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Chung Hua University1, Texas A&M University2, National Taiwan University3 

Taiwan, Republic of China  

1. Introduction 

Irrigation ponds, or pi-tang in Chinese, are defined as an artificial construction made to 
impound water by constructing a dam or an embankment, or by excavating a pit or dugout. 
Some ponds at both microhabitat and the landscape scales may be a relevant influence for 
explaining bird communities due to a habitat effect or more-moderate and complex effects 
(Froneman et al., 2001).  These ponds, regarding as wintering waterbird refuges, represent 
some of the multi-functional dimensions in the restoration results of agro-ecosystems.  
Previous studies detected that causes of species diversity are affected by habitat 
heterogeneity (Forman and Godron, 1986; Forman, 1995; Begon et al., 1996; Francl & Schnell, 
2002; Fang et al., 2009). According to habitat selection as bio-choices, irrigation pond 
patterns associated with various microhabitats provide environmental clues that are used by 
birds to select stopover sites, such that ponds within the range of avian communities may 
potentially remain unoccupied or under-occupied if they lack those clues.  Therefore, the 
appropriate microhabitats for a particular species in a guild might not be spatially constant 
if the habitat status changes the distance to the edge between pond cores to peripheral 
habitats, i.e., by water-table drawdown, farmland consolidation, or other anthropogenic 
influences.  Pond-species relationships, thus, are connected like a neural network with a 
non-parametric nature, as clues suggest.  
In fact, estimating the avian community is a difficult task as various species may inhabit 

same patch in a heterogeneous landscape, so taxonomic analysis of avian guilds would be 

advantageously coupling them here with the development of forecasting techniques based 

on habitat characteristics.  Surprisingly, attempts to estimate entire avian guilds with 

scientific rigor on such grounds are scarce in the literature, except with a few taxonomic 

studies (McArthur et al., 1967).  Conversely, a wealth of work deals with linear predictions 

on a regional scale (McArthur et al., 1967; Froneman et al. 2001). In this respect, they 

proposed theoretical linear-relationship models using a wide range of multivariate 

techniques, including several methods of multivariate linear discriminant analyses, 

canonical analyses, and logistic regressions. 

Many critical reviews have indicated that these conventional models, usually based on 
multiple regressions, assume simple linear relationships between variables (Palmer, 1990; 
Reby et al., 1997). Some authors argued that regression model did not fit non-linear 
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relationships and interactions among variables. Virkkala (2004) stipulated that avian habitat 
selection is a dynamic and nonlinear process. Based on linear principles, they produce 
exclusive results since the main processes that determine the level of biodiversity or species 
abundance are often non-linear.  To some extent, these methods are often rather inefficient 
after variable transformation when the data are non-linearly distributed. Therefore, species-
habitat relationships often yield skewed and bimodal data. There are also other complexities 
associated with fluctuating avian populations and hierarchical decision-making on different 
scales before a final habitat selection. This highly complex relationship is inherently 
unpredictable between birds and their microhabitats. However, on the local scale many habitat 
models for birds have achieved considerable success in predicting habitat selection.  
In addition, there is no specific a priori mathematical tool for predicting guild biodiversity, so 
the techniques used for prediction should also work for non-linear transformation.  In ecology, 
multivariate-based models relating environmental variables to avian communities have been 
presented by several authors sometimes using non-linear transformations of independent or 
dependent variables to improve results. Even so, the results are still insufficient, with a low 
percentage of variance explained.  Therefore, additive variables regarding bird and pondscape 
relationships require that networks be interwoven for detailed studies. 
According to aforementioned analyses, this study assesses a non-linear relationship using 
neural network models instead of linear regression. We developed an approach adopted by 
Artificial Neural Networks (ANN) to model the relationship between pondscape and 
waterbird diversity. Study areas with thousands of irrigation ponds are unique geographic 
features from the original functions of irrigation converted to waterbird refuges. An 
important advantage of using an artificial neural network model is its non-parametric 
nature.  It is not necessary to transform data to match a certain distribution.  ANN models 
can be non-linear and can model logical expressions such as “and”, “or”, “not”, and 
“exclusive or” as the pages that follows.  
The groundwork for neural networks was laid out in the 1940s in the field of neurophysiology. 
ANN, which originated about several decades ago (McCulloch & Pitts, 1943), was inspired by 
a desire to emulate human learning. ANN is highly effective for modeling nonlinear problems.  
Only recently it was shown that ANN models may efficiently model some non-linear 
systems in ecology. In recent avian studies, some authors have focused on an approach of  
ANN, which were developed as an original prediction method according to the principle of 
the operation of the human neural system (Ozesmi et al., 2006; Fang et al., 2009).  The practical 
implication is that an ANN can accurately predict nest occurrence and breeding success of red-
winged blackbird in response to ecological applications (Ozesmi et al., 2006).  
Neural networks are determined by the neurons, or units, which are interconnected within 
the entire dynamic system.  In this research, therefore, we attempted to apply this method to 
relate the structure and diversity of an assemblage of wintering birds to microhabitats.  Our 
model considers pond shape and size, neighboring farmlands, and constructed areas in 
calculating parameters pertaining to the interactive influences on avian diversity, among 
them the Shannon-Wiener diversity index (Shannon and Weaver, 1949; Oertli et al., 2002).   

