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1. Introduction 

Feedforward neural networks have been theoretically proved to be able to approximate a 

nonlinear function to any degree of accuracy as long as enough nodes exist in the hidden 

layer(s) (Hornik et. al. 1989). However, when feedforward neural networks are applied to 

modeling physical systems in the real world, people care more about their prediction 

capabilities than accurate modeling abilities. If a neural network is trained with noisy data 

measured from an experiment, what is the predictive performance of the neural network 

when unseen input data is fed into it?  In this chapter, the confidence interval and prediction 

interval of a neural network model will be discussed. In particular, how the nonlinear 

structure of a feedforward neural network, impacts the confidence interval will be analyzed. 

Then, as an application, the measure of confidence to estimate nonlinear elastic behavior of 

reinforced soil is demonstrated. 

This chapter starts with a description of the structure of feedforward neural networks and 

basic learning algorithms. Then, nonlinear regression and its implementation within the 

nonlinear structure like a feedforward neural network will be discussed.  The presentation 

will show confidence intervals and prediction intervals as well as applying them to a one-

hidden-layer feedforward neural network with one, two or more hidden node(s). Next, it is 

proceeded to apply the concepts of confidence intervals to solving a practical problem, 

prediction of the constitutive parameters of reinforced soil that is considered as composite 

material mixed with soil, geofiber and lime powder.  Prediction intervals for the practical 

case is examined so that more quality information on the performance of reinforced soil for 

better decision-making and continuous improvement of construction material designs can 

be provided.  Finally, the neural network-based parameter sensitivities will be analyzed. 

In order to clearly present the algorithms discussed in this chapter, some notations are 

declared as follows: matrices and vectors are written in boldface letters, and scalars in italics. 

Vectors are defined in column vectors. The superscript T of a matrix (or vector) denotes the 

transpose of the matrix (or vector).      
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2. Neural network architecture and learning algorithms  

 

 

Fig. 1.1a. An m-layer feedforward neural network 

 

 

Fig. 1.1b. Weights and biases in the kth layer 
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2.1 Architecture of feedforward neural networks  
A feedforward neural network is a massive net consisting of a number of similar computing 
units, which are called nodes.  The morphology of a neural network can change depending 
on the way the nodes are interconnected and the operations performed at each node. As 
shown in Figs. 1.1a and 1.1b, in an m-layer feedforward neural network, the nodes are 
arranged in layers.  All nodes in a layer are fully connected to the nodes in adjacent layers 
by weights, adjustable parameters to represent the strength of connections.  The summation 
of weighted inputs to a node will be mapped by a nonlinear activation function, h[.].  There 
are no connections between nodes in the same layer.  Data information is passed through 
the network in such a manner that the outputs of the nodes in the first layer become the 
inputs of the nodes in the second layer and so on.  
Mathematically, an m-layer feedforward neural network can be expressed as follows,  

 1k k k k−= +o w a b   and   ( )        ( 1, , )k k k k m= =a h o A  (1) 

where 0a =x
0

T
1[ ]sx x= A  is the input vector; T

1[ ]
k

k k k
so o=o A , 1[  k kh=h A  T]

k

k
sh  

and k =a  T
1[ ]

k

k k
sa aA  are the linear output vector of the summation, the activation 

function vector and the output vector in the kth layer, respectively; ks  is the number of 

nodes in the kth layer; kw and kb represent the weight matrix and the bias vector in the kth 

layer (see Fig. 1.1b), which  can be respectively expressed by 
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in which the jth row of kw is defined by 
11 2[ ]

k

k k k k
j j j jsw w w

−
=w A   (j=1, …, sk). 

2.2 Learning algorithms 
2.2.1 Standard backpropagation  
Given a set of s0-dimensional input vector, xi, (i= 1,…,Q), and the corresponding sm-dimensional 
output vector, ti,(i= 1,…,Q), the weights and biases of a feedforward neural network are 
adjusted such that the following performance index is minimum, 

 T

1

1
    with   ( ) ( )

2

Q
m m

i i i i i i
i

E E E
=

= = − −∑ t a t a  (3) 

where ( )m m
i i i=a a x  is the output of the feedforward neural network with input xi  and Q is 

the number of samples. Since the structure of a feedforward neural network is the same for 
all samples, for simplicity, the subscript i will be dropped in the derivation of the 
backpropagation algorithm. 

For a single input/output sample, Equation (3) is denoted by iE .  According to the gradient 

descent algorithm, the weight matrix and bias vector of the kth layer will be updated 

according to the following equations so that iE can be minimized, 

 Δ Δ T( / ), ( / )k k k k
i iE               Eη η= − ∂ ∂ = − ∂ ∂w b bw  (4) 

where η is the learning rate (η > 0). 
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By defining the gradient of iE  with respect to the linear output vector ko  of the kth layer as  

 T
1 2: [ ]k

k

k k k k
i sE δ δ δ= ∇ =

o
δ A ,       ( 1, , )k m= A ,  (5) 

the differentiation of iE  with respect to the weight matrix and bias vector is presented as 

follows, (See Appendix for application of the chain rule to the differentiation of a scalar 

function with respect to a matrix.) 
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where  1 ( 1, , )k k k k
j j j ko b j s−= + =w a A . 

From Equations (1) and (3), it can be seen that Ei  is a function of the vector 1k+o and ka  is 

also a function of the vector ko .  Using the general chain rule (See Appendix), therefore, it 

leads to the following relation, 

 1 1/ ( / )( / )( / )k k k k k k
i iE E + +∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂o o o a a o . (7) 

Again, by applying  the general chain rule and the definition (5) of kδ , the recurrence 

relation of the gradient term kδ  can be written by 
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where         
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This recurrence computation is initialized at the final layer, i.e. the mth layer.  According to 
the general chain rule, mδ will be 

 ( ) ( )m m m
m m m m m

i i i iE E= ∇ = ∇ ⋅∇ = − ⋅ −
o o a

δ a H o t a$ . (11) 

