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China 

1. Introduction 

1.1 Predictors of heavy metal concentrations in rice  

Several spectral indices and environmental parameters were analyzed in order to determine 

heavy metal concentrations in rice. Excessive heavy metal concentrations in rice affect its 

chlorophyll content and cell structure(Huang et al., 2007;Liu et al., 2010b), which can be 

reflected by hyperspectral reflectance(Yoder and Pettigrew-Crosby 1995; Blackburn 1998; 

Curran et al., 2001). So, it is feasible to estimate the heavy metal concentrations in plants 

using hyperspectral data. That is to say, spectral indices deriving from hyperspectral 

reflectance were utilized to examine rice’s physiological responses to heavy metal 

contamination in paddy fields. Whereas environmental parameters including those relating 

to soil and weather were important factors for determining heavy metal diffusion in rice. 

They were selected as input variables on the basis of two important reasons. On the one 

hand, the involvement of environmental parameters facilitates the application of GDFNN 

model in different environmental conditions and thus increases the ability of model to  be 

used extensively. On the other hand, the involvement of environmental parameters can 

improve the accuracy of prediction of heavy metal concentrations in rice leaves. Therefore, 

in this research, predictors of heavy metal concentrations in rice are composed of spectral 

indices and environmental parameters. 

1.2 Spectral parameters 

A number of studies have demonstrated that the variation in spectra curve of plant induced 

by heavy metal pollution occurred in both the visible and the near-infrared (NIR) part of the 

spectrum (Kooistra et al., 2004). In order to improve the accuracy for estimating heavy metal 

concentrations in rice, spectral indices sensitive to heavy metal concentrations in rice were 

selected according to previous studies. Five spectral parameters including red edge position 

(REP), optimized soil adjusted vegetation index (OSAVI), ratio vegetation index (RVI), 

normalized difference vegetation index (NDVI) and difference vegetation index (DVI) were 

selected in this study (Table 1). 
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Spectral indices Wavebands 
(nm)

Formula Reference 

REP  between 680 
and 760 nm 

1 1

1 1

( ) ( )
i

i i

i i

R R
Dλ

λ λ
λ λ
+ −

+ −

−
=

−
, when 

i
Dλ  is maximum 

value  

Chang and 
Coll1ins, 
1983 

OSAVI[670,800] 670,800 800 670 800 670OSAVI = (1 + 0.5)(R - R ) /(R + R + 0.5)  Huete et 
al., 1988 

RVI[700,750]  700,750 750 700RVI = R /R  Schuerger 
et al., 2003  

NDVI[695,760]  695,760 760 695

760 695

R - R
NDVI =

R + R
 

Schuerger 
et al., 2003 

DVI[682,734]  682,734 734 682DVI = R - R  Kooistra et 
al., 2004 

Note: Ri is the reflectance of band i. 

Table 1. Five spectral indices used as input variables of GDFNN model  

1.3 Soil parameters  

The physical and chemical properties of soil, such as pH, soil texture, organic matter (OM), 

colloid type and granularity, etc. have great influence on the transfer of heavy metals from soil 

to crop (Jackson and Alloway, 1992; De Vries et al., 2005).That is to say, the mobility and 

bioavailability of heavy metals are influenced by various soil properties. But different 

researchers drew different conclusions. But most researchers agreed that, of all physical and 

chemical properties of soil, soil pH and organic matter in soil have the greatest effect on the 

bioavailability of heavy metals, especially for soil pH. Since the extent of soil contamination 

can also be evaluated by comparing the maximum allowable concentrations (MAC) (National 

Environmental Protection Agency of China, 2006) of the metals in agricultural land. As soil pH 

partially governs the speciation and bioavailability of heavy metals, MAC values are adjusted 

according to soil pH (Fu et al., 2008). Liao et al.(2008) demonstrated that the contents of Cr, Cu, 

Pb, Hg, Ni and Cd etc. represent an obvious negative correlation with pH and the content of 

As represents a positive correlation with pH; that the contents of Cd, Cr, Cu, Pb and Hg, etc. 

are positively correlated with OM; the contents of Ni and As are negatively correlated with 

OM by conducting a correlation analysis on seven kinds of heavy metal in soil pH and OM in 

the study area. Likely, other researchers investigated that phytotoxicity and availability of 

heavy metal is strongly influenced by the pH and OM of soil (Foy et al., 1978; Fernandes and 

Henriques, 1991; Das et al., 1997).. Jung and Thornton (1997) investigation of relatively high 

metal concentrations in rice found it to occur under conditions of decreased pH and increasing 

OM in soil. Other studies also showed that heavy metal concentrations in rice have a 

significant negative correlation with soil pH and are positively correlated with OM (Fu et al., 

2008; Liao et al., 2008; Hang et al., 2009).  

