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1. Introduction

The technological progress is constantly evolving and each year presents new growth
opportunities for different people and companies. Modern production and trade management
are processing terabytes of gathered statistical data to gain useful information for different
management tasks. Most common tasks that have arisen for solving are forecasting the
demand for a new product, knowing only the product descriptive data and creating a
production plan for a product on different product life cycle phases. As the amount of data
grows, it becomes impossible to analyse it without using modern intelligent technologies.

Trade management is strictly connected with sales forecasting. Achieving accurate sales
forecasting will always remain on the top of the most important tasks. Due to that different
solutions are introduced each year in order to overcome the efficiency of the traditional sales
forecasting methods. Let us discuss several possible solutions recently introduced. A sales
forecasting model based on clustering methods and fuzzy neural networks was proposed by
(Chang et al., 2009). The model groups demand time series applying clustering algorithms,
then a fuzzy neural network is created for each cluster and used to forecast sales of a new
product. Another interesting solution for sales forecasting was proposed by (Ni & Fan, 2011).
The model combines the Auto-Regressive trees and artificial neural networks to dynamically
forecast a demand for a new product, using historical data. Both models apply modern
intelligent information technologies and, as authors state, are more efficient and accurate
comparing to traditional forecasting methods. Nevertheless, the models preserve that a
product is already introduced on the market and some sales data are already available. This
rises a question that may be important for retailers, supplying market with items, but not
producing them personally. The question may be stated as "How to forecast a demand for
a product before purchasing it for resale?". A system, capable of making such forecasts, will
bring to retailers a useful and valuable information, enabling them to create a list of stock
products before any investments are made. A possible solution to such task was proposed by
(Thomassey & Fioraliso, 2006). The authors proposed a hybrid sales forecasting system based
on a combination of clustering and classification methods. The system applies clustering
methods to gain product demand profiles from historical data, then, using product descriptive
data, a classifier is built and used to forecast a sales curve for a new product, for which only
descriptive data are available. The system was tested on textile item sales and, as authors
state, the results were relatively good. Authors continued their research and in (Thomassey
& Happiette, 2007) a new system based on idea of combining clustering and classification
methods was introduced. Authors used Artificial Neural Networks technologies to cluster
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and classify sales time series. As they state, the proposed system increases accuracy of
mid-term forecasting in comparison with the mean sales profile predictor.

The production management itself combines several tasks of forecasting and planning, one
of which is a product life cycle (PLC) management. A product life cycle is a time of
product existence on the market and can be viewed as a sequence of known phases with
bounds. Each PLC phase differs by sales profiles, due to what different production planning
strategies are used and what is more important - different advertising strategies are applied.
Traditionally a product life cycle has four phases, namely "Growth", "Introduction”, "Maturity"
and "End-of-Life". The models with a larger number of phases are also possible and are used
(Aitken et al., 2003). For products with a significantly long PLC, growth and introduction
phases can be merged into one phase - "Introduction”. This PLC phase imply high investments
in advertising, as potential customers need to know about the new product. This gives rise to
the task of defining bounds for the PLC phases, which to be one of the important tasks in the
PLC management. Let us discuss several possible solutions introduced for this task. Most of
the solutions concentrate around the idea of forecasting the sales curve for a product and then
defining in which particular PLC phase product currently is. Often the Bass diffusion model or
its modifications are used to forecast sales, as it was proposed by (Chien et al., 2010). Authors
present a demand forecasting framework for accurately forecasting product demand, thus
providing valuable information to assist managers in decision-making regarding capacity
planning. The framework is based on the diffusion model and, as authors state, has a practical
viability to forecast demands and provide valuable forecasting information for supporting
capacity planning decisions and manufacturing strategies. Other researchers (Venkatesan &
Kumar, 2002) applied a genetic algorithm to estimate the Bass diffusion model and forecast
sales for products, when only a few data points are available. Both solutions make accurate
forecasts in the scope of the tasks solved, but still give an answer to what the demand will
be, but not to when the PLC phase will be changed. To answer that, the forecasted sales
curves need to be analysed by a manager, who will set PLC phase bounds, using his personal
experience. Due to that, the efficiency of the discussed models may fall as the amount of
monitored products growths.

The present research is oriented towards bringing intelligent agent technology for supporting
manager’s decisions in such tasks as forecasting demand for a new product and defining the
end of the introduction/beginning of the maturity PLC phase for the monitored products. The
chapter proposes two multi-agent systems designed directly for solving the tasks defined.
Intelligent agent technology was chosen as it gives a new modern look at the forecasting
and planning tasks and brings new possibilities in designing solutions to support modern
production and trade management.

The conceptual and functional aspects of the proposed systems are revealed in Sections
2 and 3, but first, some agent terminology needs to be defined to eliminate possible
misunderstandings. There are no unified definitions of what an agent is (Wooldridge, 2005).
One of the reasons for that is that agents are mostly defined as a task specific concept.
Nevertheless, some definitions are useful (Weiss, 1999; Wooldridge, 2005) and also applicable
to present research:

* Agentisacomputer program that exists in some environment and is capable of performing
an autonomous activity in order to gain its desired objectives.

¢ Intelligent agent is an agent capable of learning, capable of mining and storing knowledge
about the environment it is situated in.