The learning algorithm of the standard backpropagation proceeds as follows: first, using 
Equation (1) to calculate the output of each layer ka  (k=1,…,m); Then, using Equations (11) 
and (8), the gradient terms kδ (k=m,…,1) is computed backward from the mth layer to the 1st 
layer; Next, the increments of weights and biases are calculated using Equations (6) for 
k=1,...,m; Finally, the weights and biases are updated using Equations (4) with a chosen 
learning rate η (k=1,..., m). 
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2.2.2 Levenberg-Marquardt backpropagation algorithm 
The standard backpropagation algorithm has been widely applied in neural network 
learning.  However, due to the low speed of convergence,  considerable research works have 
been done to improve it. A lately developed algorithm, the Levenberg-Marquardt 
backpropagation, has been used to train feedforward neural networks since it can yield a 
speed-up of large factors via limited modifications of the standard backpropagation 
algorithm.  
Consider the feedforward neural network (1) as a nonlinear least squares problem, the 

performance index (3) can be written as below, 

 T T

1

1 1
( ) ( ) ( ) ( ) ( )

2 2

Q
m m

i i i i
i

E
=

= − − = − −∑w t a t a t a t a  (12) 

where T T T T
1 2 Q   [ ]=t t t tA and T T T T

1 2 Q  [( ) ( ) ( ) ]m m m=a a a aA  respectively.  

The n-element vector of weights and biases of an m-layer neural network can be written as 

 1 1

1 1 1 1 1 2 2 T
11 12 1 11 12

T
1 2

  [ ]

      [ ]  

s s

n

w w w b b w w

w w w

=

=

w A A A

A
. (13) 

With the Newton method, the increment Δw, by minimization of E with respect to the 

parameter vector w, is 

 2 1( ( )) ( )Δ E E−= − ∇ ∇w w w , (14) 

where 2 ( )E∇ w  is the Hessian matrix of E(w) and ( )E∇ w is the gradient of E(w).  
Given the performance index (12), the gradient and the Hessian matrix of E(w) can be 

written as 

T( ) ( ) ( ( ))E∇ = − ⋅ −w J w t a w  

 2 T 2

1

( ) ( ) ( ) ( ) ( )
Q

m m
i i i i

i

E
=

∇ = ⋅ + − ∇ −∑w J w J w t a t a  (15) 

where J(w) is the Jacobian matrix of a(w) with respect to the vector w, 
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. (16) 

Since the second term on the right-hand side of Equation (15) is difficult to obtain, the 

Levenberg-Marquardt method is introduced to approximate the function as follows, 

 
T 1 T( ( ) ( ) ) ( ) ( ( ))μ −Δ = − ⋅ + ⋅ ⋅ −w J w J w I J w t a w

 (17) 

where I is the identity matrix and μ is an adaptive factor (μ > 0).  μ  is multiplied by a 

positive parameter γ  (normally chosen as 10) whenever a step results in a decreased E(w) in 
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Equation (12).  Otherwise, μ is divided by γ. Note that when μ  is sufficiently large, the 

algorithm becomes the steepest gradient descent. For a small value of μ, the algorithm 
becomes the Gauss-Newton algorithm.   
In order to apply the backpropagation technique to solving the Jacobian matrix (16), the 
research work reported by Hagan and Menhaj (Hagan & Menhaj, 1994) provided a detailed 
algorithm with which the elements of the Jacobian matrix (16) can be calculated backward 
layer-by-layer, and therefore, the weights of a neural network can be updated 
simultaneously. 

3. Parameter estimates with confidence intervals 

The purpose to train a neural network is not solely to get an exact representation of the 
training data, but to build a satisfactory model that can exhibit intrinsic relationship 
between input data and output data. Therefore, the trained neural network model is 
expected to make good predictions for unseen input data. Hence, the performance 
evaluation of a neural network with unseen data has been intensively studied in the area of 
applied neural computations.  
Traditionally, the performance of generalization of a neural network is examined by testing 
data, i.e. a set of data is separated into two subsets, training data and testing data, 
respectively. The neural network trained using the training data should also result in small 
sum of squared errors (3) when the testing data is fed into it. The method can detect whether 
a neural network overfits noisy data, but it does not provide quantitative metric to show 
“how good” the predicted output is.  
On the other hand, as far as empirical modeling is concerned, regression analysis is a widely 
used statistical technique in many practical cases.  Since a neural network can be considered 
as a special nonlinear structure, neural network modeling can be categorized into a 
nonlinear regression problem.  
When a neural network model is used for prediction with a set of inputs that are different 
from the training patterns, the accuracy of estimation can be represented by a best guess of 
predicted outcomes plus a range of likely future outcomes around the best guess.  Such a 
range is commonly referred to as a confidence interval with certain confidence level, which 
provides information indicating where the output is likely to be and how much percent of 
chances the output is probably to be with the estimates.  Hence, solving the neural network 
regression problem consists of two parts - developing a nonlinear regression model and 
computing the range of likely future outputs. The range of possible outputs will 
quantitatively provide how large difference between the real output and the best guess from 
a statistical point of view when unseen data are fed into the model.  Moreover, as discussed 
below, the confidence interval varies with the structure of a neural network, which provides 
a practical reference for people to select the structure of a neural network.  In this section, 
the concepts of neural network regression,  confidence intervals and prediction intervals 
will be presented. Then, how a prediction interval changes with the structure of a neural 
network will be demonstrated through an example.       

3.1 Prediction interval for neural network regression   

From Equation (1), it is assumed that the true output of an m-layer neural network is 
( , )i

m ∗a x w , where x is the input vector, and w* represents the true values of the weight vector 
from the weight value space Ω . For simplicity, m

ia is replaced by ia for future derivation.  In 
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addition, the output of the neural network will be considered as a one-dimensional vector, i.e. 
ai=ai. The error, εi, associated with the function in modeling is supposed to be independently 
and identically distributed with variance, 2σ , where the distribution has the form N(0, 2σ ), 
i.e. normal distribution with the mean of zero and the variance of 2σ .  With each of Q 
experimental data, the output of the function is represented by  

 ( , )i i i ia a ε= +x w
&

,   i=1,2,..,Q;  ŵ ∈Ω (18) 

