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1. Introduction 

Noise pollution in large cities is an ever-growing problem, due to several factors: the 
increase in demographic density, the increase in the number of per capita devices, 
appliances and vehicles capable of generating loud noise, and the fact that society is getting 
used to higher noise levels. 
One of the most important factors that help us to explain this fact is the road traffic, since as is 
generally established, road traffic is the most important and generalized sound source in the 
urban zones of the developed countries. Generally speaking, this one is also, with difference, 
the sound source that produces more disturbances and nuisances on the urban residents. 
However, road traffic is not the only noisy source in urban environments:  other noisy sources 
relating to construction work, commercial activity, recreation, etc. have been found. At the 
same time, sound spaces where road traffic does not have a direct incidence and in which 
natural and social sounds predominate, e.g. green areas, can be observed (Torija et al., 2010a). 
The European Directive 2002/49/EC on the Assessment and Management of Environmental 
Noise aims to create a common framework for assessing exposure to environmental noise in 
all Member States. With the use of indicators and evaluation methods harmonized the 
results will be grouped into strategic maps. These maps are designed to comprehensively 
assess noise exposure in a given area, or for overall predictions in that area.  In addition, 
they will be the basis for developing both action plans and strategies in the fight against 
noise (Directive 2002/49/EC). 
For the development of assessment and achievement of the objectives stated in the above 
mentioned directive, from the European Commission the methods used to predict different 
emission sources present in urban environments (industrial noise, road traffic, railway 
traffic and aircraft traffic) are recommended (Commission Recommendation 2003/613/EC).  
All these methods are based only on the obtaining of the A-weighted energy-equivalent 
sound pressure level (LAeq). Nevertheless, any physical characterization of a sound 
environment calls not only for consideration of the A-weighted sound pressure level (LAeq), 
but also requires description of the temporal structure and spectral composition of the 
sound (Berglund & Nilsson, 2001; Botteldooren et al., 2006). These factors bear great weight 
in the perception of noise (Viollon & Lavandier, 2000; Berglund & Nilsson, 2001; 
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Botteldooren et al., 2006) and in its negative impact (specific annoyance) on the population 
(Berglund et al., 2002; Björk, 2002; Lercher & Schulte-Fortkam, 2003). 
The heterogeneous physiognomy of urban environments, together with the characteristics of 
environmental noise, with their great spatial, temporal and spectral variability, makes the 
matter of modeling and prediction a very complex and non-linear problem, to which we may 
apply a powerful tool of data mining —artificial neural networks.  These constitute a 
paradigm of automatic processing that ultimately seek to emulate the biological brain, or at 
least some of its functions, such as learning (Patra & Panda, 1998).  Artificial neural networks 
(ANNs) are widely used in environmental modeling and prediction (Chelani et al., 2002; 
Hamed et al., 2004; Maier et al., 2004; Almasri & Kaluarachchi, 2005; Ordieres et al., 2005) as a 
preference to more conventional statistical techniques (Maier & Dandy, 1998). The reason is 
that ANNs are non-linear (Chakraborty et al., 1992), relatively insensitive to data noise (Tang 
et al., 1991; Burke & Ignizio, 1992), they perform reasonably well when limited data are 
available (Tang et al., 1991; Schizas et al., 1994), and they provide flexibility, accuracy and 
some amount of fault tolerance in changing environments (Patra & Panda, 1998).  