2. ANN’s methods 

In our research, we used multiple logistic regression (MLR) models associated with ANN’s 
models. The multiple logistic regression (MLR) models are identical to a neural network 
with no hidden units. For neural network hidden units, each hidden unit computed a 
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logistic regression (different for each hidden unit), and the output is therefore a weighted 
sum of logistic regression outputs.  Initially, (ANN) were developed to provide simplified 
models of biological neural architecture. Each of these domains can be characterized as ones 
in which (a) multiple hypotheses need to be pursued in parallel, (b) enormous amounts of 
data need to be processed, and (c) the best current systems are far from equaling human 
performance. 
The error back-propagation (BP) training algorithm has proven to be one of the most useful 

approaches in training the development of an ANN. This algorithm adjusts the connection 

weights according to the back-propagated error computed between the observed and the 

estimated results. This is a supervised learning procedure that attempts to minimize the 

error between the desired and the predicted outputs.  

For this research, we chose a three-layered model with one input layer of three to four neurons 
(one for each input variable), one hidden layer of two to eight neurons (it is the number which 
gave the best prediction result), and one output layer of one neuron which was the output 
variable (see Fig. 1). Each input layer was connected to each neuron in the hidden layer via 
adjustable weighted links and likewise between the hidden layer and the output layer.  

 

 

Fig. 1. Structure of neural networks used in this study based on the error back-propagation 

(BP) training algorithm. Input layer of neurons comprising as many neurons as pondscape 

variables at the entry of the system; hidden layer of neurons whose number is determined 

empirically; output layer of neurons with a single neuron (i.e., diversity) corresponding to 

the single dependent variable. 

In the processes of BP training, the input data pattern is presented at the input neurons. 

These values are propagated through the network from the input to the hidden layer and 

then from the hidden layer to the output layer. At each stage the values, summed weighting 

inputs, are multiplied by the individual links on each connection. Then, the output layers 

are generated by the network based on the input data set. The errors, based on the 

differences between the “true” output and the “test” output, are fed back through the 

propagated loops.  The individual weights associated with each of the connections to the 

hidden neurons are adjusted slightly to diminish the error. 
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Modelling was carried out in two phases to adjust with the training set and then test with 
the test set to determine the best ANN configuration. First, testing the model to calibrate the 
model variables. Second, to test the ANN models, we selected at random a training set (80% 
of the pond records, i.e., 35) and a validation set (20% of the pond records, i.e. 10). For each 
of the two sets, the model was determined with the training set and then validated with the 
test set. The quality of the model was judged through the correlation between observed and 
predicted values in the validation set. The ANN analysis was performed with the computer 
package, MATLAB 6.1 (MathWorks, Inc., Natick, MA, 2001). 

3. Materials and supported methods 

3.1 Materials sampled 
In general, this study would detect differences between the linear model and non-linear 
model by logistic regression and ANN in the low-density rural population pondscape areas.  
There was a necessity to carefully select the predicted area of pondscape as well as 
environmental gradients between these models. Regarding the scientific rigor, all cases of 
sampling ponds, waterbirds, and other data related to this study are examined in material 
details as follows. 
We selected ecologically significant Taoyuan Tableland associated irrigation ponds as our 
study area because one fifth of all the bird species find home on these ponds in Taiwan 
(Chen, 2000; Fang, 2004a). This tableland, at an area of 757 km2 in size, comprises an area of 
2,898 ha of irrigation ponds on the northwestern portion of Taiwan. Located approximately 
30 km from the capital city of Taipei, this rural area was easily converted to urban lands due 
to the aggregated effects of urbanization and commercialization. Socioeconomic benefits are 
driving public opinion which is urging the government to approve land-use conversion 
from farmlands into urban uses. The Taoyuan Tableland lies between the northern border of 
the Linkou Tableland (23°05'N, 121°17'E) and the southern border of the Hukou Tableland 
(22°55'N, 121°05'E); it borders the town of Yinge in the east (22°56’N, 121°20’E) and the 
Taiwan Strait in the west (22°75’N, 120°99'E) (Department of Land Administration, Ministry 
of the Interior, 2002)(see Fig. 2.).  It sits at elevations from sea level to 400 m and is composed 
of tableland up to 303 m and hills with sloping gradients from 303 to 400 m. It runs in a 
southeast-to-northwest trend, abutting mountains in the southeastern corner and the shore 
of the Taiwan Strait at the far end. With a high average humidity of 89%, the tableland is 
located in a subtropical monsoon region with humid winters and warm summers. January 
temperatures average 13 °C, and July temperatures average 28 °C. Annual average 
precipitation ranges from 1,500 to 2,000 mm. 
The tableland gradually rose approximately 180,000 years ago. At that time, the Tanshui 
River had not yet captured the flow from the ancient Shihmen Creek, which directly poured 
out of the northwestern coast forming alluvial fans.  Eventually, foothill faults caused by 
earthquakes during the same era, resulted in the northern region of Taiwan abruptly 
dropping by 200 m, and thus, the Taipei basin was born. Since the Taipei area had subsided, 
the ancient Shihmen Creek which meandered across the Taoyuan Tableland was captured 
by northward-flowing rivers some 30,000 years ago.  The middle streams changed their 
courses because of the subsidence in the Taipei basin. The resulting Tahan Creek, became 
the upstream portion of the Tanshui River in the Taipei Basin.  Due to blockage of water 
sources, downstream areas on the Taoyuan Tableland were deficient in water.  This caused 
high flushing and drops in water yields. Historically, it was difficult to withdraw and 
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supply irrigated surface water from rivers due to the tableland’s unique topography, thus, 
forming an obstacle for the development of agriculture (Huang, 1999; Chen, 2000). 
This area has a population density of 2,331 persons/km2 and its population is increasing at a 
rate of 2,000~3,000/month. Population pressures have contributed to reductions in historical 
areas of farmlands and irrigation ponds (Fang, 2001).  Losses of farm-pond and farmland 
habitats have had series effects on a range of avian communities as well as other fauna and 
flora (Fang and Chang, 2004). On the Taoyuan Tableland, agricultural practices are 
intensifying, which is reducing the heterogeneity of the existing landform, and adding 
pollutants, also resulting from industrial practices. 
 