The estimated vector, ŵ , is obtained by minimizing the performance index (12) using 
training data.  However, due to many factors, e.g. noisy training patterns or limited number 
of nodes, the vector, ŵ , can be a good estimation of, or say close to, the true value, w*, of the 
weight parameters but not equal to them. Considering a neural network as a nonlinear 
regression model, the linear approximation to this nonlinear regression model can be 
obtained via the Taylor series expansion of the function to the first order (Seber et al., 1989).  
Therefore, an estimated value, ˆ

ia , under the input vector, xi, is  

 T
*

ˆ ( , ) ( , ) | ( )i i i i i i wa a a a∗ ∗= = +∇ −wx w x w w w
& &

 (19) 

where T
*|i wa∇w denotes the gradient of the function ai with respect to the weight vector at 

the true values, w*. The error between the input/output pairs and the estimated value from 

the neural network model yields  

 
* T *

*

T *
*

ˆ ( , ) | ( )

           | ( ).

i i i i i i w

i i w

t a t a a

aε

− = − −∇ −

= −∇ −
w

w

x w w w

w w

&

&  (20) 

The expected value and variance of the difference will be  

 mean [ ]ˆ
i it a− =mean[εi] - T |ia ∗∇w w

×mean *( )−w w
&

≈0  

 var [ ]ˆ
i it a− =var[εi]- var[ T ˆ| ( )ia ∗

∗∇ −w w
w w ] (21) 

Note that the assumptions that ai is continuously differentiable and that the matrix 
T( ) ( )J w J w (with 

T

1 2( ) Qa a a⎡ ⎤= ∇ ∇ ∇⎣ ⎦w w wJ w A ) is nonsingular are essential in the 

statistical evaluation.  The distribution of *ˆ −w w  can be approximated with the 

distribution, NQ (0, 2 T 1[ ( ) ( )]σ −J w J w ), where ( )J w  is also the Jacobian matrix (16).  In fact, 

given a large value of Q, εi being the random numbers with independent and identical 

distribution and the parameter space of the weights, Ω, being a compact subset of n 

dimensional real number space, the values of the weight vector, ŵ , are certain to be within 

a small neighborhood of the true value vector, w* . Therefore, in late calculation,  the weight 

vector, ŵ , is used to replace w*  and is written as w.  

With the number of samples, Q, and the number of estimated parameters, n, the unbiased 

estimator of 2σ  is 

 

2

2 1

( ( , ))
Q

i i i
i

t a

s
Q n

=
−

=
−

∑ x w

. (22) 
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Hence, the confidence interval 100 (1 )α× −  for the estimated value, ˆ
ia , will be  

 T 1 1/2
/2,

ˆ (1 { ( ) ( )} )i Q n i ia t s a aα
−

−± × × +∇ ∇T
w wJ w J w  (23) 

where the parameter,α , denotes the level of significance and /2,Q ntα − is the (1 / 2)α−  

quartile of a t - distribution with Q-n degrees of freedom.  
In order to use the above equation to estimate the likely range of a system output, the model 

errors should be independently and normally distributed with zero means (Chryssolouris  

et al., 1996) which can be generally satisfied by practical cases. However, it is also indicated 

that the confidence bound estimation method is asymptotically valid when a large set of 

training data is available (Hwang & Ding, 1997). With a small set of training data and 

relatively large set of parameters, the matrix JT(w)J(w) can be singular. In this case, the 

estimated confidence intervals are unreliable.  According to Yang et. al (Yang et al., 2002), 

the performance index can be changed into the following,  

 2 2

1 1

( ) ( ( , ))
Q n

i i i i
i i

E t a wλ
= =

= − +∑ ∑w x w , (24) 

where 0λ >  is a decay parameter.  The confidence interval for feedforward neural networks 

trained by weight decay is  

 T T TT 1 1 1/2
/2,

ˆ (1 { ( ) ( ) } ( ) ( ){ ( ) ( ) } )i Q n i ia t s a aα λ λ− −
−± × × +∇ + + ∇w wJ w J w I J w J w J w J w I  (25) 

3.2 An example of neural network regression 
In order to illustrate how a neural network regression model works, an example is taken 
below.  Consider the following function, 

 ( )  0.5 0.4sin(2 )f x xπ ε= + + , (26) 

where ε is the random noise normally distributed with the mean of zero and the standard 

deviation of 0.05.  A data set of 21 points with equal intervals between 0 and 1 is chosen as 
inputs to the function.  
For convenience of discussion, the feedforward neural network is chosen as one hidden 
layer and linear nodes in the output layer.  Hence, it can be mathematically represented by 
the following equation, 

 2 1 1 2( ) ( )i ia x b= +h ow ;   1 1 1
ix= +o w b ;     i=1,...,21 (27) 

where xi and ai, as defined previously, denote input and output, respectively; 

 and k kw b (k=1,2) , as the same as in Equation (2), are the weights and biases of the network 

with 1 11 12 1,s s× ×∈ℜ ∈ℜw w , 12 1,∈ℜ ∈ℜsb b  where 1s is the number of hidden nodes; h1(.) is 

the activation function vector in the hidden layer.  The activation function h1(o1) is chosen as 

a hyperbolic tangent sigmoid function and can be alternatively written by 1 1( ) =h o  

2 2

T1 1 1
1 1 2 2( ) ( ) ( )

s s
h o h o h o⎡ ⎤
⎣ ⎦A with 1( ) tanh( ) ( ) /( )i i i io o o o

i i ih o o e e e e− −= = − + . 
In order to train the neural network, the initial weights and biases are random numbers 
uniformly distributed between -1 and 1. The Levenberg-Marquardt backpropagation 
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algorithm is used to train the neural network. The initial value of μ is chosen as 0.001. The 
parameter γ  is chosen as 10. The number of epochs is 1000. Equation (25) is used to calculate 
the prediction interval, where the parameter, λ, is chosen as 0.0001. And 95% confidence 
level is used for the simulation.  
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Fig. 2. Neural model of f(x) with one hidden node. Left figure: circles - training data; solid 
line - neural network output. Right figure: asterisks - testing data; solid line - neural network 
output; dashed lines - 95% confidence interval 
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Fig. 3. Neural model of f(x) with two hidden nodes. Left figure: circles - training data; solid 
line - neural network output. Right figure: asterisks -  testing data; solid line - neural 
network output; dashed lines - 95% confidence interval 

Fig. 2 shows the training data points and the neural network output with one hidden node 
(left figure). After training, the neural network model is used to predict the output of 15 
unseen inputs which are corrupted with normally distributed noise of N(0, 0.052).  The right 
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side of Fig. 2 provides the predicted output of the neural network, which is drawn in solid line, 
the testing data (in asterisk symbol) and the confidence interval (in dashed line) with 95% 
confidence level. As can be seen, the neural network model provides a wide prediction range 
as a consequence of limited capability of the neural network with only one hidden node.   
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Fig. 4. Neural model of f(x) with five hidden nodes. Left figure: circles - training data; solid 
line - neural network output. Right figure: asterisks - testing data; solid line - neural network 
output; dashed lines - 95% confidence interval. 