* Multi-agent system contains agents and intelligent agents capable of interaction through
an information exchange.

www.intechopen.com



Intelligent Agent Technology in Modern Production and Trade Management 23

¢ Agent community is an indivisible unit of agents with similar attributes, abilities and
behaviour, aimed at gaining the desired objectives. It differs from a Multi-agent system
in that agents are not interacting with one another.

The proposed definitions are task specific and are oriented to making the ideas proposed in
the multi-agent systems simple and clear.

2. Agent Technology in PLC Management

The product life cycle management, as it was stated in the introduction, is an important
objective for company growth, as most of the decisions taken are dependent on the current
demand. A proper product life cycle management strategy gives opportunities for precise
resource planning, lessening expanses and negative profit.

The present section reveals the concepts of the proposed PLC management support
multi-agent system, and describes both structural and functional aspects of it. An analysis
of the obtained experimental results concludes this section.

The main task of the proposed system is to forecast a period - transition point, when a
product will change an introduction phase to maturity phase. A specific feature of the system
is that the forecast is made having only the first several data points, and a scalar value -
period, is forecasted. From the viewpoint of Data Mining this task is a classification task
and formally can be stated as follows. Assume that the available sales data is a dataset
D = {dy,...,d;, ..., d,}, where each record d = {xl,...,x]-, ..., X} is a discrete time series
with I periods, representing a sales profile of a specific product during the defined phase of
a product life cycle. The length of a time series [ is not a constant value. It may take a finite
number of values defined by theset L, ! € L = {Iy,...,1;,...,Is} and may vary from record
to record.

Each record d; € D has a specific marker p containing the number of a period after which
a PLC phase, represented by record d;, was finished. Marker p may take a finite number of
values defined by the set P, p € P = {p1,...,Pk,---, Pm}- Having such assumptions the
forecasting of a transition point for a specific new product d’ ¢ D should start with building a
model of an implication between datasets D and P, f : D — P, representing relations between
sales profiles and the value of a specified marker. As the model is built, it may be applied to
forecast a transition point for a new record, when it reaches the minimal length [,,;,, € L.

2.1 Structure of the proposed system

The proposed product life cycle management support multi-agent system is displayed in
Figure 1. The system contains three interacting agents, namely Data Management Agent, Data
Mining Agent and Decision Support Agent. The Data Management Agent was included as the
system should be capable of processing a large amount of sales data. This condition asks for
an agent capable of autonomously performing general and specific operations with data, one
of which is pre-processing. As it was stated before, first, the model of the relations between
the sales profiles and a target attribute should be made. The Data Mining Agent implements
an intelligent data processing methods and is capable of autonomously creating a knowledge
base with desired relations. The application of the knowledge base to the forecasting of a
transition point for a new product is designated to the Decision Support Agent.

2.1.1 Data Management Agent

The Data Management Agent is an agent as it uses a predefined logic and cannot change
it over time. The agent handles several data management tasks, including data cleaning,
normalization and preparing datasets. The environment the Data Management Agent is
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situated in is a raw data repository. The environment affects the agent with new data, forcing
the Data Management Agent to perform the data pre-processing actions. By performing those
actions, the agent affects the environment by changing the raw data to the pre-processed data.
The agent functioning algorithm, displayed in Figure 1, contains three main processes - first
get data from a database, then pre-process it and prepare datasets for system training and
testing. The first two processes are performed in the autonomous mode, the actions in the
third process are performed reactively by responding to the Data Mining Agent’s requests.
The data repository contains data of the unique structure that may not fit the desired data
format. The processes in the first block of an Data Management Agent algorithm return
the set of sales data, obtained during a specified product life cycle phase, as a time series,
summing sales by each period (day, week, month), which is defined by the user. For each
sales time series a value of a target attribute (transition point) is supplied, excluding the new
data, for what the information on the transition point is not available yet. The next step is
pre-processing, it becomes necessary as the raw data may contain noise, missing or conflicting
data. The defined task speaks for performing several steps of data pre-processing:

¢ Excluding the outliers. The definition of an outlier is dynamic and changes according to
the desired tasks. This makes the step of outlier exclusion highly task specific. The present
research foresees the following actions to be completed. The time series with the number
of periods (length) less than the user defined minimum /,,,;,, or with missing values to be
excluded from the raw dataset.

¢ Data normalization. This step is performed in order to bring sales time series to one level,
lessening possible domination occurrences. One of the normalization methods that suites
the sales time series normalization is the Z-score normalization with standard deviation
method. To calculate the normalized value x; for i-th period of a time series X, Equation 1

is used, where X is the average of an X.

X = @

To calculate the standard deviation sy, Equation 2 is used. As the number of periods in
the normalized sales time series is not large, it is recommended to use the (n — 1) as a
denominator in order to obtain an unbiased standard deviation. As an option, the standard
deviation can be replaced with a mean absolute deviation.

Sx:\/niliZ:(xi_f)z )

=1

* Imitation of a data flow. The sales data become available over time and this moment
should be taken into account in order to obtain an accurate transition point forecast. This
step is very important as the proposed system will be limited to forecast a binary result
- either the transition is occurred or not, if the data flow imitation will not be performed.
The imitation of the data flow process ensures that the proposed system will be able to
forecast transition points in different time periods having only first /,,,;,, periods available.