1.4 Meteorological parameters 

Since meteorological conditions have influence on the metabolism, transpiration and 
absorption capabilities of plant roots, they affect the diffusion and translocation of heavy 
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metals in plants (Reber, 1989; Kádár, 1995). Some researchers have investigated 
meteorological factors, such as air temperature, relative humidity, sunlight, precipitation, 
etc., and have seen that they have important influence on the diffusion of metals in plants 
(Cui et al., 2004; Pan et al., 2007). The most important factors affecting metal bioavailability 
in paddy soil are temperature, sunlight and precipitation (Jung and Thornton, 1997; Cheng 
et al., 2005). So, temperature, sunlight and precipitation can belong to the set of possible 
predictors of heavy metal concentrations in rice. In this analysis, values for temperature (T; 
mean month temperature), sunlight (S; month accumulative sunlight) and precipitation (P; 
month accumulative precipitation) during rice growing seasons from July to October in 2008 
were measured. 

2. Models for estimating of heavy metal concentrations in rice 

2.1 Model architecture 

In this paper, a generalized dynamic fuzzy neural network (GDFNN) model was constructed 
to obtain heavy metal concentrations in rice leaves. GDFNN is a hybrid system that combines 
the fuzzy logic interference and theories of neural networks. ‘Dynamic’ indicates the network 
structure of fuzzy neural network is not predetermined. Namely, the system starts with no 
rules. Then, rules can be recruited or deleted according to the significance of each rule on 
output parameters of the structure in existing fuzzy neural network so that not only can the 
parameters but also the structure can be self-adaptive. GDFNN is a four-layer hybrid neural 
network with the ability to self-organize its own neurons in the learning process (Wu et al., 
2001). The structure of the GDFNN is also shown in Fig. 1. 
The layered operation of the GDFNN is as follows: 
Layer 1: The input layer—Each neuron in this layer represents an input variable, 
xi, i=1; 2, …, r.  
Layer 2: The EBF layer—Each neuron in the EBF layer represents an if-part of a fuzzy rule. 
The outputs of EBF neurons are computed by products of grades of member function (MF). 
In this layer physical variables are converted into fuzzy variables. Each MF is in the form of 
a Gaussian function: 

 ( )
2

( ) exp[ ] 1, , ; 1, ,
( )i ij

ij

x i r j uij i

x c
μ

σ
= = =

− −
A A  (1) 

where ijμ  is the ith membership function in the jth neuron, ijc  is the centre of the ith 

membership function in the jth neuron, ijσ is the width of the ith membership function in the 

jth neuron, r  is the number of input variables, u  is the number of neurons and also 

represents the numbers of fuzzy rules. 
Layer 3: The then-part of a fuzzy rule for the fuzzy model—The output of the jth neuron in 
this layer is  

 ( )
( )

exp[ ] 1, ,j 21

r x ci ij
j u

i ij

φ
σ

−
∑= − =
=

A  (2) 

Layer 4: The output layer—Each neuron in this layer represents an output variable as the 
summation of incoming signals. In this GDFNN a unique output variable is considered: 
heavy metal concentrations in rice .The output of a neuron in this layer is 
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u

r j j
j

y x x x w φ
=

= ⋅∑A  (3) 

 

Here, Wj the weight of jth rule in neural network. 

 
 

 

Fig. 1. A simple structure of GDFNN model  

2.2 Model algorithms 

GDFNN is based on ellipsoidal basis function (EBF) and is functionally equivalent to a 

Takagi-Sugeno-kang fuzzy system (Wu et al., 2001; Leng et al., 2005). Fig. 2 shows the 

process for learning algorithm in GDFNN.  