The simulation was repeated 100 times. After each simulation, the maximal predicted 
interval of 15 points was recorded. The average of the maximal predicted intervals for 100 
times of simulations is 0.7524. By comparing to the range of the function f(x), which is 
between 0 and 1, the predicted interval is found to be too wide. A better fit and prediction 
ability of the neural network can be obtained by increasing the number of hidden nodes.  
Fig. 3 shows the neural network output with two hidden nodes, which gives a much better 
approximation to f(x). The average of maximal predicted intervals over 100 times of 
simulations is 0.2889. However, if the number of hidden nodes is too large, then, the error 
due to approximation to the underlying function becomes worse. Fig. 4 shows the result of 
fitting the function f(x) using the neural network that contains five hidden nodes.  Since the 
neural network has fitted the data by developing some dramatic oscillations, it eventually 
provides a poor prediction of f(x) with wide confidence interval at some points, where the 
neural network fitting to noisy data points can be seen. 
In order to examine how the number of hidden nodes impacts the prediction interval, the  
number of hidden nodes was chosen to be one, two, three, four and five. For each case, the 
simulation was repeated 100 times, and the average of the maximal prediction intervals 
were calculated accordingly. The results are shown in Table 1. From Table 1, it can be 
observed, that, for this example, the neural network with two hidden nodes provides the 
best prediction. When the number of hidden nodes increases, redundant nodes exist in the 
neural network, which lead the neural network to overfit some noisy data.  Consequently, a 
wide confidence interval at some points indicates imprecise prediction. 
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Number of hidden nodes 1 2 3 4 5 

Average of maximal prediction 
intervals by 100 times simulations 

0.7524 0.2889 0.3117 0.3149 5.3223 

Table 1. Average of maximal prediction intervals versus the number of hidden nodes 

4. Modeling and prediction of nonlinear elastic behavior of reinforced soil  

In this section, a practical application of feedforward neural networks to modeling of 
nonlinear behavior of composite materials will be presented. In particular, soil reinforced 
with geofiber and lime powder is taken as a composite material to be investigated as an 
example of such an application. 
Mechanical behavior of soil under static and dynamic loading plays an important role in 

performance of infrastructures such as durability of pavement and road beds, and stability 

of slopes and bridge foundations, etc. To improve engineering properties, soil reinforced 

with other materials becomes widely applied in geotechnical engineering (Michalowiski & 

Zhao, 1995, and Li & Ding, 2002). Although the performance can be significantly improved 

when soil is reinforced with short fiber and stabilized with lime powder, quantitative 

evaluation of enhancement of soil mechanical behavior is still difficult since the stress-strain 

relation is highly nonlinear and sensitive to various factors such as lime and fiber contents, 

confining pressures, sample curing periods mixed with lime, etc. (Li & Zhang, 2003).  

Traditionally, modeling of engineering materials was conducted by taking the following three 

steps. First, a constitutive model (e.g., a nonlinear elastic model) needs to be established.  

Second, constitutive parameters are identified and calibrated with experimental data using a 

conventional method (e.g. linear regression). Third, the constitutive model needs to be 

validated using experimental data from a laboratory or field (e.g., shearing tests). Since the 

constitutive parameters are nonlinear functions of multiple variables, a traditional approach 

cannot calibrate the parameters accurately and efficiently. In particular, when soil is mixed 

with lime powder and fibers, the constitutive parameters become a function of many 

interrelated variables. Under the circumstance, the coupling effects among different variables 

may significantly impact on the relationship of stress and strain. The coupling effects, 

however, cannot be practically described in a traditional model due to their intrigued nature 

and significant amount of experimental work. In this section, it is proposed that the nonlinear 

elastic behavior of composite soils is to be modeled using a feedforward neural network.  

Applying neural network regression to modeling of reinforced soil is a new research topic. 

Till now, very few discussions of the potential application of neural networks in civil 

engineering have been found, for instance, modeling of shear strength of reinforced concrete 

beams (Rajasekaran & Amalraj, 2002) and estimation of resilient modulus of aggregate base 

using a feedforward neural network (Issa & Zamam, 1999). Therefore, relatively detailed 

description of the necessary knowledge regarding experimental investigation and data 

acquisition is provided in this section. Then, neural network training as well as the 

prediction using a neural network regression model with unseen inputs will be presented, 

which provides statistical justification for the case analysis and decision making in 

construction using the neural network model. Finally, the parameter sensitivities to the 

inputs such as fiber and lime contents, confining pressure, sample aging period are analyzed 

based on the neural network regression model (He & Li, 2008 and 2006). 
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4.1 Problem background and experiment setup    
4.1.1 Shear stress-strain relation 
The nonlinear elastic behavior exhibited by soil mixed with short fiber and lime powder can 
be affected by many factors. The shear stress-strain relation of soil skeleton in terms of the 
second invariants of deviatoric tensors in a three-dimensional space can be expressed by 

 s sσ Eε=  (28) 

where εs denotes a shear strain invariant related to the second invariant of a deviatoric stress 
tensor; σs denotes a shear strain invariant associated with the second invariant of a 
deviatoric strain tensor. E is the shear modulus and a function of mechanical properties of 
the reinforced soil such as the initial shear modulus and strength of reinforced soil.  
Since the objective of experiment under the investigation aims to understand the mechanical 
behavior of subgrade soil reinforced with short fiber and stabilized with lime, consequently, 
the shear modulus, E, is assumed to be a function of multi-variables, such as shear strain, 
confining stress, fiber and lime contents. Moreover, when the soil samples are mixed with 
lime powder, the curing time (or aging period) before a shearing test will be an auxiliary 
variable with lime content.  
For convenience of experimental investigations using a conventional triaxial apparatus, it is 
necessary to simplify the stress-strain relation (28) from a true three-dimensional space to an 
expression in a quasi three-dimensional space. In the simplified space, the stress-strain 
relation in Equation (28) reduces to 