 

Fig. 2. Location away the city limits more than 2 km of forty-five study ponds in the range of 
the tableland. 

3.2 Pond sampled 
The pond complex in the Tableland is typical of the many farm-pond complexes found in 
the Taoyuan and Hsinchu Counties. The Tableland was first stratified into nine sub-regions, 
six in the north, five in the south, and thirty-four in the western regions. Data were collected 
at forty-five study sites in farm ponds in various size gradients (43 individuals > 1 ha; 2 
individuals < 1 ha) according to large areas of ponds accounted for 628 individuals (>1 
hectare) in Taoyuan Tableland (Fig. 2.). The number of farm-pond sites selected in each 
region was roughly proportional to the accessible area of each region riding by automobiles. 
We did not place sampling sites in eastern and southern urbanized high-density areas 
where the population was relatively intact. This was done because the bird composition of 
such an urban sites containing a large proportion of generalists would have driven a large 
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proportional bias with the other sites with more specialists, thus making it inappropriate for 
diversity analysis. Although we did not select sites based on any predetermined definition 
of the degree of urbanization along a rural-urban gradient (e.g. distance from urban core), 
the relatively large number of randomly selected survey sites ensured that there was a good 
representation of sites far away from major urbanized corridors approximately more than 2 
km area, and far from natural forest areas in the eastern regions. The farm ponds studied 
ranged from the slight disturbed farmlands to the fairly natural farmlands. We placed the 
linear transect routes on areas that were accessible by trails and footpaths around ponds.  
Therefore, forty sites were situated within table range in western range, and five sites were 
situated in relatively continuous interlocked ponds in southern range.  All pond sites were 
stratified selected randomly to minimize variability in vegetation structure and composition.  
Detailed measurements from tree species records on a subset showed them to be 
structurally very similar areas.  
 

 

Fig. 3. Avian observers recorded all bird species seen within a 100-ha radius at 564.19-m 
basal radius of the bird census point at pond edge (photo by Wei-Ta Fang). 

3.3 Waterbirds sampled 
Avian observers recorded all bird species seen within a 100-ha radius at 564.19-m basal 

radius of the bird census point at pond edge associated with line transects along pond-edge 

trails during 30-minute periods (one case of irrigation ponds see Fig. 3.). Sites were visited 

four times in the winter seasons between November and February. To reduce the effects of 

bird-observer bias, three to four observers were grouped and rotated between ponds. The 
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observers counted birds that were in any habitats. All counts were conducted between 7:00 

a.m. and 10:00 a.m. on days without rainy days when visibility was good (Bookhout, 1996).  

Foliage-loving species was also recorded followed the point-count method. Avian 
presence/absence on foliage strata was recorded in each pond at each of the following 
height intervals: edge ground, wetland grasses (< 0.5 m in height), bushes (> 0.5- 2.5 m in 
height), trees (> 2.5 m in height).  Points were sampled at 10-m internals along edge trails 
established down each side of each pond. Waterbirds were grouped into microhabitat guilds 
based on actual observations on the sites.  Foliage-loving species were initially classified into 
four height categories: pond-edge ground, low foliage (< 0.5 m in height), middle foliage (> 
0.5- 2.5 m in height), and high foliage (> 2.5 m in height). Species were subsequently 
classified into two groups: understory (ground and low foliage groups) and canopy (middle 
and high foliage groups). 
We calculated the number of individuals detected of each species at each pond for each 
month. Then, we calculated mean values of these variables for each study microhabitat 
across all study ponds in a wintering season.  