As seen in Fig. 2, the GDFNN can extract fuzzy rules from the training data without 

predefined fuzzy rules. In addition, fuzzy rules can be generated automatically according to 

the systematic error ( ke ) and ε -completeness of fuzzy rules. A new rule is created in the 

case where min
k

dmd k>  and k ee k> . Whereas, if the conditions min
k

dmd k< and k ee k> are 

satisfied, the width of Gaussian function in each rule are adjusted. Else only the consequent 

parameters are modified under other conditions. However, whether or not an existing rule 

should be deleted according to the error reduction ratio of each EBF neuron and fuzzy rules 

to the system performance.  If j errkη < , then the rule is deleted. Namely, the less important 

EBF neurons will be deleted. Based on the learning algorithm in GDFNN, the methods of 

the structure and parameter learning are based on new adding and pruning techniques and 

a gradient descent learning algorithm, so GDFNN has high accuracy with a compact 

structure. 
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Fig. 2. The process flow chart for the learning algorithm of GDFNN model 

2.3 Model evaluation 

Generally, the root mean square error (RMSE) and absolute percent error (APE) have been 

used to measure the performance of DFNN (Jang, 1993; Pai et al., 2009). In this study, the 

parameters were: (i) RMSE ; (ii) APE; and (iii) the correlation coefficient ( 2R ). The three 

parameters were computed by: 

 
N

ai mi

i=1 ai

y - y1
PE =

N y
A ∑  (4) 
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where yai , ymi , APE  are the real-valued output variable, measured output variable, 

absolute percent error respectively; N is the sample number. APE  provides information on 

the accuracy that the model can yield using a given data set. The nearer the value 

approaches 0, the better the performance of the model. 

 

( )
2N

ai mi
i=1

y - y

RMSE =
N- 1

∑
 (5) 

Here, RMSE  is root mean square error between real-valued output variable and measured 

output variable. The lower RMSE, the better the performance of the model. 

 

( ) ( )

( ) ( )

2N N

ai a mi m
i=1 i=12

2 2N N

ai a mi m
i=1 i=1

y - y y - y

R =

y - y y - y

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑ ∑

∑ ∑
 (6) 

Here, 2R , my and ay are the correlation coefficient, the average measured output variable 

and the average real-valued output variable, respectively. R2 represents the correlation 

between predicted and measured variables. It is assumed that the predicted and measured 

variables follow a normal distribution. Its value ranges from 0 to 1. The higher the value of 

the correlation, the stronger the indication of existing linear relations between the actual and 

predicted variables. 
With the exception of the above three evaluation indicators, a fuzzy rule (labelled u) was also 
taken into consideration in this analysis. This is due to the fact that the degree of complexity of 
the network largely depends on the number of fuzzy rules in the GDFNN model. With 
sufficiently high accuracy, fewer fuzzy rules are generated in model and the performance of 
the model improves. Hence, the model has a compact structure as well as a high accuracy. 

3. Methodology 

The crucial procedures for estimating heavy metal concentrations in rice were the selection 

of input variables and the establishment of a data retrieval model (Fig.3). Firstly, spectral 

parameters, soil parameters and meteorological parameters were taken into consideration as 

input variables for the model. The reasons were follows: spectral parameters were selected 

to examine rice physiological responses to heavy metal contamination, while soil parameters 

and meteorological parameters were regarded as important factors influencing rice uptake 

of heavy metal. Moreover, to be useful for practical simulations, specific parameters were 

needed to satisfy the following requirements: (1) dominant principle: the parameters should 

be significantly correlated to heavy metal concentrations in crops; (2) ready availability: the 

parameters could be obtained quickly and at a large scale. Secondly, GDFNN was 

developed to integrate spectral parameters, soil parameters and meteorological parameters 

in order to estimate heavy metal concentrations in rice. This model consisted of an input 

layer, an output layer and several hidden layers, with the hidden layers belonging to fuzzy 

interference system by carrying out fuzzy reasoning using the structure of neural network.  
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Fig. 3. The general flow chart for estimating heavy metal concentrations in rice 

4. Examples 

4.1 Site description 
The city of Changchun, Jilin Province in China is an important industrial and agricultural 
location. Some areas have been contaminated by industrial pollutants, particularly by heavy 
metals. Suburban farms have soil with copper (Cu) and cadmium (Cd) at higher  
 

 