2.1.2 Data Mining Agent

The Data Mining Agent (see Fig. 1) is an intelligent agent that performs an intellectual data
processing with data mining methods. The environment the agent is situated in is the datasets
created by the Data Management Agent. This environment is highly dynamic as it changes
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each time a new data is obtained. The agent itself may induce changes in the environment
by requesting the Data Management Agent to produce new datasets. The Data Mining Agent
changes the environment by creating the knowledge base, that contains relations between the
sales time series and transition point values. The proposed structure of a Data Mining Agent
contains two main steps - first clustering the time series with different duration and then
extracting profiles from clusters and mapping profiles with PLC phase switching points.

The time series clustering is performed by the clustering agents in the agent community
controlled by the Data Mining Agent (see Fig. 1). Each clustering agent implements a
clustering algorithm and processes a defined part of the input data. The number of the
clustering agents as well as the part of dataset it will process, is defined by the parameter
Q called the load of a clustering agent. It is an integer parameter containing a number of
different time series lengths I; € L each clustering agent can handle. The set L contains all
possible lengths of the time series in the input data, as it was defined in the task statement at
the beginning of this section. For example, assume that [,,;, = 4 periods and Q = 3, then the
tirst clustering agent will handle the part of an input data with 4, 5 and 6 periods long time
series. The load of a clustering agent is defined by the user and is also used for calculating 7,
- the number of the clustering agents in the Controlled Agent Community (CAC). Equation 3
is used for obtaining the value of n,.

L
neqg = Roundup <u> (3)
Q
The input data is distributed among n, clustering agents ca; € CAC according to the defined
value of Q. Given a uniform clustering agent load distribution, Equation 4 can be used for
splitting the input data among clustering agents.

i=1, li,min = lmin
i>1, li,min = li—l,max +1 (4)

li,mux = li,min + Q -1

where the [,,;,, and [, are the bounds for the number of periods in the time series the
clustering agent ca; will process. One of the proposed system objectives is to support
clustering of time series with different number of periods. A number of clustering methods
exist, but majority use an Euclidean distance to calculate the similarity of two objects. The
simple Euclidean distance will not allow a clustering agent to process time series with
different number of periods, but still may be applied while Q = 1. Two clustering methods
- Self Organising Maps (SOM) (Kohonen, 2001) and Gravitational Clustering algorithm (GC)
(Gomez et al., 2003; Wright, 1977), were chosen to support the data mining process. To gain
an ability to cluster time series with different duration we suggest using different distance
measures in each of the methods. The proposed system implements two different distance
measures - Dynamic Time Warping (DTW) (Keogh & Pazzani, 2001; Salvador & Chan, 2007)
and a modified Euclidean distance MEuclidean.

2.1.2.1 Distance measures

The DTW creates a warping path W(X,Y) between two time series X and Y and uses it to
calculate the distance, which occurs as follows. Let X and Y have durations equal to n and m
periods, respectively. First a distance matrix n x m is created, where each cell (i, ) contains
distance d(x;,y;) between two points x; and y; (Keogh & Pazzani, 2001). The warping path
W(X,Y) is a sequence of the steps wy in the distance matrix starting with a cell (1,1) and
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ending in (n,m). Each time performing a new step wy, a direction with minimal distance is
chosen. Other strategies for choosing the next step are possible and widely used (Salvador &
Chan, 2007). An example of a warping path is graphically displayed in Figure 2.

1,4 —eo
S T_ Y: Y4
Y3

k:

" e e W)
v | o (61) X x5 | e

X1 X2 X3 X4 X5 X6

(a) Warping path in the distance matrix (b) A warping map M

Fig. 2. Example of a DTW warping path W(X,Y)

The total path distance d(X,Y) between two time series X and Y using the Dynamic Time
Warping is calculated as shown in Equation 5. The denominator K representing the total
number of steps wy in the warping path W(X,Y) is used in order to calculate the distance
proportionally for one step wy, as the number of steps may be different in different warping

paths.
ZK: wZ

A(X,Y) = —V"Kl" (5)
The second proposed distance measure is MEuclidean - Modified Euclidean. The concept of
this measure is to calculate the distance d(X, Y) between two time series X = x1,...,%;,...,Xp
and Y = y1,...,Yj,-..,Yym only by first z periods of each time series, where z = min{n, m}.
Speaking in the terminology of DTW, the warping path W (X, Y) in the case of MEuclidean will
always begin in the cell (1,1) and will always end in the cell (z, z). The example of a warping
path for a distance measure MEuclidean is displayed in Figure 3.

ya |(14) (6,4)
Y yi | Y2 | Y3 | Y4
Y3
}‘\
" e e W(X,Y)
Y1 (6,1) X: Xt | X2 | X3 | X2 | X5 | X6

X1 X2 X3 X4 X5 X6

(a) Warping path in the distance matrix (b) A warping map M

Fig. 3. Example of a MEuclidean warping path W(X,Y)

The total path distance d(X, Y) between two time series X and Y using the MEuclidean distance
measure is calculated using Equation 6.

d(X,Y) =4/} (xi —vi)? (6)
i=1
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2.1.2.2 Clustering algorithms

The SOM model introduced by T.Kohonen is one of the vector-coding algorithms, whose main
objective is to transform an input data into a discrete map of neurons. The SOM algorithm
contains four main steps - network initialization, neuron competition, neuron cooperation and
synoptic adaptation (Kohonen, 2001). Executing the initialization,weights of each neuron are
assigned random values small enough to eliminate any possible organization in the network
at the beginning of the system training.