3.4 Pond metrics calculation 
Most pondscape studies imply a comparison with rural or natural habitats and tend to 
group urban or suburban areas into a simple type (Boothby, 1997). But pondscape 
associated with farmlands is not alike. They vary greatly in internal and external factors.  To 
find a habitat relationship, the major variables for species diversity in pondscape patches are 
categorized to meso-scale and micro-scale distribution, such as: (a) matrix heterogeneity 
(meso-scale), and (b) habitat diversity (micro-scale) in size, shape, isolation from sources, 
and boundary delineation of disturbances.  Variables were selected concerning the main 
differences in vegetation, the intensity of anthropogenic influences, and their distance from 
urban limits and ocean edges. In this study, matrix heterogeneity was decided by insensitive 
farming by consolidation.  Habitat diversity indices in area and shape were calculated by 
FRAGSTAT® according to Taoyuan’s Geographic Aerial Map (1:5,000 of scale in digital 
database form) (Department of Land Administration, Ministry of the Interior, 2002).  
These diversity indices were categorized as follows: (1) Largest Pond Index (LPI), (2) Mean 
Pond Size (MPS), (3) Number of Ponds (NP), (4) Mean Pond Fractal Dimension (MPFD), (5) 
Mean Shape Index (MSI), (6) Edge Density (ED), and (7) Total Edge (TE). The indices (1)- (3) 
were categorized as the indices of “area”; and the (4)- (7) were categorized as the indices of 
“shape” (McGarigal et al, 2002). Disrupted by anthropogenic influences, an isolation index 
was calculated: (8) the distance to city limit (in m), (9) the ratio of constructed area within a 
radius of 100 ha from the pond’s geometric center (in (m2)/ha), and (10) the ratio of all road 
and trail areas within a radius of 100 ha from the pond’s geometric center (in (m2)/ha). A 
source connectivity index was calculated: (11) the distance to coastline (in m), (12) the ratio 
of all surrounding pond areas within a radius of 100 ha from the pond’s geometric center (in 
(m2)/ha), and (13) the ratio of all river and canal system areas within a radius of 100 ha from 
the pond’s geometric center (in (m2)/ha). Afterwards, the disturbance and buffer zone was 
measured using the density of drawdown and foliage cover, and windbreak boundaries 
were delineated by field surveys and an examination of aerial photographs, 1:5,000 of scale 
(Agricultural and Forestry Aerial Survey Institute, 2003).  The composition of the complex 
landscape matrix mentioned above could modify the degree of effects, probably by 
increasing or limiting the availability of foraging sources and resting sites for avian 
communities. All elevation (in m) of ponds and perimeters (in m) of pond edges were 
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measured by Global Position System (GPS)(GarminVista-Etrex, made in Taiwan) and rolling 
rulers (in m) associated with the calibration of aerial photographs, 1:5,000 of scale 
(Agricultural and Forest Aerial Survey Institute, 2003). Indices were required to calculate 
class and landscape levels as follows (McGarigal et al, 2002):  
1. Largest Pond Index, LPI. 

 
1

max( )

(100)

n

ij

j

a

LPI
A

==  (1) 

ija = maximum pond ij area (in m2). 
A = pond areas (in ha). 
Level: CLASS, LANDSCAPE 
Units: Percent 
Range: 0 < LPI > 100 
Description: LPI equals the pond area (m2) divided by total pond areas, multiplied by 100 
(to convert to a percentage). 
2. Mean Pond Size, MPS. 
MPS is the mean size of ponds (in ha.)  
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ija =the area of pond ij (in m2). 

in = the number of the pond ij, a single pond size (PS) in this case equal to 1. 
Level: CLASS, LANDSCAPE 

Units: Ha 

Range: MPS > 0, without limit. 

Description: MPS equals the pond area (m2) of all ponds of the corresponding patch type, 

divided by 10,000 (to convert to ha). 

3. Number of Ponds, NP. 

 iNP n=  (3) 

Level: CLASS, LANDSCAPE 
Units: None 
Range: NP > 1, without limit. 
Description: NP equals the number of ponds of the corresponding patch type (class). 

4. Mean Pond Fractal Dimension, MPFD.  
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ija = the area of pond ij (in m2). 

in = the number of the pond ij.  
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pij = the perimeter of pond ij (in m). 

Level: CLASS, LANDSCAPE 

Units:  None 

Range: 1 < MPFD < 2 

Description: MPFD reflects shape complexity across a range of pond size. It equals 2 times 
the logarithm of pond perimeter (m) divided by the logarithm of pond area (m2) (Li and 
Reynolds, 1994). MPFD approaches 1 for shapes with very simple perimeters such as circles 
or squares, and approaches 2 for shapes with highly convoluted and plane-filling 
perimeters. 
5. Mean Shape Index, MSI. 

 
1 2

n
ij

j ij

i

p

a
MSI

n

π= ×
=

∑
 (5) 

ija = the area of pond ij (in m2).  

in = the number of the pond ij. 

ijp = the perimeter of pond ij (in m). 