2. Literature review of the application of soft-computing techniques in urban 
noise field 

 Artificial Neural 
Networks 

Fuzzy Techniques Genetic 
Algorithms 

Hidden 
Markov 
Models 

Sound 
Pressure 
Level 
Prediction 

(Cammarata et al., 
1995; Avsar et al., 2004; 
Genaro et al., 2010) 

(Aguilera de Maya, 1997; 
Caponetto et al., 1997) 

(Caponetto et 
al., 1997) 

 

Noise 
Annoyance 
Prediction 

(Zaheeruddin & 
Garima, 2006) 

(Botteldooren & Verkeyn, 
2001; Botteldooren & Verkeyn, 
2002a,b,c,d,e;       Botteldooren 
et al., 2002a,b; Botteldooren et 
al., 2003a,b; Botteldooren & 
Lercher, 2004; Zaheeruddin & 
Garima, 2006) 

(Botteldooren 
& Verkeyn, 
2001; 
Botteldooren 
et al., 2002b; 
Botteldooren 
et al., 2003b) 

 

Noise 
Classification 

(Berg, 2002; Couvreur 
& Laniray, 2004; 
Betkowsa et al., 2005)  
(Caponetto et al., 1997)

(Beritelli et al., 2000)  
 

 (Couvreur et 
al., 1998; 
Gaunard et 
al., 1998; Ma 
et a., 2003a,b; 
Couvreur & 
Laniray, 2004;  
Betkowsa et 
al., 2005; 

Urban 
Traffic Flow 
Prediction 

(Fortuna et al., 2004; 
Dougherty & Cobbett, 
1997; Ledoux, 1997; Dia, 
2001; Yin et al., 2002) 

(Fortuna et al., 1994; Yin et 
al., 2002) 

  

Table 1. Taxonomy of the urban noise vs. soft-computing methods publications (Genaro et 
al., 2010) 
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This section deals with a detailed review of publications at the international level that link 
urban noise with soft-computing techniques.  To carry out this review, four soft-computing 
techniques are considered: Artificial Neural Networks, Fuzzy Techniques, Genetic 
Algorithms and Hidden Markov Models.  In turn, we explore its use in the treatment of the 
following aspects of environmental noise: Sound Pressure Level Prediction, Noise 
Annoyance Prediction, Noise Classification and Urban Traffic Flow Prediction.  A taxonomy 
of the found articles is shown in table 1. 

2.1 Sound pressure level prediction 

Cammaratta et al. (1995) develop a model for predicting noise based on a back-propagation 
neural network.  In this work it was proposed an architecture based on two levels.  In the 
first level, a network LVQ (Learning Vector Quantization) filtered the data, eliminating the 
data considered erroneous, while in the second tier, the back-propagation neural network 
predicts the sound pressure level. 
Turkish standards allow up to 45 dB in places of study environment. In (Avsar et al., 2004) it 
is studied whether these standards are met using a multilayer perceptron neural network 
with noise data of 16 points in a Turkish campus. The neural network is built with seven 
inputs: position of the measuring point, distance from the source to the point of action, wind 
speed and direction, air temperature, relative humidity and time of day. The output is the 
descriptor A-weighted energy-equivalent sound pressure level (LAeq). 
A method based on fuzzy logic for urban noise prediction is briefly described in (Aguilera 
de Maya, 1997).  The results obtained are not accurate enough, however in the section of 
conclusions it is indicated that the results of the fuzzy model have been contrasted with 
actual data from measurements made in the prediction scenarios and it has been proved to 
be highly successful. 
Caponetto et al. (1997) put forth a method based on genetic algorithms, which seeks the 
optimization of fuzzy rules based system for environmental noise prediction.  The obtained 
results demonstrate the success of their method. 
In (Genaro et al., 2010) a neural network based model for urban noise prediction is 
developed.  In this paper a selection of 12 street locations with different characteristics of the 
city of Granada (Spain) is carried out to obtain a representative sample of the complexity of 
urban streets with presence of road traffic.  A set of 289 data vectors, each one with 26 
components, was obtained.  A total of 25 input variables were used (Torija et al., 2010a), 
being the only output variable the A-weighted energy-equivalent sound pressure level 
(LAeq).  The results were compared to those obtained with mathematical models.  It was 
found that the proposed ANN system was able to predict noise with greater accuracy, and 
thus was an improvement on these models. 

