The considered approach was within the frame
of distributed Kalman Filtering. First, the Extended Information Filter was presented as
a basic approach to nonlinear distributed filtering. The Extended Information Filter (EIF)
performs fusion of the the state estimates provided by the local monitoring stations, under
the assumption of Gaussian noises. The Extended Information Filter is a generalization of
the Information Filter in which the local filters do not exchange raw measurements but send
to an aggregation filter their local information matrices (local inverse covariance matrices or
differently known as Fisher Information Matrices) and their associated local information state
vectors (products of the local information matrices with the local state vectors).
To improve the estimation accuracy and convergence properties of the Extended Information
Filter, the derivative-free Extended Information Filter has been introduced. The
derivative-free Extended Information Filter, has the following features (i) it is not based on
local linearization of the controlled system dynamics, (ii) it does not assume truncation of
higher order Taylor expansion terms, (iii) it does not require the computation of Jacobian
matrices. In the proposed filtering method, the system is first subject to a linearization
transformation and next state estimation is performed by applying local Kalman Filters to
the linearized model. The class of systems to which the derivative-free Extended Information
Filter can be applied has been also defined.
Next, distributed state-estimation under communication delays and packet drops was
examined. First, results on networked linear Kalman Filteringwere overviewed. These results
were generalized in the case of the derivative-free Extended Information Filter, where the
problem of communication delays and packet drops has again the following forms: (i) there
are time delays and packet drops in the transmission of information between the distributed
local filters and the master filter, (ii) there are time delays and packet drops in the transmission
of information from distributed sensors to each one of the local filters. In the first case, the
structure and calculations of the master filter for estimating the aggregate state vector remain
unchanged. In the second case, the effect of the random delays and packets drops has to be
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taken into account in the redesign of the local Kalman Filters, which implies (i) a modified
Riccati equation for the computation of the covariance matrix of the state vector estimation
error, (ii) the use of a correction term in the update of the state vector’s estimate so as to
compensate for delayed measurements arriving at the local Kalman Filters.
In the simulation experiments it was shown that the aggregate state vector produced by the
derivative-free Extended Information Filter can be used for sensorless control and robotic
visual servoing. Visual servoing over a cameras network was considered for the nonlinear
dynamic model of a planar single-link robotic manipulator. The position of the robot’s end
effector in the cartesian space (and equivalently the angle of the robotic link) was measured
throughm cameras. In turnm distributed derivative-freeKalman Filterswere used to estimate
the state vector of the robotic link. Next, the local state estimates were fusedwith the use of the
standard Information Filter. Finally, the aggregate estimation of the state vector was used in a
control loop which enabled the robotic link to perform trajectory tracking. It was shown that
the proposed redesign of the local derivative-free Kalman filters enabled to compensate for
communication delays and packet drops, thus also improving the accuracy of the presented
distributed filtering approach and the robustness of the associated control loop.
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