Fig. 4. Location map for experimental sites in Changchun, Jilin Province, China 
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concentrations than what is considered to be normal for the area. Three field experiments (43° 
51' 34.8" N–43° 51' 37.0" N, 125° 09' 07.2" E–125° 10' 25.3" E) adjacent to the important industrial 
district (i.e., the contamination source) in Changchun were selected (Fig. 4). Heavy metal 
contamination stress levels in the soil of the three field experiments (labeled A, B, and C) 
varied. The soil and the stress rates were determined according to a soil sample analysis (Table 
2) to be at a safe level, level I pollution and level II pollution, respectively. The site is within the 
temperate continental climate zone with a mean annual rainfall of 522-615 mm, where the land 
is predominantly black soil, with a pH of 6.5-7.3 and 2-4% of sufficient organic matter. The 
crop selected in this site was rice which is one of the most important staples in China. 
 

Site Geographical 
location 

Copper 
Content 
(mgkg-1) 

Cadmium 
Content 
(mgkg-1) 

Pollution 
level 

Soil quality 
standard* (mgkg-1) 

A 43° 52.2' N, 125° 10.2' E 68.2±2.86 0.465±0.002 Ⅱ 
Ⅱ(50≤Cu≤400; 

0.3≤Cd≤1.0) 

B 43° 54.6' N, 125° 10.4' E 45.5±2.44 0.182±0.002 I 
I (35≤Cu <50; 
0.2≤Cd <0.3) 

C 44° 06.3' N, 125° 10.2 E 20.4±2.44 0.093±0.002 Safe 
Safe (Cu <20.8; 

Cd <0.097) 

Note: * Soil quality standard according to the Environment Monitoring Centre of China  

Table 2. The location and heavy metal concentrations of the experiment sites 

4.2 Data collecting  
The data collection was carried out in sunny days during a typical rice growth season: 8 
July, 4 August, 29 August, 18 September 2008, which corresponded to the seeding, tillering, 
booting and mature growth stages of rice. All spectral measurements were taken under 
cloudless or near cloudless conditions between 10:00 and 14:00, using an ASD FieldSpec Pro 
spectrometer (Analytical Spectral Devices, Boulder, CO. USA). The spectrometer was fitted 
with 10° field of view fibre optics, operated in the 350-2500 nm spectral region with 
sampling intervals of 2 nm. A BaSO4 calibration panel was used for determining the black 
and baseline reflectance. A panel radiance measurement was taken before and after rice 
measurement using two scans each time. Rice radiance measurements were made at 30-40 
sites in each plot and every measurement was recorded as the average of 10 consecutively 
acquired spectra in order to reduce the noise level. Five spectral indices derived from 
hyperspectral reflectance were calculated in Table 3. 
The measurement of soil property and heavy metal concentrations in rice and soil  were 
taken almost synchronously with rice spectral reflectance measurements. In this context, soil 
pH was determined in a paste with a ratio of 1:2.5 soils to water using a pH meter (Model 
PHS-3C, Shanghai Precision and Scientific Instrument Co. Ltd.). Soil organic matter was 
analyzed according to Chinese CRM/RM information center (http://www.gbw114.org). 
The metal content was analyzed at the Chinese Academy of Agricultural Sciences, Beijing, 
China. Soil and rice total heavy metals (Cu, Zn, Pb, Cd, Cr, As) were determined by flame 
atomic absorption spectrometry (AAS), after nitric-perchloric acid (2:1) digestion. Soil 
extractable metals  were extracted with 5 mM diethylenetriaminepentaacetic acid 
(DTPA)/10 mM CaCl2/100 mM triethanolamine at pH 7.3 (Lindsay and Norvell, 1978). The 
measured meteorological data for the Changchun station were obtained from the CMA 
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(http://cdc.cma.gov.cn/).Soil parameters and meteorological data were also summarized in 
Table 3. 
 