2.2 Noise annoyance prediction 

With regard to noise annoyance prediction, Zaheeruddin & Garima (2006) propose a 
neurofuzzy model to predict the annoyance suffered by workers exposed to high noise 
levels.  Once demonstrated that the parameters that most affect workers are noise pollution, 
type of task and the exposure time to it, a neurofuzzy system is developed. 
The most prolific authors who have dealt with techniques based on fuzzy logic modeling of 
environmental noise are Botteldooren and Verkeyn (Botteldooren & Verkeyn, 2001; 
Botteldooren & Verkeyn, 2002a,b,c,d,e; Botteldooren et al., 2002a,b; Botteldooren et al., 
2003a,b; Botteldooren & Lercher, 2004). Their main field of study is the prediction of the 
noise annoyance level on people. For this reason, a fuzzy model is used in the majority of its 

www.intechopen.com



 Artificial Neural Networks - Application 

 

446 

proposals, looking for a set of rules that describe the fuzzy system. It deals with the study 
creating a fuzzy rules based system that predicts responses from the public about the noise 
annoyance caused by road and railway traffic noise. 

2.3 Noise classification 

Couvreur & Laniray (2004) describes an Automatic Noise Recognition System. The system is 
based on neural networks and Hidden Markov Models and is able to distinguish, from 1000 
sound recordings, between two sounds: horn or motorcycle engine. The neural network 
phase includes a multilayer perceptron ANN, where the coefficients were obtained by 
supervised training. 
Another noise classifier is developed in (Berg, 2002), which recognizes sounds of planes, 
with the use of neural networks. The neural network is built with a backpropagation 
architecture with three neurons in the hidden layer. 
In (Beritelli et al., 2000) an urban noise classifier based on fuzzy techniques is presented. 
Considering a set of acoustic characteristics it tries to distinguish among seven categories: 
bus, car, rail, construction works, people talking, street and factory. 
Several works (Gaunard et al., 1998; Couvreur et al., 1998; Ma et a., 2003a,b)  develop a 
Hidden Markov Model based noise classifier system.  These publications describe how a 
Hidden Markov Model can be used to develop a recognition system based on the ambient 
noise frequency analysis. A preprocessor provides frequency representation in time of the 
audio signal, which is then used by a classifier. The classifier makes a decision depending on 
the nature of the noise source, according to the characteristics given by the preprocessor. 
Two ways of improving the performance of automatic noise recognition are presented in 
(Betkowsa et al., 2005). Firstly, it is proposed the minimization of the number of parameters 
of a Hidden Markov Model based noise classifier, in order to reduce its complexity. 
Secondly, it seeks to combine the results of different recognition systems, applying the 
method of combining expert (MoE, Mixture of Experts). It uses neural networks, which are 
applied to combine the results and make a final decision on the status of the signal. 

2.4 Urban traffic flow prediction 

There are some works that develop urban traffic flow prediction models. It is necessary 
annotate here as most mathematical noise prediction models consider traffic flow the most 
influential variable. Urban traffic flow is predicted in (Fortuna et al., 2004; Dougherty & 
Cobbett, 1997; Ledoux, 1997; Dia, 2001; Yin et al., 2002). 

3. Pursued goal 

After review the use of ANN for modeling and prediction of sound levels, we will introduce 
a new model to predict both temporal structure and spectral composition of the sound 
pressure level by using artificial neural networks. The process of model developing is made 
in an inductive way, first selecting the input and output variables and then building an 
ANN based on an error minimization criterion. The net is then validated using real noise 
data. An extensive measurement campaign, conducted in the city of Granada (Spain), gives 
a wide database, which includes the spatial and temporal heterogeneity characteristic of 
urban agglomerations. With this measurement campaign the short-term information 
(integration period of 5 minutes) necessary for the input and output variables involved in 
model development is obtained. 
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The constructed ANN model allows not only the equivalent sound level to be predicted but 
also the average temporal and spectral structure of sound. In view of the large impact of 
temporal and spectral structure on sound perception, the model could achieve both a 
precise modeling and evaluation of the studied soundscape. The accompanying results 
given in this chapter show that this prediction model based on ANN along with a 
perceptual and psychosocial assessment of sound ambient can be a very useful tool for 
urban soundscapes management becoming an interesting application of Neural Networks 
for environmental sound modeling. 