During the neuron competition step, for each time series in the input dataset the winning
neuron, as the one with most similar vector of weights, is defined. This is where the proposed
distance measures are applied to find the winning neuron, which will be set as the centre of the
topological neighbourhood in order to perform the neuron cooperation step. The cooperating
neurons are neurons that are stimulated by the activity in the winning neuron. Executing
the cooperation step each neuron in the SOM is assigned a neighbourhood level, using the
neighbourhood function #; ; x, where i(X) is the index of a winning neuron for a time series
X and j is an index of a cooperating neuron. The neighbourhood level is also affected by the
chosen neural network topology. The classical SOM algorithm uses Equation 7 for synoptic
adaptation of weights.

Wi(n +1) = Wj(n) +1(n) - bjix) (1) - (X = W;(n)) , @)

where 7 is the iteration number; W(n) - vector of weights of a j-th neuron; # is a learning
coefficient.

The learning coefficient decreases over time, but remains higher than a defined minimal value
Nmin- This can be reached by using Equation 8 (Kohonen, 2001), where 15 is a time constant,
which can be assigned total iterations number. The value of a topological neighbourhood
function /1; ; x) (n) at the moment 7 is calculated by Equation 9.

n(n) = 1o - exp <—%> ®)

dz.
(X
hj,i(X) (I’l) = exp <_2;2(<n))> ’ (9)

where d is the lateral distance between the j-th neuron and the winning neuron; parameter o
defines the width of a topological neighbourhood function.

In Subsection 2.1.2.1 it was shown that both of the proposed distance measures can produce
a warping path in order to compare two time series. If a distance measure MEuclidean is
used, then Equation 7 is modified and Equation 10 is used for synoptic adaptation of neuron
weights.

Vwp € Wy, k < lyin + wi (n+1) = wi (n) + 1 (n) - hyjyx)(n) - (xx —wg (n)),  (10)

where W; is the weight vector of a j-th neuron and 1, = min(lx, Iy ).
Using distance measure MEucliden two cases during weight adaptation are possible:

1. The length I}y of a weight vector W; of the j-th neuron is less or equal to the Ix - the length
of a time series X. In this case all weights of the j-th neuron will be changed according to
the warping map M, example of which is shown in Figure 3.b.
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2. The length Iy of a weight vector W; of the j-th neuron is greater than the Ix - the length of
a time series X. In this case only the first [x weights wy € W; will be adopted according to
the warping map M. The rest of neuron weights will remain unchanged.

If the distance measure DTW is used, then cases are possible, when one weight wj should be
adopted to several values of a time series X. An example of this case is shown in Figure 2.b.
Assuming that Y is a weight vector, the weights 1, y» and y4 must be adopted to two or three
different values at one time. In this case each of the mentioned weights will be adopted to the
average of all time series X values it must be adopted to, according to the warping map M.
This concludes the modifications of a SOM algorithm, the rest part of the subsection is devoted
to the second chosen clustering algorithm - gravitational clustering algorithm. This algorithm
is an unsupervised clustering algorithm (Gomez et al., 2003; Wright, 1977). Each clustering
agent in the CAC represents a multidimensional space, where each time series from the input
dataset is represented as an object in the n-dimensional space, where each object can be
moved by the gravitational force of the other objects. If two or more objects are close enough,
that is distance d between them is less or equal to the d;;4y, then those objects are merged
into the cumulative object. By default, masses of all non-cumulative objects are equal to 1.
Depending on user choice, masses of the merged objects can be summed or remain equal to
1. A movement of an object X, induced by the gravitational force of an object Y at the time
moment ¢, can be calculated by Equation 11.

X(t+ At) = X(t) +o(t) - At+ d(t (11)

where v(t) is the object velocity; G - gravitational constant, which can also be set by the user;
%
my - the mass of an object Y; vector d(t) represents the direction of a gravity force, induced by
%

the object Y and is calculated as d(t)= X(t) — Y (t).
Setting velocity v(t) as a null vector and having At = 1, Equation 11 can be simplified as

shown in Equation 12.
G- my

2

The GC uses the Euclidean distance to measure spacing between to objects. The support of
clustering of time series with different number of periods can be gained by using the distance
measures, proposed in Subsection 2.1.2.1, but the first of the gravitational clustering algorithm
concepts should be redefined. In the classical algorithm this concept is defined as follows: "In
the n-dimensional space all objects have values in all n dimensions". The proposed redefined
version is "In the n-dimensional space can exist m-dimensional objects, where m < n". This
means that in a 10-dimensional space can exist an object with four dimensions, which will be
present only in the first four dimensions.

In the case of using the distance measure MEuclidean two possible cases can occur while
calculating the induced gravitational force:

X(t+At) = (12)

1. The number of the object’s X dimensions ny is less or equal to the number of the inducting
object’s Y dimensions ny. In this case the gravitational force is calculated for all dimensions
of an object X and it is moved according to the calculated gravitational force.
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2. The number of the object’s X dimensions nx is greater than the number of the inducting
object’s Y dimensions ny. In this case the gravitational force for X is calculated only for the
first ny dimensions of the X. The object X is moved only in those dimensions for which
the gravitational force was calculated.