 σa = E (σ0, εa, ǃF, ǃL, t) εa  (29) 

where σ0 is confining pressure; σa and εa denote the principal stresses and strains in three-
dimension that are individually simplified from the invariants of the deviatoric stress and 
strain tensors; ǃF and ǃL are contents of fiber and lime, respectively; t is the curing time of soil 

sample before shear testing. For conventional triaxial shearing tests, σa and εa can simply 
represent the axial stress and strain respectively. To provide the input data for training and 
validating a feedforward neural network model, experimental tests need to be conducted in 
laboratory first so that the stress-strain relationship in Equation (29) can be determined. 

4.1.2 Experiment and testing data 
In laboratory, nine groups of unsaturated and reinforced soil samples were subjected to 
triaxial shearing tests. The tested soil has the following physical properties: the wet unit 
weight Ǆwet = 16.66 kN/m3; plastic limit PL = 5%; the soil classification (AASHTO) is A4. The 
specimen is cylindrical with a dimension of 6.86 cm in diameter and 13.72 cm in height. The 
sample preparation and testing followed the AASHTO code T297 (or ASTM D4767) with 
special consideration for the procedure of mixing short geofiber (5 cm) with soil. Nine 
groups of soil specimens were prepared with ǃF = 0%, 0.2% and 0.5%; ǃL = 0% and 5%; and t 
=1, 7, 14 and 28 days before shearing tests.  Unsaturated specimens were tested under a 
consolidated-undrained condition using a conventional triaxial apparatus. The controlled 
shear loading rate was 0.006 min-1. Four different confining pressures (σ0 = 50, 100, 150, and 
200 kPa) were applied to specimens in each group. The combination of selected fiber 
contents, lime contents, confining pressures and aging periods of soil specimens generates 
thirty four sets of experimental setup which is listed in Table 2. 
Testing results from 34 shear tests were collected and processed through a data acquisition 

system. For purpose of demonstration, testing curves of 30 stress-strain (σa -εa) relations are 
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Set No. Test No. βF(%) βL(%) σ0 (kPa) t(day) 

1 S11 0 0 50.0 1 
2* S12 0 0 100.0 1 
3 S13 0 0 150.0 1.0 
4 S14 0 0 200.0 1.0 
5 F5 0.2 0 50.0 1.0 
6 F6 0.2 0 100.0 1.0 
7 F7 0.2 0 150.0 1.0 
8 F8 0.2 0 200.0 1.0 
9 F5-5 0.5 0 50.0 1.0 

10 F5-6 0.5 0 100.0 1.0 
11 F5-7 0.5 0 150.0 1.0 
12 F5-8 0.5 0 200.0 1.0 
13 Slf2 0.2 5.0 50.0 7.0 
14 Slf1,11, 9 0.2 5.0 100.0 7.0 
15 Slf6,17 0.2 5.0 150.0 7.0 
16 Slf3,15 0.2 5.0 200.0 7.0 
17 Slf5,12,16 0.2 5.0 50.0 14.0 
18 Slf4 0.2 5.0 100.0 14.0 
19 Slf7,8 0.2 5.0 150.0 14.0 
20 Slf14 0.2 5.0 50.0 28.0 
21* Slf13 0.2 5.0 100.0 28.0 
22 Slf18,19,20 0.2 5.0 150.0 28.0 
23* Slf5-1 0.5 5.0 50.0 7.0 
24 Slf5-2 0.5 5.0 100.0 7.0 
25 Slf5-4,5-10 0.5 5.0 150.0 7.0 
26 Slf5-6,5-12 0.5 5.0 200.0 7.0 
27 Slf5-3 0.5 5.0 50.0 14.0 
28 Slf5-5 0.5 5.0 100.0 14.0 
29 Slf5-7, 5-11 0.5 5.0 150.0 14.0 
30 Slf5-8 0.5 5.0 200.0 14.0 
31 Slf5-16 0.5 5.0 50.0 28.0 
32 Slf5-13 0.5 5.0 100.0 28.0 
33 Slf5-14 0.5 5.0 150.0 28.0 
34* Slf5-15 0.5 5.0 200.0 28.0 

 

 

Table 2. Experimental Conditions 

drawn in Fig. 5. In the figure, solid squares, down-triangles, asterisks and five-point stars 
represent experimental data with confining pressures, σ0, of 50, 100, 150 and 200 kPa, 
individually.  In each subfigure of Fig. 5, the chosen fiber content ǃF, lime content ǃL, as well 
as the curing period of soil sample t, are provided at the bottom of each subfigure.  From the 
subfigures, it can be seen that the strength of reinforced soil can be improved by increasing 
the fiber content, ǃF, without adding lime powder (ǃL = 0%) and holding the aging period of 

1 day.  If the fiber content changes from 0% to 0.5%, the maximum value of axial stress, σa, 
can vary from 280 kPa to 500 kPa (see subfigures 1~3 of Fig. 5). Furthermore, by adding lime 
and prolonging the aging period, the axial stress (soils strength) can be notably enhanced 
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(see subfigures 4~6 of Fig. 5).  Similarly, soil elastic modulus and strength are also evidently 
improved with increasing the fiber content ǃF (see subfigures 7~9 of Fig. 5). 
Testing results in Fig. 5 indicate high nonlinearity between the axial stress and axial strain 
affected by four variables. To describe such mechanical behavior, a feedforward neural 
network model is used to predict the nonlinear relationship between multiple inputs and 
the output.   

4.2 Modeling and predicting nonlinear elastic behavior of reinforced soil    
As indicated in Equation (28), the axial stress, σa, is a nonlinear function of variables σ0, ǃF, 
ǃL, t and the axial strain, εa.  The  function is to be approximated using a feedforward neural 
netowork. To validate the results of neural network regression, the prediction confidence of 
soil deformation using the feedforward neural network is analyzed. 