4. Selection of input and output variables for the development of the model 

This section focuses on the selection of input and output variables for the construction of 
temporal structure and spectral composition of the sound pressure level prediction model. 
To accurately describe and assess urban noise, a critical issue is the selection of input 
variables, conducive to the implementation of a model, which is representative of urban 
complexity (Torija et al., 2010a). In our opinion, prior to the model construction stage, it is 
necessary to study the acoustic variables for the characterization of the sound environment, 
as well as their range of possible values. This is a necessary condition for the development of 
an urban noise prediction model.  For this purpose, as we see in Table 2, a series of 24 input 
variables was selected. 
The input variables for the built of the artificial neural network based model are chosen 
from a previous existing knowledge in the field, both obtained from our own experience in 
our experimental work and the used and studied bibliography about environmental 
acoustics (see references at Torija et al., 2010a). 
On the other hand, 30 output variables, the A-weighted equivalent sound pressure level 
(LAeq) and no weighted equivalent sound pressure level (Leq), the temporal sound level 
variance (TSLV) and the crest factor (temporal composition) (Torija et al., 2010b), as well as 
the sound level for each of the 1/3-octave bands between 31.5-10000 Hz (spectral 
composition) have been selected. 
The  energy equivalent sound pressure level (Leq) is a parameter that corresponds to the 
value of sound pressure level in dB, of a hypothetical steady sound that in a time interval T 
has the same mean squared sound pressure that the measured sound and whose level varies 
with time.  Its mathematical expression is: 

 
2

2
2 1 1 0

( )1
10

t
i

eq
t

P t
L Log dt

t t P

⎛ ⎞
= ⋅ ⋅⎜ ⎟⎜ ⎟−⎝ ⎠

∫  (1) 

where: 
Leq is the continuous sound level in dB (dB(A) for the descriptor LAeq), determined in the 
time interval T, between instants t1 and t2. 
P0 is the reference sound pressure (20 μPa). 
Pi(t) is the instantaneous sound pressure. 
With respect to the descriptor TSLV, let Lp(t) with t in [0 s, 300 s] be the one second 
measured sound pressure. The standard deviation of the instantaneous sound pressure is 
noted as σL. Furthermore, let us define the energy-equivalent sound pressure level Leq(T) of 
the sound measured up to time T, as  
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and let us further note the standard deviation of Leq(T) as σeq. We then define the Temporal 
Sound Level Variance (TSLV) as  

 L eqTSLV σ σ= ∗  (3) 

With this indicator, the more commonly used standard deviation of the instantaneous (1 s) 
sound level, σL is multiplied or 'weighted' by σeq (Torija et a., 2010b). 
Finally, the Crest Factor (CF) is defined as the ratio between the maximum sound pressure 
and the RMS value of the sound pressure:  

 
( )/10

, /10

max 10

10

p ti

eq T

L
T

L
CF =  (4) 

We have Lp(ti) as the instantaneous sound pressure level (one second SPL) and Leq,T as the 
energy-equivalent sound pressure level in 5-min period. The CF gives the value of sound-
pressure impulsiveness within 5-min of measurement (Torija et al., 2010b). 
 