Using the dynamic time warping, an m-dimensional object X will always be moved in all m
dimensions. Situations, when for some dimension x; a gravitational force should be calculated
using several dimensions of an object Y, may take place. This is similar to the case with
SOM when a single weight should be adopted to multiple time series values. Having a such
situation, the gravitational force, induced by the object Y, is calculated using an average from
all y; dimensions inducing gravitational force to the object’s X dimension x;.

2.1.2.3 Creating a knowledge base

The knowledge base contains a model, representing the connections between sales
profiles and the transition points, induced from the input data. The knowledge base is
level-structured, the number of levels coincides with the number of the clustering agents in
the clustering agent community. Each level contains clusters from a corresponding clustering
agent. Let us define the meaning of a cluster for each of a clustering algorithm described in
the previous subsection.

The cluster extraction in the SOM algorithm begins after network organisation and
convergence processes are finished, and contains next three steps:

1. Each record X from a training set is sent to the system.

2. The winning neuron for each record X is found. For each winning neuron a transition point
statistics S; is collected, containing a transition point value and frequency of it’s appearing
in this neuron, which is used as a rank of a transition point.

3. The cluster is a neuron that at least once became a winning neuron during the cluster
extraction process. The weight vector of a neuron is taken as a centroid of a cluster.

For the gravitational clustering algorithm a cluster is defined as follows: "The cluster is a
cumulative object having at least two objects merged". Using the merged objects, a transition
point statistics S; is collected for each cluster c¢;. Each transition point, included in S;, is
assigned a rank as the frequency of it's appearing in the cluster ¢;. The centroid of a cluster
is set as a position of a cumulative object in the clustering space at the moment of cluster
extraction.

2.1.3 Decision Support Agent

The Decision Support Agent is an agent that forecasts a transition point value for a new data,
monitors selected and new products and creates a list of the products, for which it would
be reasonable to reconsider a production planning and advertising policies. The DSA can
perform its actions either by receiving a request from a user, or in autonomous mode, with
defined interval of time (at the end of each period) reporting the decision analysis results.
The transition point for a new data is forecasted by using the data from a cluster,
best-matching the new time series. The best-matching cluster is obtained by sending
an appropriate request to the Data Mining Agent, which finds the closest cluster in the
knowledge base. The transition point with a higher rank is taken as the value that will be
forecasted for the new time series. If several transition points have equal rank, then the
minimal transition point is chosen.

The list of the noteworthy products (LNP) is created by applying this strategy:

1. If I < pand p — [ > 6 Then: Product remains monitored and is not included in the LNP;
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2. Ifl < pand p — I < 0 Then: Product is included in the LNP;
3. If I > p Then: Product is included in the LNP.

where [ is the duration of the demand time series in periods; p - a forecasted transition point;

and variable 6 stores the minimal threshold of interest for either including the product in the
list of the noteworthy products or not.

2.2 Experimental results

The proposed product life cycle management support system was trained and tested on a
dataset, received within the international project ECLIPS. The dataset contains sales profiles
of different products during the PLC introduction phase. For each record in the dataset
a transition point value is supplied. The length of a time series in the dataset varies
from 4 to 23 periods, giving 20 possible values for a clustering agent load Q parameter,
Q ={1,2,...,9;...,20}. The dataset was pre-processed according to the steps described
in Subsection 2.1.1 and normalized by the Z-score normalization method.

The precision of the proposed system is measured, using the Mean Absolute Error, measured
in periods. To measure the precision of the system, first the learning error for all combinations
of the proposed clustering methods and distance measures was measured. The system with
gravitational clustering algorithm was tested with both options for calculating the mass of a

cumulative object after merging two or more other objects. The obtained results are displayed
in Figure 4.
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Fig. 4. Learning error (MAE) in periods for the system with gravitational clustering algorithm

As may be seen from Figure 4, the results, received using the distance measure MEuclidean,
are more precise than those obtained with the DTW. The MEuclidean dominates DTW within
all possible Q values, and that is the reason to exclude the DTW distance measure from further
experiments with testing the system with gravitational clustering algorithm. As can also be
seen, the results, obtained using MEuclidean in Figures 4.a and 4.b, are close to be equal.
This indicates that both strategies for calculating the mass of a cumulative object are equal.
However the strategy, where masses are summed after merging the objects, has a weakness.
Merging the objects results in the growth of a mass of a cumulative object, consequently
increasing the gravity force of that object. This could lead to the situation, when merging of
objects will be affected more by the masses of an objects either by the closeness of those objects.
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This could be the reason for that some potentially good combinations of clusters will not
appear during the clustering process. Due to that, the strategy with summing objects masses
will not be used in further experiments while using the gravitational clustering algorithm.
The transition point forecast error (using MEuclidean) decreases while the clustering agent
load increases. This is the reason for performing further experiments by using only five values
of Q that returned the smallest learning error. Those values of a clustering agent load are 16,
17,18, 19 and 20, thatis Q = {16,17,18,19,20}.