4.2.1 Modeling of the reinforced soil  
To train the feedforward neural network, the variables of fiber content ǃF, lime content ǃL, 
confining pressure σ0 , sample curing period t and axial strain εa  are applied as inputs to the 
  

 

Fig. 5. Relationship of σa vs.  εa with different confining pressures (CP) (Experiment data: 

Symbols with CP values: ■50 kPa, ▼100 kPa, ✸150 kPa,×200 kPa;   The outputs of  the 

neural network are in solid lines) 
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neural network while the corresponding axial shear stress, σa, is designated as the output.  
Thirty four sets of data in Table 2 (Seventeen axial strain values in each set within a range 
from 0.3% to 15.25%) generate 578 (=34×17) input patterns. Accordingly, 578 measured 
values of the axial shear stress are the targets for neural network to learn and test. As 
presented in Fig. 5, thirty sets of data which produces 510 input/output patterns 
(30×17=510) are used to train the neural network, whereas the remaining 68 input/output 
patterns (4 sets) marked with the asterisk sign, *, in Table 2 are applied to test the neural 
network model.  The testing data are chosen to represent low, median and high nonlinearity 
of soil mechanical behavior. 

Without loss of generality, one-hidden-layer feedforward neural network with linear output 

layer is chosen. In addition, in order to make the neural network converge quickly, the 

scaling factors 0.01, 10, 1.0, 0.1 and 0.1 are used for the inputs σ0 (kPa), ǃF (%), ǃL (%), t (day) 

and εa (kPa), respectively.  Similarly, the axial shear stress, σa, is scaled by a factor of 0.0001.  

Thus, the input vector for training the neural network is x = [0.01σ0, 10ǃF, ǃL, 0.1t, 0.1εa]T and 

the desired output is 0.0001σa. With the input, x and the output, aNσ , the neural network 

model is defined as follows, 

 2 1 1 2
a( ) ( )iN bσ = +x h ow ;   = +1 1 1

io w x b ;     i=1,...,510 (30) 

As discussed in Section 3, the number of hidden nodes should be  chosen so that the neural 
network model will not overfit the noisy data.  After several times of pretraining and 
prediction capability analysis, the number of hidden nodes has been accordingly chosen as 6.   
The Levenberg Marquardt backpropagation training algorithm is chosen to train the neural 

network. The parameters are chosen as follows: the weights and biases are initialized with 

the random numbers uniformly distributed between -1 and 1; the maximal number of 

training epochs is 1,500; the error goal is that the sum of squared errors (SSE) is less than or 

equal to 0.002.  The adaptive factor, μ, is initialized as 0.0001 and the update factor, Ǆ, is 

assumed to be 10. After 702 epochs, the sum of squared errors (SSE) monotonically 

decreases to 0.00199. After the training, the outputs from the neural network are plotted in 

Fig. 5 in solid lines along with testing data.  

4.2.2 Approximation error and prediction performance  
As aforementioned, the most important criterion to evaluate a neural network model is its 
capacities of generalization and prediction. The prediction intervals for the trained neural 
network (30) are calculated and analyzed. 
Before Equation (30) is used to predict the axial stress, σa, with unseen values of the variables 
σ0, ǃF, ǃL, t and εa, the modeling errors between the experimental data and the neural network 
regression model are computed. The errors are sorted with the interval of 20 (i.e., -120, -100, ...,-
20, 0, 20, …,100, 120) and depicted in Fig. 6. The mean value of the errors is 0.05 kPa.  
Compared to the shear stress values of the experiment, which are between 11.2 kPa and 3667.8 
kPa, the mean value is small enough to be considered as zero. The standard deviation of the 
normal distribution is 19.8 kPa.  The unbiased estimator, s, is 20.69 kPa. 
With the trained weights, when the testing input patterns are fed into the neural network, 
the corresponding outputs are predicted.  The mean value and standard deviation of errors 
between experimental data and the outputs of the neural network are 12.2 kPa and 39.5 kPa, 
respectively, which is relatively larger than the errors provided by training data.     
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Fig. 6. Distribution of the errors between desired outputs (from 510 experimental data) and 
corresponding neural network outputs 
 

 

Fig. 7. Testing data with 95% confidence intervals (Experimental data are drawn with the 
inverse triangle, asterisks, solid squares and five-point stars; the outputs of the neural 
network are drawn in solid lines. The confidence levels are drawn in dashed lines.) 

According to Equation (23), the confidence intervals (with 95% confidence level) are 
calculated. Dashed lines in Fig. 7 show the envelope of confidence intervals of predicted 
outputs along the increase of axial shear strain for four sets of data. Actual experimental 
data are filled in the figure with down-triangles, asterisks and five-point stars and solid 
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squares, respectively. Although some points are close to certain lower bound values, e.g., 
the outputs of the neural network around 3,000 kPa in subfigure 4 of Fig. 7, all testing data 
are within its upper and lower bound values. The confidence intervals provide the envelope 
for prediction of a shear stress output. 

4.2.3 Sensitivity analysis of neural network-based parameters  
In opposition to the conventional model-based nonlinear technique, a neural network 
generalizes a model by learning from experimental data, which is particularly important 
when the underlying relationships of a researched object are unknown. Using the trained 
neural network model, soil mechanical behavior can be quantitatively analyzed with limited 
experimental data. 
 

 

Fig. 8. Axial stress vs. confining pressure and fiber content 
 

 

Fig. 9. Axial stress vs. confining pressure and sample aging period 

x10-3 
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Fig. 10. Axial stress vs. fiber content and sample aging period 

 
 

 

Fig. 11. Sensitivity analysis with dimensionless relations between the axial shear stress and 

variables (σ0*, βF*, βL*, t*) 

1. Soil mechanical behavior in response to variable coupling effects  
The diagrams in Figs. 5 and 7 provide a set of σa ~εa relations. Beyond the relations, one may 

be interested in how the variables like fiber content and lime content as well as aging period 

co-influence the strength of reinforced soil. In order to investigate parameter coupling 

effects, the axial strain at 10% is assumed for convenience of analysis. Based on the 

assumption, joined impacts of multiple variables on axial shear stress are calculated and 

illustrated by Figs. 8, 9 and 10, respectively. 
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Firstly, in Fig. 8, a joined impact of confining pressure, σ0, and fiber content, ǃF, on the 

estimated axial shear stress ( i.e. aNσ in Fig. 8) is presented for given lime content (ǃL= 0%) 

and sample curing period t (1 day). According to Fig. 8, if no fiber is added to the soil 

sample (i.e. ǃF = 0%), the axial stress appears linearly increased when the confining pressure 

changes from 50 kPa to 200 kPa. However, it can be observed that when 0.5% short fiber is 

mixed with the soil, the axial stress increases exponentially with the change of the confining 

pressure.  This suggests that the stress-strain relation is more sensitively in response to the 

fiber content than to the confining pressure though both of the two variables have 

significant impact in soil mechanical behavior. 