Nº Input variable 
1 Type of day 
2 Day period 
3 Commercial/leisure environment 
4 Type of location 
5 Presence of vegetation 
6 Statilization time of the sound level 
7 Type of traffic flow dynamic 
8 Anomalous sound events related to traffic 
9 Anomalous sound events no related to traffic
10 Ascendant light vehicles 
11 Descendant light vehicles 
12 Ascendant heavy vehicles 
13 Descendant heavy vehicles 
14 Ascendant buses 
15 Descendant buses 
16 Ascendant motorcycles-mopeds 
17 Descendant motorcycles-mopeds 
18 Vehicles with siren 
19 Average speed 
20 Number of upward lanes 
21 Number of downward lanes 
22 Street geometry 
23 Street width 
24 Street height 

Table 2. Input variables used for the development of the prediction model 
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5. Data sampling 

To carry out this study a representative sample of locations (120 locations) of the city of 
Granada (Spain) was selected.  Locations were selected in such a way that they included the 
higher variability in the value range of the input variables given in table 2. In the given 
subset of locations is included all the input variables (street geometry, ascendant or 
descendant flow, stabilization time etc) in such way that one or more elements of the subset 
of variables will be noteworthy or with a high change range in at least one location point. 
The selection included locations where the main source of environmental noise at the time 
of measurement was road traffic. Some locations were affected by other noise sources as 
well. Overall, there were variations in traffic intensity, traffic flow dynamics, geometry of 
the traffic routes, types of road surface, traffic slope and speed, and situation within the city. 
Moreover, because urban environments do not necessarily entail the direct incidence of road 
traffic noise, we also selected settings with other predominant sound sources, such as 
pedestrian areas, locations with commercial/leisure activities, and squares or urban parks 
where the soundscape would principally comprise social and natural sounds. 
Measurements were obtained following european procedures of reference; all microphones 
were mounted away from reflecting facades, at a height of 4 m above local ground level 
(Directive 2002/49/EC). Once all the measurements had been taken, the acoustical 
descriptors used in this research were calculated, so that from the different selected input 
variables and with 5 minutes set as the integration time period, the prediction of each one of 
the used acoustical indicators could be effected. 

6. Artificial Neural Network structure 

To undertake the goal established in this work, we chose to apply a back-propagation neural 
network. The ANN based prediction model involves implementation of the Levenberg-
Marquardt variant with Bayesian regulation back-propagation. The internal parameters and 
geometry of the back-propagation neural network were carefully studied (Maier and 
Dandy, 1998), and the ANN structure affording major precision, minor prediction error, and 
low computation time was selected. 
 

 
ANN 
Configuration 

Input Variables 24 
Output Variables 30 
Neurons on Hidden Layer 17 
Divide Function dividerand 
Learning Function learngdm 
Performance Function mse 
Training Function trainbr 
Transfer Function tansig + purelin 
Mu Parameter 0.005 

Table 3. Artificial neural network (ANN) configuration 

The structure of the ANN can be seen in Table 3 and Fig. 1. The adaptation learning function 
is Learngdm and the performance function is MSE. The ANN has 24 input variables, 17 
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neurons on the hidden layer and 30 output variables. The transfer function is Tangsig (layer 
1) + Purelin (layer 2) and the Marquardt adjustment parameter (mu) is 0.005. 
 

 
Fig. 1. Artificial neural network (ANN) structure 

We have divided the available 543 input records into three data subsets (Training, validation 
and test) which are different from each other.  The training subset contains 400 records (75% 
of the 543 input records), the validation subset comprises 27 records (5% of the 543 input 
records) and the test subset includes 116 records (20% of the 543 input records). 

7. Results 

Once established the structure of the artificial neural network (ANN) and to evaluate the 
precision of the prediction model, this ANN has been trained and tested 25 times, 5 times for 
each of the previously established 5 training-validation-test subsets.  As we can see in Table 4, 
the ANN was trained with a number of epochs between 24 (data subset 3) and 51 (data subset 
5).  The time spent on the completion of the training phase has been between 77.77 sec (data 
subset 3) and 161.62 sec (data subset 5).   
 

 Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 
Epochs 30 26 24 34 51 
Training time (sec) 116.29 84.98 77.77 109.33 161.62 

Table 4. Number of epochs and training time for the 5 data subsets used 

Table 5 shows the mean squared error (MSE) of the 5 training subsets for the ANN based 
prediction model.  As can be seen from the results shown in Table 5, for the case of descriptors 
LAeq (between 8.3·10-5 in subset 1 and 1.2·10-4 in subsets 2, 3) and Leq (1.2·10-4 in subset 1 and 
1.5·10-4 in subsets 2, 3, 4 and 5), the value of the mean squared error (MSE) remains relatively 
stable for all the five data subsets. 
 