Level: CLASS, LANDSCAPE 

Units: None 

Range: MSI > 1, without limit. 

Description: MSI equals the sum of the pond perimeter (m) divided by the square root of 
pond area (m2), and divided by the number of ponds. MSI represents the mean shape 
pattern. If MSI = 1, the pond is circular and increases without limit as pond shape becomes 
more curvilinear. 
6. Edge Density, ED. 

 1 (10000)

n

ik
k

e

ED
A

==
∑

 (6) 

ike = the total parameters between pondi and landscapek (in m).  
n = the number of the pond; a single pond in this case equal to 1.  
A = pond area (in m2). 
Level: CLASS, LANDSCAPE 
Units: None 
Range: MSI > 1, without limit. 
Description: Edge density (in m/ha) equals the pond perimeter (in m) divided by the pond 

area. Edge density is a measurement of the complexity of the shape of pond. 

7. Total Edge, TE. 

 
1

n

ik
k

TE e
=

= ∑  (7) 

ike = the total perimeters between pondi and landscapek (in m).  
n = the number of the pond; a single pond in this case equal to 1.  
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Level: CLASS, LANDSCAPE 
Units: meters 
Range: MSI > 0, without limit. 
Description: Total Edge (TE) represents the total pond perimeters in meters. 

3.5 Waterbird diversity analyses 
There are two traditional bird analyses for entire avian communities and specific avian 
groups, richness, and diversity. Differences in the characteristics of avian groups and 
pondscape configuration may vary according to species-area relationships among regions. 
Therefore, to find differences in the response of species to habitat area and isolation, studies 
must include multiple analytical approaches to detect which analysis was better based on an 
entire community, or on a specific group.   
Descriptive statistics for entire communities were used as the first stage of statistical avian 
data processing. The main aim was initial analysis of the distribution of avian communities 
sooner, such as an average individual value and; or a guild value was described for specific 
groups later.  Afterwards, avian diversity was described in the result of diversity indices for 
all communities or a single group. To detect species evenness and abundance, we used 
Shannon-Wiener diversity index (H’) (also named for Shannon index or Shannon-Weaver 
index), which is given a measure of the richness and relative density of a species to calculate 
diversity (Shannon and Weaver, 1949). This diversity measure conducted by Shannon and 
Weaver which originally came from information theory and measures the order observed 
within a particular system. Regarding to my studies, this order was characterized by the 
number of avian individuals observed for each species in the sampling ponds.  The first step 
was to calculate Pi for each category (i.e., avian species), and then we multiplied this number 
by the log of the number. The index was computed from the negative sum of these numbers. 
In short, the Shannon-Wiener index (H’) is defined as (8):  

 H′＝－
1

S

i
i

P
=
∑ log2 Pi   (8) 

S: avian species richness  
Pi: The percentage of the i species in avian community 
This index reflected bird richness in species and evenness amongst the avian community.  
The benefits of H’ was sensitive by the change in threatened birds by avian study than that 
of Simpson’s diversity index (D)(Dean et al., 2002).  If the value of H’ is higher, it means that 
species is abundant, or species distribution is even.  However, species diversity is sometimes 
difficult to see relationships with spatial heterogeneity by limited survey data. Grouping 
and classification are required as well as for spatial heterogeneity reduction from the 
analyzed variables. It is the main procedure in this methodology for invoking avian groups 
with similar attributes of spatial behavior. The main approach in cluster analysis application 
is based on the idea to represent the grouping structure by avian data classification, based 
on the similarity in guilds between the species. 

4. Results and discussion 

The procedure was applied to waterbird assemblage of the Taoyuan Tableland, Taiwan. 

One variable was selected to describe its structure: Shannon-Wiener’s diversity index (H’) of 
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the same waterbird guild. Four environmental variables were selected as explanatory 

variables: pond size (PS), pond shape (MPFD)(see equation (4)), proportion of farmland area 

in peripherals (%FARM), and proportion of constructed area in peripherals (%BUILD) than 

that of other variables due to their intensive correlations. Correlations between observed 

values and values estimated by ANN models of the four dependent variables were 

moderately significant. The ANN models were developed from 35 sample sites of farm 

ponds chosen at random and were validated on the 10 remaining sample sites of farm 

ponds. The role of each variable was evaluated by inputting fictitious configurations of 

independent variables and by checking the response of the model. The resulting habitat 

profiles depict the complex influence of each environmental variable on the biological 

parameters of the assemblage, and the non-linear relationships between dependent and 

independent variables. The main results and the ANN potential to predict biodiversity and 

structural characteristics of species assemblages are discussed as follows. 