Variables Abbreviation Unit Min Max Medium Mean SD 

Red edge position REP nm 694 730 695 699 10 
Optimized soil 
adjusted 
vegetation index 

OSAVI - 0.24 0.56 0.39 0.38 0.07 

Normalized 
difference 
vegetation index 

NDVI - 0.19 0.68 0.39 0.40 0.13 

Ratio vegetation 
index 

RVI - 1.30 3.68 1.87 2.06 0.72 

Difference 
vegetation index 

DVI - 0.08 0.36 0.18 0.19 0.06 

pH pH - 6.5 7.0 6.8 6.8 0.1 
Organic matter OM % 2.4 3.2 2.7 2.8 0.15 
Sunlight S hours 149.3 261.3 - - - 
Temperature T ° 9.5 23.5 - - - 

Precipitation  P mm 17 199.8 - - - 
Cu concentration 
in rice leaves 

Cu mgkg-1 18.77 31.12 23.34 24.29 2.87 

Cd concentration 
in rice leaves 

Cd mgkg-1 0.036 0.042 0.039 0.039 0.001 

Notes: values for T (mean month temperature), S (month accumulative sunlight) and P(month 
accumulative precipitation).SD, Standard deviation 

Table 3. Basic statistics of the measured spectral indices and environmental parameters in 
field experimental sites 

4.3 Data processing  
In this study, to avoid data saturation, the input variables in this model were normalized, 
based on their possible ranges using the following equation: 

 i min
norm=

max min

x - x
x

x - x
 (7) 

where ix , minx , maxx  and normx  are the real-valued input variable, the minimum input 
variable, maximum input variable and its normalized value respectively. The output from 
the GDFNN model is an indexed value that corresponds to the input variable. To get the 
real-predicted value, the indexed output value needs to be de-normalized according to the 
following equation: 

 ai min+ norm max miny = y y (y - y )  (8) 

Where yai , miny , maxy  and normy  are the real-predicted value, the minimum and maximum 
values of the real-valued output, and the indexed output value from the GDFNN model 
respectively. 
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5. Results and discussions 

Since the maximal absolute value of the difference of heavy metal concentrations in rice 
leaves from different contaminated levels occurred at the tillering growth stage, this 
indicates the best stage for estimating heavy metal concentrations is at that stage (Liu et al., 
2010a). Therefore, in this research, 138 training data sets and 69 test data sets from the 
tillering growth stage of rice were obtained for different levels of heavy metal pollution. 
Considering that spectral parameters were considered as dominant input variables and 
environmental parameters as complementary input variables of GDFNN model. In GDFNN, 
five parameters were taken as input variables, i.e., three spectral parameters, one soil 
parameter and one meteorological parameter, while the individual concentrations of Cu and 
Cd in rice served as output variables. By trying different combinations of input data sets 
(three selected from the five spectral parameters, the fourth was taken from the two soil 
parameters, and the fifth came from the three meteorological parameters). 60 groups 

( 3 1 1
5 3 2 60C C C× × = ) different input parameters were developed (Table 4).  Fuzzy rules (u), 

APE, R2 and RMSE of all groups for estimating Cu concentration and Cd concentration are 
shown (Fig. 5). From Fig. 5, regardless of the group for Cu and Cd, fewer u were achieved in 
GDFNN, with u ranging from 2 to 14. Additionally, the more u in the developed model, the 
lower value APE. When it comes to R2 and RMSE, R2 of all groups, the values were over 0.6 
and the RMSE of all models were below 2.5. According to the parameters for assessing the 
performance of GDFNN, the optimal group should have a low RMSE and APE, and an R2 

value close to 1. Four groups of optimal combined parameters for estimating Cd 
concentration are displayed in Fig. 6. Their input variables were NDVI-RVI-DVI-OM-P, 
NDVI-RVI-DVI-OM-S, NDVI-RVI-DVI-pH-P and NDVI-RVI-DVI-pH-S. All four groups 
were highly accurate and had compact architectures. Specifically, u was nearly 10, while R2 
was over 0.9, and APE was below 1.0%. With respect to combined parameters, the three best 
spectral parameters (NDVI, RVI and DVI) and soil parameters (pH and OM) were found as 
the main factors controlling the availability and concentration of Cd in rice. Meanwhile, 
precipitation (P) and sunlight (S) were shown to be chief factors affecting Cd concentration 
in rice. However, temperature (T) was determined to be a negligible factor influencing Cd 
concentration in rice. Similarly, four groups of optimal combined parameters for estimating 
Cu concentration are displayed in Fig.7. Their input variables were OSAVI-NDVI-DVI-OM-
P, REP-NDVI-DVI-OM-T, OSAVI-RVI-DVI-pH-P and REP-OSAVI-NDVI-pH-T. All four 
groups were highly accurate and had compact architectures. Specifically, u was nearly 10, R2 
was over 0.9, APE was below 1.5%.Concerning combined parameters, it was observed that 
spectral parameters differed with respect to soil parameters and meteorological parameters. 
The main factors controlling the availability of Cu were pH and OM in soil, and this affected 
the Cu concentration in rice. Precipitation (P) and temperature (T) mainly affectd Cu 
concentration in rice. However, sunlight (S) was merely a negligible factor in influencing Cu 
concentration in rice. 
To examine whether combined parameters can improve the performance of predictions for 
heavy metal concentrations in rice, a comparison between the application of GDFNN with 
combined parameters (including spectral parameters, soil parameters and meteorological 
parameters) and simply with spectral parameters alone was made (Fig.8). The linear fitting 
equation between predicted heavy metal concentrations and measured heavy metal 
concentrations gave the following results through the application of these two methods with 
the different respective input variables: 
1. Five spectral parameters including REP, OSAVI, NDVI, DVI and RVI for estimating Cu 