Acoustical descriptors Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 
LAeq  8.3·10-5 1.2·10-4 1.2·10-4 1.1·10-4 1.0·10-4 
Leq  1.2·10-4 1.5·10-4 1.5·10-4 1.5·10-4 1.5·10-4 

TSLV  5.5·10-4 4.9·10-4 5.5·10-4 5.9·10-4 5.3·10-4 

CF 4.8·10-4 5.1·10-4 3.8·10-4 4.1·10-4 3.8·10-4 

1/3-octave bands (31.5-10000 Hz) 4.4·10-4 5.6·10-4 5.5·10-4 5.3·10-4 5.0·10-4 

Table 5. Mean squared error (MSE) of the training subsets for the proposed ANN based 
prediction model 

As for the descriptors for the characterization of temporal structure, that is TSLV (between 
4.9·10-4 in subset 2 and 5.9·10-4 in subset 4) and CF (between 3.8·10-4 in subsets 3, 5 and 5.1·10-4 
in subset 2), the MSE value fluctuates slightly in the five used data subsets.  Something very 
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similar happens in the case of output variables related to the spectral composition (1/3-octave 
bands between 31.5-10000 Hz), where fluctuations in the MSE value between 4.4·10-4 (subset 1) 
and 5.6·10-4 (subset 2) are found. 
 

Acoustical descriptors Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 
LAeq  2.3·10-4 2.3·10-4 1.9·10-4 1.9·10-4 1.8·10-4 
Leq  1.3·10-4 1.5·10-4 1.7·10-4 1.7·10-4 1.8·10-4 

TSLV  4.0·10-4 4.2·10-4 5.0·10-4 3.8·10-4 4.5·10-4 

CF 5.0·10-4 3.5·10-4 3.3·10-4 3.1·10-4 2.9·10-4 

1/3-octave bands (31.5-10000 Hz) 6.4·10-4 8.4·10-4 7.2·10-4 7.2·10-4 7.6·10-4 

Table 6. Mean squared error (MSE) of the test subsets for the proposed ANN based 
prediction model 

In Table 6 we can observe the MSE value of the 5 test subsets for the ANN based prediction 
model.  In view of the obtained results, the MSE value follows a quite similar pattern to that 
observed for the case of training subsets (Table 4) with regard to the MSE value found in the 
different test subsets. 
 

1/3-octave bands [Hz]  Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 
31.5 0.79 0.76 0.79 0.80 0.76 
40 0.79 0.78 0.80 0.79 0.76 
50 0.88 0.87 0.87 0.86 0.86 
63 0.86 0.87 0.85 0.86 0.86 
80 0.77 0.76 0.78 0.78 0.78 
100 0.81 0.79 0.83 0.79 0.81 
125 0.84 0.87 0.88 0.88 0.88 
160 0.86 0.86 0.87 0.88 0.87 
200 0.86 0.86 0.87 0.88 0.87 
250 0.88 0.88 0.89 0.91 0.89 
315 0.90 0.89 0.90 0.92 0.91 
400 0.90 0.89 0.90 0.91 0.91 
500 0.88 0.87 0.88 0.89 0.87 
630 0.88 0.89 0.89 0.90 0.89 
800 0.88 0.89 0.90 0.89 0.92 
1000 0.87 0.88 0.88 0.88 0.90 
1250 0.88 0.88 0.88 0.88 0.90 
1600 0.90 0.89 0.89 0.89 0.89 
2000 0.89 0.88 0.90 0.90 0.90 
2500 0.88 0.87 0.88 0.89 0.89 
3150 0.85 0.83 0.85 0.86 0.85 
4000 0.88 0.85 0.87 0.88 0.88 
5000 0.84 0.84 0.86 0.87 0.86 
6300 0.82 0.80 0.83 0.84 0.83 
8000 0.82 0.80 0.82 0.83 0.82 
10000 0.81 0.80 0.83 0.84 0.82 