4.1 Logistic modelling  
Based on logistic regression and criteria selection, we present three strategic landscape 
scenarios as follows. The multiple linear regression (MLR) models decided as equation (4) 
and developed advanced Logit models by equation (9): 

 Logit (Y) = 1.90 -3.02PS + 0.01TE     (9) 
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=  (10) 

 
3

4
kmTE PS=  (11) 

 
3

4( ) ln 1.90 3.02 0.1
1

p
Logit Y PS PS

p
= = − +

−
 (12) 

 

4

3( ) ln 1.90 3.02( ) 0.01
1

km km

p
Logit Y TE TE

p
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     where TEkm = total edge (in km), PS = pond size (in ha) 
The pond-loss likelihood (p), Logit (Y), PS, and TEkm were calculated as the Table 1. 

According to Table 1, the strategic landscape scenarios for farm pond adjacent land-uses 

were divided as: (a) Scenario A: conservative land use, (p =0.25); (b) Scenario B: moderate 

land use (p = 0.50); (c) Scenario C: intensive land use (p = 0.75) for waterbird refuges: 

We used Scenario A for a conservative land use. If the likelihood of pond lossas a lower 

value is equal to 0.25, all ponds noted as threatened red spots (pond size > 0.996 ha, TEkm > 

0.997 km) are required conservatively protected due to their loss likelihood. The base map of 

waterbird’s diversity H’ is suggested to designate waterbird refuges in 2 yellow patches 

(H’>1.5) against pond-loss likelihood overlaid by threatened red spots (Hpool: pond size > 

0.996 ha, TEkm > 0.997 km). [Diversity H’:0.4~0.6; 0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; 

Distance (km); 12].  
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Land-use 
Scenarios 

Pond-Loss 
Likelihood (p) 

PS 
(in ha) 

TEkm 
(in km) 

Logit (Y)= 
ln(p/1-p) 

Extremely Conservative 0.05 1.6087 1.4284 -2.9444 

Highly Conservative 0.10 1.3609 1.2600 -2.1972 

Conservative 0.25 0.9962 0.9971 -1.0986 

Moderate  0.50 0.6310 0.7080 0 

Intensive 0.75 0.2666 0.3710 1.0986 

Table 1. The Pond-loss likelihood rate and Logit functions. 

We also used Scenario B for a moderate land use. If the likelihood of pond lossas a moderate 

value is equal to 0.50, all ponds noted as threatened red spots (pond size > 0.631 ha, TEkm > 

0.708 km) are required moderately protected due to their loss likelihood. The base map of 

waterbird’s diversity H’ is suggested to designate waterbird refuges in 3 yellow patches 

(H’>1.5) against pond-loss likelihood overlaid by threatened red spots (Hpool: pond size > 

0.631 ha, TEkm > 0.708 km). [Diversity H’:0.4~0.6; 0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; 

Distance (km); 12]. 

Actually, Scenario C was used for an intensive land-use pattern, too (Fig. 4.). If the 

likelihood of pond loss as a high value is equal to 0.75, all ponds noted as threatened red 

  
 

 
 
 

Fig. 4. Scenario C was used for an intensive land-use pattern (before ANN’s application) 
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spots (pond size > 0.2666 ha, TEkm > 0.371 km) are required intensively protected due to 
their loss likelihood. The base map of waterbird’s diversity H’ is suggested to designate 
waterbird refuges in 4 yellow patches (H’>1.5) against pond-loss likelihood overlaid by 
threatened red spots (Hpool: pond size > 0.2666 ha, TEkm > 0.371 km). [Diversity H’:0.4~0.6; 
0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; Distance (km); 12]. 

4.2 ANN’s application 
On the basis of the results of this study, there were limitations for waterbird’s diversity on 

the linear model simulation. First, the linear relationship is so simple that it could not 

indicate all non-linear relationship. Second, the pond sites numbers merely ranging from 1 

to 45 simply could affect the precision of simulation results of bird distribution.   

The diversity of waterbirds was predicted throughout the exercise using the 

backpropagation (BP) algorithm with a three mutli-layered neural network. The first layer, 

called the input layer, comprised 4 cells representing each of the environmental variables. 

The second layer, or hidden layer, is composed of a further set of neurons whose number 

depends on the best-calculated results without bias. Since BP algorithm was trained by the 

least mean square method. The least mean square training could reduce the error, or 

distance between the actual output and the desired output, by adjusting the weights. 

Training cases were presented sequentially and the weights are adjusted. We determined 

the number of second-layer neurons through a serious of iterations varied from two, four, 

and eight neurons. In each case, we calculated the correlation coefficients between true 

values of H’ and the predicted value of ANN’s H’. In our study, a network with one hidden 

layer of four neurons was selected. It was emphasized in a stable fit and avoided 

overtraining (see Figs. 5. & 6.).  

In this study, the backpropagation (BP) neural network architecture is shown and consists of 

four layers of neurons connected by weights. We used MATLAB 6.1 (MathWorks, Inc., 

Natick, MA, 2001) to calculate a refining simulation model for extra values of H’. 

The information was captured by the network when input data passed through the hidden 

layer of neurons to the output layer. The weights connecting from neuron one to neuron 

four were denoted as wji. Each neuron was calculated its output based on the amount of 

stimulation it received from the given input vector xi, while xi was the input of neuron i. 