and Cd concentration in rice are: 
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 ai miy = 0.8353y 3.9194cu cu+  (9) 

 ai miy = 0.8150 y 7.2685cd cd+  (10) 

Here, R2= 0.7848 and 0.8235 respectively. Values for yaicu and yaicd  predicted Cu and Cd 
concentration respectively, while ymicu ymicd  are measured for Cu and Cd concentration 
respectively. 
2. The best model of combined parameters for estimating Cu and Cd concentration in rice 

are: 

 ai miy = 0.9921y 0.1924cu cu+  (11) 

 ai miy = 0.9967 y 0.1278cd cd+  (12) 

Here, R2= 0.9929 and 0.9921 respectively. Values for yaicu and yaicd  predicted Cu and Cd 
concentration respectively, while ymicu ymicd  are measured Cu and Cd concentration 
respectively. 
 

Group Parameters Group Parameters 

1 REP, OSAVI, NDVI, OM, P 31 REP, OSAVI, NDVI, pH, P 
2 REP, OSAVI, RVI, OM, P 32 REP, OSAVI, RVI, pH, P 
3 REP, OSAVI, DVI, OM, P 33 REP, OSAVI, DVI, pH, P 
4 REP, NDVI, RVI, OM, P 34 REP, NDVI, RVI, pH, P 
5 REP, NDVI, DVI, OM, P 35 REP, NDVI, DVI, pH, P 
6 REP, RVI, DVI, OM, P 36 REP, RVI, DVI, pH, P 
7 OSAVI, NDVI, RVI, OM, P 37 OSAVI, NDVI, RVI, pH, P 
8 OSAVI, NDVI, DVI, OM, P 38 OSAVI, NDVI, DVI, pH, P 
9 OSAVI, RVI, DVI, OM, P 39 OSAVI, RVI, DVI, pH, P 

10 NDVI, RVI, DVI, OM, P 40 NDVI, RVI, DVI, pH, P 
11 REP, OSAVI, NDVI, OM, S 41 REP, OSAVI, NDVI, pH, S 
12 REP, OSAVI, RVI, OM, S 42 REP, OSAVI, RVI, pH, S 
13 REP, OSAVI, DVI, OM, S 43 REP, OSAVI, DVI, pH, S 
14 REP, NDVI, RVI, OM, S 44 REP, NDVI, RVI, pH, S 
15 REP, NDVI, DVI, OM, S 45 REP, NDVI, DVI, pH, S 
16 REP, RVI, DVI, OM, S 46 REP, RVI, DVI, pH, S 
17 OSAVI, NDVI, RVI, OM, S 47 OSAVI, NDVI, RVI, pH, S 
18 OSAVI, NDVI, DVI, OM, S 48 OSAVI, NDVI, DVI, pH, S 
19 OSAVI, RVI, DVI, OM, S 49 OSAVI, RVI, DVI, pH, S 
20 NDVI, RVI, DVI, OM, S 50 NDVI, RVI, DVI, pH, S 
21 REP, OSAVI, NDVI, OM, T 51 REP, OSAVI, NDVI, pH, T 
22 REP, OSAVI, RVI, OM, T 52 REP, OSAVI, RVI, pH, T 
23 REP, OSAVI, DVI, OM, T 53 REP, OSAVI, DVI, pH, T 
24 REP, NDVI, RVI, OM, T 54 REP, NDVI, RVI, pH, T 
25 REP, NDVI, DVI, OM, T 55 REP, NDVI, DVI, pH, T 
26 REP, RVI, DVI, OM, T 56 REP, RVI, DVI, pH, T 
27 OSAVI, NDVI, RVI, OM, T 57 OSAVI, NDVI, RVI, pH, T 
28 OSAVI, NDVI, DVI, OM, T 58 OSAVI, NDVI, DVI, pH, T 
29 OSAVI, RVI, DVI, OM, T 59 OSAVI, RVI, DVI, pH, T 
30 NDVI, RVI, DVI, OM, T 60 NDVI, RVI, DVI, pH, T 