Secondly, the joined impact of confining pressure, σ0, and, aging period, t, on soil stress, σa, 

due to adding lime (ǃL=5%) is examined. Fig. 9 presents the increase of estimated stress 

value verse curing time of the lime mixed soil and confining pressure (with fiber content of 

0.2%).  Again it can be noted that the estimated stress curve, aNσ , is nonlinearly changed 

with the variations of aging period and confining pressure.  When aging period is short, e.g. 

1 day, adding lime powder seems to have less influence on axial shear stress.  The value of 

axial shear stress will be increased about 290 kPa (from 480 kPa to 770 kPa) with confining 

pressure raising from 50 kPa to 200 kPa. However, when aging period is extended to 28 

days, the variation of the axial stress along with the same range of confining pressure raises 

to 960 kPa (from 1,130 kPa to 1,990 kPa). This indicates that soil strength can be largely 

improved by prolonging aging period.  In addition, compared to Fig. 8, where the range of 
axial shear stress is between 100 kPa and 400 kPa, the value of axial shear stress in Fig. 9 can 

be increased from 500 kPa to 2,000 kPa. This implies that axial resistance between soil 

granular particles has been substantially enhanced by the extra bonding force due to 

chemical stabilization because of adding lime powder.  

Although Fig. 9 exhibits a significant contribution of lime powder with a longer aging 
period to the strength of the reinforced soil, it can also be observed that the axial stress is 
increased logarithmically along the aging period. 
Finally, Fig. 10 is used to illustrate the combined impact of the fiber contents and 5% lime 

content with different aging periods on nonlinear soil stress-strain relations. For given lime 

content ǃL = 5 % and confining pressures σ0 = 100 kPa, the change of axial shear stress along 

with different curing periods and fiber contents is shown in the figure. Besides highly 

nonlinear relation between axial shear stress and aging period and fiber content, it can be 

clearly observed that the values of axial stress increase exponentially with the increase of 

fiber content, whereas it increases logarithmically with the increase of aging period. This 

indicates the short fiber with additional tensile and shear resistance may play a more 

important role on further improvement of strength of the soil since an exponential function 

can increase much faster than a logarithmic function with same amount of input. 

The results presented in Figs. 8, 9 and 10 indicate: 1) the axial shear stress is a nonlinear 

function of multiple variables σ0, ǃF, βL, t and σa; 2) the strength of soil can be improved 

significantly by adding short fiber and lime powder with an aging period; 3) the axial shear 

stress increases exponentially with the increase of fiber content and logarithmically with a 

prolonging aging period when mixed with lime powder. 

2. Soil mechanical behavior in response to an individual variable 
In above section, the coupling effect among confining pressure, fiber content and lime 

content as well as aging period are qualitatively analyzed and tendencies of parameter 
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changes are depicted.  Furthermore, sensitivity of axial shear stress to each of the variables 

can be quantitatively analyzed. To present the work clearly, the neural network based axial 

stress-strain relation and relative variables are defined as follows, 

 a a 0 F L a( , , , , )N N tσ σ σ β β ε= . (31) 

 

where aNσ  represents the axial shear stress predicted by the feedforward neural network to 

distinguish the notations of the axial stress σa in early sections.  For purpose of investigation, 

the axial strain at failure is assumed (Ķa =10%) and the initial values of other variables in (31) 

are individually chosen as ķ0i =100 kPa, ǃFi=0.25%, ǃLi =2.5% and ti =14 days where the 

subscript i denotes the initial value. Also for convenience of sensitivity analysis, the 

normalized deviations from initial input values and the corresponding outputs defined as 

the following form: X* = (X - Xi )/Xi = ∆X/Xi  and Y* = (Y -Yi )/Yi  = Y/Yi -1 where X and Y 

represent the inputs (i.e., ķ0, ǃF, ǃL or t) and the output [i.e., aNσ (ķ0, ǃF, ǃL, t)]; Xi and Yi 

stand for the initial values of X and Y.  The normalized deviation of input variables can be 

alternatively written by X* = ∆X/Xi that changes from -1 to +1 when the incremental value 

∆X (i.e. ∆ķ0, ∆ǃF, ∆ǃL or ∆t)  varies from -Xi to +Xi as the range chosen for sensitivity analysis.  

The dimensionless relation below exemplifies how the axial shear stress responds to the 

confining pressure: 

 
*

* * a 0 0 F L a
a 0

a 0 F L a

( (1 ), , , , )
( ) 1

( , , , , )
i i i i

i i i i

N t
N

N t

σ σ σ β β ε
σ σ

σ σ β β ε
+

= −  (31) 

 *
0 0 0 0 0 0 0( ) ( ) / /i i iσ σ σ σ σ σ σ= − = Δ  (32) 

 

The relation Nķa*(ķ0*) in (31) against ķ0* in (32) is graphically drawn in a solid blue line in 

Fig. 11.  Similar to (31) and (32), the dimensionless relation Y* vs. X* for other variables such 

as Nķa*(ǃF*) ~ ǃF*, Nķa*(ǃL*) ~ǃL*, and Nķa*(t*) ~t* can be found accordingly and plotted in the 

same figure.   