The net input of a neuron was calculated as the weights of its inputs, and the output of the 

neuron was based on some sigmoid function which indicated the magnitude of this net 

input.  So the net output uj from a neuron can be indicate as equations (14) and (15) (Fang et 

al, 2009). 

 
1

p

j ji i
i

u w x
=

= ∑  (14) 

 ( )j j jy uϕ θ= −  (15) 

Where 

jiw  is the incremental change in the weight from xi to uj 

jθ  is a threshold to be passed through by non-linear activation function ( )ϕ ⋅   
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ix  is the pondscape ith variable 

ju  is the jth neuron from an outgoing signal to the magnitude of all observations  

( )ϕ ⋅  activation function 

jy  is the output of jth neuron in any layer 
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Fig. 5. The correlation trends between true H’ and ANN’s predicted H’ in training sets for 

four neurons. (correlation coefficient (r) = 0.725537 ≒ 0.722752, n = 35). 
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Fig. 6. The correlation trends between true H’ and ANN’s predicted H’ in validated sets 

fitting for four neurons. (correlation coefficient (r) = 0.722752 ≒ 0.725537, n = 10). 

The structure of the neural network used in this study. The input layer comprises 4 cells 

representing each of the 4-pondscape variables Xi (i =1, 4). The hidden layer comprises 4 

neurons which calculate the dot products between its vector of weights wj =[wji, i =1,4] and 

x = [xi, i=1,4] from MATLAB 6.1. 

Bird diversity (H’)

Bird diversity (H’)

Pond 
numbers 

Pond 
numbers 
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This research chose continuous sigmoid as basic function:  

  )exp(1

1
)(

cv
v

−+
=ϕ

 
(16)

 

where v  is the net effect, and c is a constant.  

For a given input set, the network produced an output, and this response was compared to 

the known desired response of each neuron. The weights of the network were then changed 

to correct or reduce the error between the output of the neuron and desired response, and 

this process was keeping on. The weights were continually changed until the total error of 

all training set was reduced below the acceptable sums of errors. The BP algorithm for 

determining the optimal weights from training sets could be seen as similar to any function 

approximation technique like least square regression. But BP had an improved function to 

learn highly complex and non-linear data.   

According to BP simulation, the strategic landscape scenarios for farm pond adjacent land-

uses were refined as: (1) Scenario A: conservative land use, (p =0.25); (2) Scenario B: 

moderate land use (p = 0.50); (3) Scenario C: intensive land use (p = 0.75) for waterbird 

refuges as the pages that follow by Fig. 7. The Scenario B (moderate land use) has simulated 

to increase one waterbird’s refuge (r = 0.72); and the Scenario C (intensive land use) has 

simulated to increase two waterbird’s refuges (r = 0.72) (see Fig. 7.). 
 

 

 

 
 
 

Fig. 7. Scenario C was used for an intensive land-use pattern (after ANN’s application). 
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Scenario A was refined by the ANN’s model for a conservative land use. If the likelihood of 

pond loss as a lower value is equal to 0.25, all ponds noted as threatened red spots (pond 

size > 0.996 ha, TEkm > 0.997 km) are required conservatively protected due to their loss 

likelihood. The base map of waterbird’s diversity H’ is suggested to designate waterbird 

refuges in 2 yellow patches (H’>1.5) against pond-loss likelihood overlaid by threatened red 

spots (Hpool: pond size > 0.996 ha, TEkm > 0.997 km)[Diversity H’: 0.4~0.6; 0.6~0.8; 0.8~1.0; 

1.0~1.5; 1.5~1.741; Distance (km); 12] (r = 0.72). 

Scenario B was refined by the ANN’s model for a moderate land use. If the likelihood of 

pond loss as a moderate value is equal to 0.50, all ponds noted as threatened red spots (pond 

size > 0.631 ha, TEkm > 0.708 km) are required moderately protected due to their loss 

likelihood. The base map of waterbird’s diversity H’ is suggested to designate waterbird 

refuges in 4 yellow patches (H’>1.5) against pond-loss likelihood overlaid by threatened red 

spots (Hpool: pond size > 0.631 ha, TEkm > 0.708 km)[Diversity H’: 0.4~0.6; 0.6~0.8; 0.8~1.0; 

1.0~1.5; 1.5~1.741; Distance (km); 12] (r = 0.72).  

Scenario C was refined by the ANN’s model for an intensive land-use pattern (see Fig. 7.).  If 

the likelihood of pond loss as a high value is equal to 0.75, all ponds noted as threatened red 

spots (pond size > 0.2666 ha, TEkm > 0.371 km) are required intensively protected due to 

their loss likelihood. The base map of waterbird’s diversity H’ is suggested to designate 

waterbird refuges in 6 yellow patches (H’>1.5) against pond-loss likelihood overlaid by 

threatened red spots (Hpool: pond size > 0.2666 ha, TEkm > 0.371 km)[Diversity H’:0.4~0.6; 

0.6~0.8; 0.8~1.0; 1.0~1.5; 1.5~1.741; Distance (km); 12] (r = 0.72). 