The system with SOM algorithm was tested using three neural network topologies - quadratic
topology with eight neighbours in the first lateral level, cross-type topology with four
neighbours and linear topology with two neighbours. The neural network contained 100
neurons, organized as a matrix 10x10 neurons for quadratic and cross-type topologies and
as a one-dimensional line for the linear topology. The obtained results with learning error for
each topology and distance measure MEuclidean are displayed in Figure 5.

3.9 ffﬂ/)
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Clustering agent load, Q

——Linear === Cross-type «-:--- Quadratic

Fig. 5. Learning error (MAE) in periods for the system with SOM algorithm, using
MEuclidean

The SOM algorithm returned a much larger learning error than the gravitational clustering
algorithm. Due to that, only three values of Q, Q = {5,6,7} will be used in further
experiments. Table 1 contains the learning error obtained with SOM algorithm while using
DTW and selected Q values.

Q=50=6Q=7

Linear |3.381 |3.320|3.323
Cross-type| 3.366 | 3.317 | 3.323
Quadratic | 3.354 | 3.317 | 3.323

Table 1. Learning error (MAE) in periods for SOM algorithm, using DTW

Comparing the efficiency of the chosen topologies (see Figure 5) it may be concluded that none
of three topologies dominates the others two. For further experiments with SOM algorithm
all three topologies were chosen.

The learning error evaluation was used to lessen the number of experiments needed for
system strong evaluation. To evaluate systems the 10-fold crossvalidation method was
applied. The proposed system with gravitational clustering was tested, applying only the
MEuclidean distance measure and using the five values of the clustering agent load, selected
at the beginning of this section, while evaluating the system learning error. Table 2 shows
the obtained system testing results, each cell contains a 10-fold average Mean Absolute Error in
periods. Figure 6 displays the data from Table 2.
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Q=16

Q=17

Q=18

Q=19

Q=20

MAE

2.021

1.995

2.026

2.019

2.010

Table 2. Mean absolute error in periods for the system with GC algorithm

As can be seen, the error remains at the level of two periods, the best result was gained with
the clustering agent load Q = 17 and is 1.995 periods.

2.30
2.20
2.10
200 - O—— e
1.90
1.80
1.70 I I I I I
16 17 18 19 20
Clustering agent load, Q

Fig. 6. MAE in periods for system with gravitational clustering, using MEuclidean

The same testing method and data were used for testing the system with SOM algorithm.
While testing the system, all three neural network topologies - linear, cross-type and quadratic,
were applied, combining with two proposed distance measures (see Subsection 2.1.2.1). The
system with SOM was tested by using only three clustering agent load values - Q = {5,6,7},
selected while evaluating the learning error. Table 3 summarises the obtained testing results
and Figure 7 displays them.

Linear topology ||Cross-type topology||Quadratic topology
Q DTW |MEuclidean||DTW| MEuclidean ||DTW| MEuclidean
5(3.475| 3.447 3.362 3.437 3.434 3.578
6|3.267 3.267 3.332 3.404 3.353 3.353
713.344| 3.411 3.372 3.513 3.371 3.509

Table 3. Mean absolute error in periods for the system with SOM algorithm

The best results for all three topologies were obtained while testing the system with clustering
agent load Q = 6 and remains equal about 3.3 periods. That supports the conclusion, stated
while evaluating the learning error that none of three topologies dominates other two. The
best result was obtained while using the linear topology and is equal to 3.267 periods.
Comparing the efficiency of applied distance measures we may conclude that for the proposed
system with SOM algorithm it is not crucial whether to choose DTW or MEuclidean distance
measure, as the DTW returned better result only once, using the cross-type topology. For other
topologies both distance measures returned equal results.
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Fig. 7. Test error in periods for system with SOM algorithm

2.3 Results analysis and summary

Analysing the obtained results it may be concluded that for the task of forecasting the
period when the product will change its PLC phase, the efficiency of the hierarchical
clustering algorithms, a part of which is the gravitational clustering algorithm, comparing
to the self-organising maps. Comparing the learning and test errors for both of clustering
algorithms, it can be seen that the GC test error (1.995 periods) is about 10 times greater than
the learning error (0.2 periods), but the SOM learning and test errors remain on the same level
of 3.3. From that it may be concluded that the gravitational clustering algorithm is less robust
to the noise in data than the SOM algorithm.

The smallest transition point forecasting error - 1.995 periods, was gained by the multi-agent
system with the gravitational clustering algorithm, while using the distance measure
MEuclidean. The test error of two periods may be taken as a relatively high, but, viewing
it from the position of the end user, the ability of gaining the additional useful information
about the bounds of a PLC phase, makes this error level acceptable.

3. Intelligent Sales Forecasting

Traditional forecasting is mostly based on finding relations in time series, representing
changes in economic indexes, system technical parameters etc. It is assumed that relations are
mined from a stationary time series and the longer it is, the higher is the probability to find
some relations in it (Armstrong et al., 2005). However, in most of real-life tasks the length
of a time series is relatively short and mining relations will not bring the desired results.
An example of such task is a textile sales analysis and forecasting, which is the main task
the proposed system was designed for. As it was stated, clustering textile sales short time
series will return sales profiles, but how precise they will be? An additional information can
be gained from a descriptive data of each textile product. This sets a task of combinations
of several data mining methods - cluster analysis and classification, in order to obtain an
additional useful information.