Table 7. R2-value for the 1/3-octave bands (31.5-10000 Hz) of the ANN test subsets 
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As for descriptors LAeq and Leq MSE values between 1.8·10-4 (subset 5) - 2.3·10-4 (subsets 1 
and 2) and between 1.3·10-4 (subset 1) - 1.8·10-4 (subset 5) are found respectively.  The 
variability of the MSE value in the different test subsets for the descriptors TSLV (3.8·10-4 in 
subset 4 and 5.0·10-4 in subset 3), CF (2.9·10-4 in subset 5 and 5.0·10-4 in subset 1) and 1/3-
octave bands between 31.5-10000 Hz (6.4·10-4 in subset 1 and 8.4·10-4 in subset 2) is greater 
than that observed for the two previous descriptors. 
Regarding the R2-value of the third octave bands for all the used test subset (Table 7), it can 
be observed that the correlation factor of prediction varies depending on the frequency band 
considered.  We found that the frequency band with a lower correlation factor corresponds 
to the third octave band of 80 Hz (R2 = 0.76-0.78). On the other hand, the 1/3-octave band of 
315 Hz has the highest value of R2 factor (R2 = 0.89-0.92). 

 
Fig. 2. Mean Squared Error (MSE) differences between training and test subsets 

In view of the results shown in Tables 5 and 6, we can check that the magnitude of the MSE 
value is practically similar between the training and test data subsets. This finding is 
confirmed by the results reflected in Fig. 2.  This figure represents the difference in the MSE 
value between the training and test subsets for all used data subsets (1-5).  According to the 
Fig. 2, the MSE value decreases slightly from the training to the test subsets in a value 
between 2.2·10-4 and 1.5·10-4. 
These results inform us about the great ability of generalization of the developed prediction 
model, since not only accurately predicts the output variables of the training subsets but 
also the output variables of the test subsets, which correspond to the blind data for the 
neural network (not used in the training phase). 
In order to certify the good results obtained with the developed ANN based prediction 
model in Figs. 3-7 (a), are shown as an example the correlation values between measured 
and estimated by the model output variables for the case of data subset 5.  In addition, as an 
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example in Figures 3-7 (b) display the evolution of measured and estimated value of the 
output variables (LAeq, Leq, TSLV, CF and 800 Hz sound level) for all records used for the test 
phase (in the case of the data subset 5). 
 

 

 
Fig. 3. (a) R2-value between estimated and measured LAeq and (b) Evolution of the estimated 
and measured LAeq for the used test records (subset 5) 

(a)

(b)
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Fig. 4. (a) R2-value between estimated and measured Leq and (b) Evolution of the estimated 
and measured Leq for the used test records (subset 5) 

(b)

(a)
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Fig. 5. (a) R2-value between estimated and measured TSLV and (b) Evolution of the 
estimated and measured TSLV for the used test records (subset 5) 

(b)

(a)
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Fig. 6. (a) R2-value between estimated and measured CF and (b) Evolution of the estimated 
and measured CF for the used test records (subset 5) 

(b)

(a)
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Fig. 7. (a) R2-value between estimated and measured 800 Hz Sound Level and (b) Evolution 
of the estimated and measured 800 Hz Sound Level for the used test records (subset 5).  *The 
results with respect to the output variable 800 Hz Sound Level are shown as an example of 
the ANN behavior to predict the 1/3-octave Sound Level between 31.5-10000 Hz. The 
correlation value for all the other frequency bands is shown in Table 7. 