4.3 Discussion 
The pondscape configuration was in fact a very relevant factor for avian diversity. However, 

pond shape (MPFD) was not recognized for its significant influences on waterbird’s 

diversity. The final prediction results for a detailed H’ contourmap were satisfactory, 

testifying then a good prediction of avian diversity which was better with ANN model (r = 

0.72) than with linear regression model (r < 0.28), confirming the non-linearity of the 

relationship between the variables. From an ecological point of view, MPFD, the pond shape 

and %FARM, the ratio of farmland area, were the most significant variables in non-linear 

model rather than the linear model.  

Some of the most significant findings came from the ANN’s model. ANN was detected one 

of the tools that could resolve prediction problems, and this ANNs property is now well 

understood. On such finding was that pond shape (i.e., MPFD) to the pondscape might pose 

a tremendous influence to waterbird’s diversity in Taoyuan Tableland.  The value from 

ANN’s method provided a good indication of the cumulative influences for the four 

environmental factors: such as %BUILD, %FARM, PS, and MPFD. The cumulative 

influences were those that resulted from the anthropogenic influences, and became 

statistically significant on waterbird’s diversity.  The above-mentioned environmental 

factors were selected from correlation analysis associated with linear regression model, and 

each factor to be detected its impact trend by ANN’s model testing. Finally, the impact 

trends were calculated as the sequences of MPFD, %FARM, PS, and %BUILD, respectively.  

However, the correlation coefficients (r) of MPFD, %FARM, PS, and %BUILD were not 

following this sequence.  Another significant finding from the extended simulation data 
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may suggest that consolidated area has contributed to a negative influence on the 

cumulative impacts to decline diversity H’.  Therefore, non-consolidated area has become 

important to design wintering bird refuge due to its domination of the tableland, the refuge 

structures of regular pond shape, big pond size, high-density green spaces, and low-density 

housing development seemed to be regarded. 

 Conservation of avian diversity is influenced greatly by the extent to which intensive 
anthropogenic practices are applied in the pondscape. The models suggest small and 
curvilinear ponds together with urban development associated with high-density rural 
population landscapes will adversely affect waterbird species to a greater magnitude than 
agricultural practices in low-density rural population landscapes. Extensive agricultural 
practices associated with ranching enterprises appear to maintain the native plant 
communities essential for maintaining waterbirds. Considering the tremendous increase in 
development and intensive agricultural practices applied at the rural-urban fringe, native 
vegetation will continue to be replaced with human-made construction and introduced 
woodland species. Therefore, biologists and conservationists should focus their educational 
programs on maintaining avian species in the rural-urban fringe. 
Increased species and structural diversity within these pond units would result in higher 
ecological values of spatial diversity resulting from the occurrence of habitat and regional 
scales. At the same time this reduces the need for making microhabitat density 
measurements to emphasize the “edge-effect” and also, to some extent, compensates for the 
under-representation of small habitats in the measurement of ecological value. For example, 
drawdown can be beneficial to shorebirds; foliage building at waterfront can be beneficial to 
waterfowl. There is clearly some mechanism responsible for the convergence of taxon 
density and composition across the pond size gradient for the greater part of the species 
assemblages. According to MacArthur & Wilson (1967), the nature of this mechanism is 
interesting as the island biogeographic concept predicts that smaller microhabitats should 
contain fewer species due to the effects of reduced immigration rates. For area-sensitive 
species, their incidence is expected to increase as pond size increases. In addition, a larger 
pond is also more likely to contain at least one individual of a species, especially an 
uncommon or rare one.  

5. Conclusion 

In Taoyuan Tableland, all ponds are similarly isolated. Within the complex pondscape, 
ponds are similarly isolated from each other and steppingstone colonization can take place 
to enable species to establish throughout the complex (Forman, 1995). A population may 
become move to surrounding ponds, or nearly so, due to stochastic or deterministic 
mechanisms and steppingstone recolonization might then ensure the persistence of that 
population among wintering stopovers. This is effectively the colonization effect where 
functional groups are continuously moving by colonization from nearby neighboring ponds.  
Because there are many ponds within the tableland and they are close together in space, 
vulnerable populations are likely to be enhanced by immigrants from multiple neighboring 
populations during migration. Stable microhabitats are also likely to receive immigrants 
from several neighboring populations. Migration between farm ponds is thus likely to be 
high and thus the whole pond complex is likely to be responding as a multiple community. 
There is likely to be a concentric-ringed gradient in pond systems between waterside species 
and habitat “islands”. We confirmed that, due to similar mechanisms operating in all ponds 
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and the high connectivity between them, farm ponds are very close to the environmental 
gradients. Given the wide range examining in my study, it is quite possible that the 
predicted group diversity exist at different positions along this gradient. Therefore, the 
colonization effect can be helpful to predict waterbird’s diversity (H’) in surrounding study 
ponds throughout the values of input pondscape variables by ANN algorithm to determine 
a detailed regional contour map surrounding by urbanized areas.  
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