The proposed system is aimed at forecasting textile product sales profiles using only
descriptive data, such as price, size, colour, type etc. Subsection 3.1 reveals the structure and
conceptual aspects of the proposed system. Figure 8 displays the proposed system.
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3.1 Concepts of Sales Forecasting Multi-Agent System

The proposed sales forecasting multi-agent system contains three agents - Data Management
Agent, Data Mining Agent and the Sales Forecasting Agent. The Data Management Agent
supports receiving data from a data repository and data preparation for further analysis. The
Data Mining Agent mines relations from sales data, merging those with product descriptive
data and inducing classification rules that are included in the knowledge base. The Sales
Forecasting Agent uses the knowledge base to forecast a sales profile for a new product,
having only descriptive data available.

3.1.1 Data Management Agent

The Data Management Agent is an agent that is similar to the one described in Subsection
2.1.2. It receives raw data from a data repository, each record containing product descriptive
data and one year sales data, and performs data pre-processing - this two steps are performed
in the autonomous mode. The Data Management Agent cleans the uninformative profiles
like those containing one or two sales facts during all 12 months or have a large number of
missing values. The rest of sales profiles that were not excluded, are normalized with life curve
normalization method (Thomassey & Fioraliso, 2006). Normalizing by the life curve, the new
value x;. of each period of a time series X = x1,...,X;,...,x, is calculated by Equation 13.

Xi

X = —1 (13)
1 ?:1 x]_

The third step of pre-processing is feature selection. During this process a set of the attributes
with descriptive data is produced as a an aggregation of available attributes. The objective of
this process is to lessen the attributes negative impact to the classification results (Thomassey
& Fioraliso, 2006). Attributes can be selected using the information gain or by simple choosing
based on user experience. The third - Dataset formation, process is performed reactively by
responding to the Data Mining Agent’s requests.

3.1.2 Data Mining Agent

The Data Mining Agent is an intelligent agent. The environment it is situated in is the
data from the datasets received from the Data Management Agent. The Data Mining Agent
performs data clustering and creates classification models, changing the environment into the
classification rule sets. The processes in the Data Mining Agent are divided into two main
steps - data clustering and the classification rules induction.

The k-means algorithm (Tan et al., 2006) was chosen to support the data clustering,
though other clustering algorithms can also be applied. The k-means is a simple and
easy-to-understand algorithm, but it has a sufficient weakness - the number of clusters must
be defined before the clustering process begins. Due to that, the clustering process should be
repeated several times with different number of clusters and the best number of clusters may
be chosen by the smallest clustering error. To lessen the time of searching for the appropriate
number of clusters an assumption that the maximal number of clusters should be less or equal
to the \/n, where 7 is the number of records in the dataset, can be used (Tan et al., 2006). The
k-means algorithm is executed as follows:

1. The number of clusters m is defined, for each cluster centroid random values are assigned.

2. By using a distance measure (the Euclidean distance is used by default) each record in the
dataset is assigned to the closest cluster. If none of records changed its cluster, then the
clustering process finishes.
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3. Cluster centroids are recalculated using the records in the appropriate cluster. Then the
algorithm returns to Step 2.

Having all data distributed among the defined number of clusters, the clustering error should
be calculated in order to show the efficiency of the chosen number of clusters. The clustering
error is calculated as a mean absolute error. First, Equation 14 is used to calculate the absolute
error AE; for each cluster c;. Then the mean absolute error is calculated by Equation 15.

AE L n(Ci)d 14
1_71(61‘)‘];], =

where 7(c;) is the number of records in the cluster c;; d; - the absolute distance between j-th
record in the cluster ¢; and the centroid of this cluster.

1 m
MAE = — - Z AE; (15)
m-i3

The result of clustering the sales data is the set P, containing a number of sales profiles -
cluster centroids, example of which is displayed in Figure 9, where the centroid is marked
with a bold line. Each sales profile p is assigned a unique identification number, which will
be used in the classification rule set induction step. The data clustering step finishes with the

0.90
00 A

050 /A
050 e\
| NN

0.30

Normalized sales value

0.20 ,',",’{?"2 Pes
0.10 '4’7/?;,////'/;’/7&
-
0.00 - —
-0.10

TT T2 T3 T4 T5 Te T7 T8 T9 T10 Ti11 T12
Periods

Fig. 9. An example of a cluster and a centroid

process of merging the descriptive data with found sales profiles. During this process each
record is merged with an identification number of a closest sales profile. In other words - each
record is assigned an appropriate target attribute value.

In order to forecast a sales curve for a product by having only descriptive data, a model of
the relations between found sales profiles and descriptive data must be created. Assuming
that each sales profile p € P is a class, the classification methods can be applied for building
the desired model. A number of classification methods exist, each having its positive and
negative sights. The proposed sales forecasting system applies the inductive decision trees
for building the classification model. The decision trees not only create a classification model,
which can be represented as a rule set, but also support a graphical tree-like representation of
a model, which makes it more understandable for a user.
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The Data Mining Agent builds the inductive decision tree using the training dataset, merged
with found sales profiles. It uses the C4.5 classification algorithm (Quinlan, 1993). The C4.5
algorithm is able to proceed with discrete and numeric attributes and to handle the missing
values. The decision tree built is the model representing the relations between descriptive
attributes and the sales profiles. The internal nodes represent the descriptive attributes and
leafs are pointing to one of sales profiles found.