The results in Fig. 11 display how sensitive the axial shear stress is when changing confining 

pressure, fiber content, lime content or aging period. In comparison of the relations Nķa* ~ǃL* 

(in a dash line) and Nķa* ~ t* (in a dot line) with Nķa* ~ ǃF*(in a dash-dot line), it can be 

observed that the soil axial shear stress is more responsive to the lime content than to the 

fiber content, and most sensitive to the soil-lime curing period among the four input 

variables.  For instance, for the given axial strain and initial values (ķ0i = 100 kPa, ǃFi = 0.25%, 

ǃLi = 2.5% and ķa = 10%), if ǃF*, ǃL*, and t* increase by 100% (X* = 1.0) from their initial values, 

the soil axial strength is improved by 20%, 25% and 35%, respectively. The quantitative 

results in Fig. 11 are consistent with the coupling effects shown in Figs. 8, 9 and 10. The  fact 

that confining pressure substantially affects soil strength can be also observed in Fig. 11. 

5. Summaries and conclusions  

In this chapter, the standard backpropagation algorithm and the Levenberg-Marquardt 

backpropagation algorithm were derived in vector forms.  Then, the confidence intervals 
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and prediction intervals for the nonlinear structure like feedforward neural networks were 

discussed.  Particularly, the impact of neural network structure, i.e. the number of hidden 

nodes, to confidence intervals was analyzed and demonstrated via a simple example.  

Finally, modeling of nonlinear elastic behavior of the reinforced soil using a feedforward 

neural network was conducted. As an application, the sensitivity of the strength of 

reinforced soil to the constitutive parameters was analyzed using the neural network-based 

model.  From the work presented in this chapter, the following conclusions can be drawn:  

1. The standard backpropagation algorithm and the Levenberg-Marquardt backpro-

pagation algorithm were derived in vector forms. The vector forms of the 

backpropagation algorithms make training neural networks and computing confidence 

intervals more efficient and less error prone.  

2. Confidence intervals and prediction intervals for neural network regressions were 

presented.  Especially, when the Levenberg-Marquardt backpropagation algorithm is 

used to train a neural network, since the Jacobian matrix has been calculated to update 

the weights and biases of the neural network, the confidence interval with a confidence 

level can be easily computed to evaluate the predictive capability of the neural network 

which the unseen data is fed into.  A demonstrated example shows that too many 

hidden nodes in a neural network may result in a poor prediction, i.e. the prediction 

interval will be too wide since the trained neural network overfits noisy data.  

Meanwhile, not enough hidden nodes will also lead a poor prediction since the 

nonlinearity of a model cannot be fully identified. 

3. Modeling of nonlinear elastic behavior of the soil reinforced with short fiber and 

stabilized with lime powder using a feedforward neural network was performed. This 

is the first attempt to model the nonlinear elastic behavior of fiber-lime reinforced soil 

under multi-axial shear loading using a neural network. The results of modeling 

reinforced soil are satisfactory. From the experimental data, neural network model and 

prediction intervals calculation, the following three points can be summarized and 

concluded,  

a. Testing results indicate that the axial stress-strain relation is a nonlinear function of 

multiple variables, such as confining pressure, fiber content, lime content and sample 

curing time. To simulate such a nonlinear stress-strain relationship, a feedforward 

neural network is a good tool. The adopted neural network has one hidden layer with 

six nodes in it.  Five variables are designated as inputs to model nonlinear elastic 

behavior of the soil.  To train and test the neural network, thirty sets of data from 

conventional triaxial shear tests are selected to train the neural network and four sets of 

unseen data are adopted to evaluate the trained neural network. Using the derived 

approximate confidence interval equation (23), all predicted values of axial shear stress by 

the neural network model are within the envelope of the confidence interval with 

confidence level of 95%.  

b. Parameters sensitivity and coupling effect were analyzed using the neural network 
based model. The sensitivity analysis of soil mechanical property to the model inputs 
such as the fiber content, the lime content, confining pressure and the sample curing 
period was conducted. The quantitative results show that the soil mechanical property 
is more sensitive to the lime content than to the fiber content. The mechanical property 
of the soil-lime mixture can be substantially improved with a prolonging curing period, 
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particularly within a duration from 0 to 28 days. From the analysis of coupling effect, 
the axial shear stress of composite soil increases exponentially with the increase of fiber 
content and logarithmically with an increasing aging period for the soil mixed with 
lime powder.  Sample curing time plays a more significant role than other factors. 

c. The neural network model provides a convenient and useful tool for analysis of 

mechanical behavior of composite soil and for applications to various engineering 

designs. With the confidence interval evaluation, the neural network model can be 

further applied to the stress-strain relation for large soil deformation  

6. Appendix  

Neural networks derive their advantages from their special structures – the massive 

interconnection of simple processing units.  If the weights and biases of a neural network are 

considered as elements of matrices, the matrix calculus will become very useful for 

developing new algorithms for training neural networks.  This appendix provides two basic 

chain rules for matrix derivatives.  Detailed information can be found in the books authored 

by Cichocki and Unbehauen (Cichocki and Unbehauen, 1993) and Lewis (Lewis, 1995). 

1. The general chain rule 

Theorem 1 Let : mD→ℜf be a differentiable real vector on an open r-dimensional  set rD ⊂ℜ , and 

let : S D→u  be differentiable on an open set n-dimensional nS ⊂ℜ . Then, the composite vector 

function F(x)=f(u(x)) is differentiable on the open set S. The general chain rule of the differentiation 

of the vector function F(x) is  

 / ( ) ( ( )) ( )∂ ∂ = =F f uF x J x J u x J x  (A.1) 

and the gradient matrix ∇xF  is 

  ∇ = ∇ ∇x x uF u f  (A.2) 

Proof is omitted. 
2. The chain rule for differentiation of a scalar function with respect to a matrix 

Theorem 2 Let ( )F h= f  be a differentiable real-valued scalar function of a real vector f, h: ℜm→ℜ 
and let T

1 2( ) [ ( ) ( ) ( )]mf f f=f w w w wA be a differentiable vector function of the matrix w with 
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.  

 

Then, the chain rule for the differentiation of the scalar function F with respect to the matrix w yields  
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 (A.3) 

 

Proof: from the derivative of the scale function with respect to a variable matrix, one has  
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 (A.4) 

For each element of Equation (A.4), use the general chain rule to reach  
ij ijw wF F∇ = ∇ ∇f f , 

which can be alternatively expressed by: 
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For  
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becomes 
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When  i =1,…,n; j=1,…,l, (A.6) becomes: 
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