Note: REP-red edge position, OSAVI-optimized soil-adjusted vegetation index, ratio RVI-vegetation 
index, NDVI-normalized difference vegetation index, DVI-difference vegetation index), pH, OM-
organism matter for soil, T-temperature, S-sunlight, P- precipitation 

Table 4. Sixty groups of combined parameters as input variables for GDFNN 
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Based on the above analysis, the GDFNN model using combined parameters as input 

variables showed better prediction performance than that with only five spectral 

parameters. It confirmed that soil parameters and meteorological parameters had improved 

the accuracy in estimating Cu and Cd concentration in rice. Yet it should be noted that three 

different experiment sites are adjacent, consequently the difference in the physical and 

chemical properties of soil, and meteorological condition are subtle. A GDFNN model using 

combined parameters requires testing under different environmental conditions. In the 

current study, we focused on proposing a new methodology and developing ideas for 

estimating heavy metal concentrations in crop by using spectral parameters and 

environmental parameters as input variables of GDFNN. 

 

Fig. 5. The four evaluation parameters (u, APE, R2 and RMSE) results for sixty groups of 

combined parameters as input variables for estimating Cu and Cd concentration in rice 

leaves. Each group consists of parameters according to Table 4. 
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Fig. 6. Measured and predicted Cd concentration in rice leaves for four groups of optimal 
combined parameters using GDFNN 

 

 

Fig. 7. Measured and predicted Cu concentration in rice leaves for four groups of optimal 
combined parameters using GDFNN 
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Fig. 8. Comparison of predicted Cu and Cd concentration in rice leaves using spectral 
parameters and combined parameters as input variables for GDFNN 

6. Conclusions 

The aim of this study is to develop a GDFNN model based on fuzzy theory and neural 
network theory to predict heavy metal concentrations in rice. Spectral indices and 
environmental parameters were integrated as input variables. Spectral indices were utilized 
to examine rice’s physiological responses to heavy metal contaminations (Cu and Cd) in 
paddy fields, while environmental parameters including those relating to soil and weather 
were important factors for determining heavy metal diffusion in rice. Five parameters, three 
of which were selected from the five spectral parameters (REP, OSAVI, NDVI, DVI, RVI), 
one of which came from the two soil parameters (pH, OM), with the final one coming from 
the three meteorological parameters (T, S, P) were used as input variables in GDFNN. 
Additionally, different combined parameters were treated as input variables in order to 
achieve the best GDFNN prediction for heavy metal concentrations in rice. The analysis 
revealed that the best input variables in predicting Cu concentrations in rice were the REP, 
OSAVI, NDVI, pH and T, where this model had u, APE, R2 and RMSE values of 11, 0.59%, 
0.9926 and 0.2489 respectively. While the best input variables in predicting Cu 
concentrations in rice were the NDVI, RVI, DVI, OM and P, which had respective u, APE, 
and R2 values of 11, 0.19%, 0.9948 and 0.1231. It indicated that the GDFNN developed in this 
study had a high accuracy as well as a compact structure (i.e. fewer fuzzy rules: u=11, R2 

was over 0.99 nearly 1). Compared with only spectral parameters as input variables of 
GDFNN, the use of combined parameters as input variables showed slightly better 
performance in estimating Cu and Cd concentrations in rice. After testing a trial set, our 
results showed that the GDFNN developed using fewer input variables can accurately 
estimate heavy metal concentrations in rice, thus aiding the assessment of pollution levels of 
heavy metals in soil. It can be concluded that by using a GDFNN model, hyperspectral 
parameters and environmental parameters can provide sufficient information to detect the 
level of pollutants in field operations efficiently. 
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