3.1.3 Sales Forecasting Agent

The Sales Forecasting Agent is an agent that uses the model (knowledge base) created by the
Data Mining Agent. The environment the Sales Forecasting Agent is situated in is the set of
new data, containing only descriptive attributes. The environment may include the records
from a test set that have the sales profile attached, while the system is in the evaluation stage.
The Sales Forecasting Agent changes the environment by forecasting a sales profile for the
new data, using the product descriptive data and the model built by the Data Mining Agent.
The sales profile forecasting process can be described as a sequence of the next steps:

1. Chose a record X, containing the descriptive data of a new product.

2. By following the structure of the classification tree, created by the Data Mining Agent, find
a tree leaf [; for the record X;.

3. Take the sales profile py, represented by the determined leaf [ j,asa forecasted one for the
record X;.

Figure 10 displays a part of the classification tree and shows the path to the leaf for a record
with the following descriptive data: Kind = 2, Type = 1 and Price = 65.4.

Fig. 10. Example of a classification decision tree

3.2 Experimental results

The proposed sales forecasting system was trained using sales data of a local retailer of textile
products, gathered in the year 2005. After all necessary pre-processing steps were finished, the
dataset contained 423 records. The 149 sales records from the year 2006 were used for system
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testing. As a descriptive data, the following three parameters were chosen: Kind, showing
either the product is seasonal or not, the Price of the product and the Type, showing what the
product actually is - jeans, t-shirt, bag, shorts, belt etc.

The data clustering was powered by the k-means algorithm and the number of clusters was
chosen by evaluating clustering error with different cluster number starting with two and
continuing till 21, as the square root of 423 records is approximately equal to 20.57. Figure
11 shows the results of clustering error evaluation with different number of clusters. The
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Fig. 11. The clustering error for different number of clusters

tirst noteworthy improvement in clustering error was while using 10 clusters. For larger
numbers of clusters the clustering error was not sufficiently improving, comparing to the
result with 10 clusters. Taking this into account, the number of clusters was set to 10 for all
further experiments.

For building the classification model, the C4.5 classification algorithm was chosen among
other classification methods by comparing six classifiers using such measures as Root Mean
Square Error - RMSE (see Equation 16) and the Mean Absolute Error - MAE (see Equation 17).
The RMSE and MAE were used to measure an error between the forecasted sales profile and
the actual sales profile.

RMSE = \/% ~Z§ (fi — x;)? (16)
MAE:%'i’fi_xi’ , (17)

i=1
where 7 is the number of periods in the forecasted sales profile F and also in the actual sales
profile X.
Figure 12 displays the classification tree that was built by the C4.5 classification algorithm.
Table 4 shows the results of different classifier evaluation. As can be seen, the C4.5 decision
tree algorithm dominates others in both error measures.
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Classifiers

Error measures| 7., r[OpeR JRip |Naive Bayes| 1Bk | C4.5
RMSE 0.29510.375|0.284| 0.282  |0.298/|0.264
MAE 0.17410.141|0.161| 0.156  |0.160|0.129

Table 4. Error measures for various classification methods

3.3 Results analysis and summary

The results obtained while testing the proposed multi-agent sales forecasting system show
that a combination of the intelligent agent technology and the data mining methods -
clustering and classification, can be efficiently used for solving such task as the sales
forecasting. The system showed good results in clustering the sales data and building the
decision tree for forecasting a sales profiles for new products, having only descriptive data
available, which is important for retailers while planning the investments for the new stock
products. One of the advances of the system is that a user is able to personally view the
model - classification decision tree that was used for forecasting to find the relations between
the sales profile and the descriptive data, which makes the model more understandable.
Using the intelligent agent technology, the system was made modular, which simplifies the
implementation of new clustering and classification methods.

4. Conclusions

The modern production and trade management remains a complicated research field and
as technology is evolving, becomes even more complicated. This field combines different
tasks of forecasting, planning, management etc. In the present research two of them - PLC
management and sales forecasting, were discussed and possible solutions proposed. Looking
back in time, those tasks were efficiently solved by standard statistical methods and a single
user was able to perform that. Today the level of technological evolution, the amount of
gathered data and complicated planning objectives require the solutions that are able to lessen
the human’s load and are capable to perform different data analysis tasks in the autonomous
mode. In order to gain the above possibilities, the agent technology and combinations of the
intelligent data analysis methods were chosen as the basis. Using the mentioned technologies,
the structures of the PLC management support multi-agent system and the multi-agent sales
forecasting system were proposed and the concepts of each system were described and
discussed. The structures of the proposed systems were intentionally made general in order
to demonstrate the advances of the agent technology. The modularity of the proposed systems
allows one to adapt individual processes to the specific field of application, without breaking
the structure of the system.

Both systems were tested using the real-life data and the results obtained show the
effectiveness of the proposed multi-agent systems and the technologies, chosen for creating
those systems. The conclusion of the present research is that the intelligent agent technology
and other intelligent data analysis technologies can be efficiently applied in tasks connected
with supporting the modern production and trade management. The two proposed
multi-agent systems give an example of such applications.
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