(b)

(a)
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In view of the obtained results, where the proposed ANN based model achieves prediction 
with a reasonably low mean squared error (MSE), and shows a great capacity for 
generalization, we may affirm that the proposed neural network is capable of predicting, 
with considerable precision and accuracy, both the sound pressure level (A-weighted and 
not weighted) and the temporal and spectral composition of the different types of situations 
presented to the network. 

8. Discussion and conclusions 

It has been widely recognized that noise pollution is one of the most important environmental 
problems in urban agglomerations (Miedema & Vos, 1998). It is fully assumed and research 
studies in various countries have shown that noise affects daily activities and causes sleep 
disturbance as well as a poorer life quality (Lercher, 1996). 
Undertake a proper modeling and prediction of environmental noise in urban environments 
is a challenging task.  This is due to several reasons but mainly to the great variability 
(temporal and spatial) of sound sources. Road traffic is the main source of environmental 
noise in urban areas, nevertheless, road traffic is not the only noisy source in urban settings; 
we also encounter noise coming from construction works, commercial activities, recreation, 
etc. At the same time, we can find urban locations in which road traffic does not have a 
direct incidence, e.g. green urban areas, in which natural and social sounds predominate.  
This latter aspect is indicative of the great urban heterogeneity.  In this sense, one of the 
most salient characteristics of urban agglomerations is the great heterogeneity of situations 
that can arise in them. From the perspective of environmental modelling, this heterogeneity 
is a serious problem since this situational diversity must be accounted for in any well-
designed environmental model. Regarding the characterization of sound environments, 
something similar occurs because the number of variables that influence both the sound 
emission and the sound spread is very high (Torija et al., 2010a). 
For these reasons, to undertake the problem of noise modelling in cities, it is more effective 
to fully characterize the sound space of a given urban area. To carry out an adequate 
characterization of a sound space is necessary to address not only the evaluation of sound 
pressure level but is also necessary to consider the temporal structure and spectral 
composition of the sound (Torija et al., 2010b). We choose these variables as defining of the 
given sound space, going beyond the classical noise level prediction. 
Once the problem is established, a critical step is to select the variables that affect the sound 
space. Based on a deep study of the problem, several variables are selected, together with 
the output variables we need to define the sound space. The tool selected for performing the 
modeling, due to the reasons stated above, are neural networks. Due to their well-known 
characteristics, the use of artificial neural networks to approach the complex problem of 
modeling and prediction of urban noise seemed highly recommended.  In this paper, this 
hypothesis is certified in view of the obtained results.  The developed ANN based 
prediction model is able to predict, with great accuracy, the short-term level and both 
temporal and spectral composition of the sound pressure in urban agglomerations.  In the 
cases studied, the proposed model is not only able to learn and predict those records 
presented during the training phase, but also it is able, with a high success degree, to predict 
those records used for the testing phase, which inform about its great capacity of 
generalization.  This fact reports that the proposed methodology will not only be very useful 
for the measured situations/locations, but it may be of great usefulness in any 
situation/location of other Southern Europe medium-sized cities.  
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9. Future research work 

As future work, there are several proposals that have emerged from this research. 
Firstly, it would be of great interest to implement the proposed ANN based prediction 
model in a GIS tool, so that we could represent the spatial distribution of the obtained 
results. This will allow obtaining mapping with the value of each one of the different used 
descriptors, being this information of great value for the urban planner, as for decision 
making in the management of a sound space. 
Secondly it will be very useful to test the model in other cities. Although the methodology 
describes here is fully applicable to any urban areas, the model should be refined to take 
into account new sound spaces arising in other cities. This would increase the applicability 
and generality of the model. 
Finally, another aspect of great interest to consider for future work is to use another data 
mining techniques or new algorithms to improve the above described model. In the latter 
case, we are considering the use of genetic algorithms to optimize an artificial neural 
network, in order to evaluate their potential pros and cons regarding the development of an 
urban noise prediction model.  The principal goal would be to analyze the main differences 
found between the use of backpropagation algorithms and genetic algorithms to carry out 
the training of an artificial neural network. 
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