
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

14

Design of High Speed Neural Networks for
Fast Pattern Detection by using Cross
Correlation and Matrix Decomposition

Hazem M. El-Bakry
Faculty of Computer Science & Information Systems, Mansoura University,

Egypt

1. Introduction

Fast pattern detection and identification is a fundamental problem for many applications of
real-time systems (Bruce & Veloso 2003). Its reliability and performance have a major
influence in a whole pattern recognition system. Nowadays, neural networks have shown
very good results for detecting a certain pattern in a given image (Rowley et al. 1998; Feraud
et al. 2000; Anifantis et al. 1999; Lang et al. 1988; El-Bakry 2001). Among other techniques
(Schneiderman & Kanade 1998; Zhu et al. 2000; Srisuk & Kurutach 2002; Bao et al. 2006),
neural networks are efficient pattern detectors (Rowley et al. 1998; Feraud et al. 2000; El-
Bakry 2002,a; El-bakry 2002,b; Essannouni and Ibn Elhaj 2006; Roth et al. 2006;
Ramasubramanian & Kannan 2006). But the problem with neural networks is that the
computational complexity is very high because the networks have to process many small
local windows in the images (Zhu et al. 2000; Srisuk & Kurutach 2002; Yang et al. 2002). The
main objective of this paper is to reduce the detection time using neural networks. The idea
is to accelerate the operation of neural networks by performing the testing process in the
frequency domain instead of spatial domain. Then, cross-correlation between the input
image and the weights of neural networks is performed in the frequency domain. This
model is called fast neural networks. Compared to conventional neural networks, fast
neural networks show a significant reduction in the number of computation steps required
to detect a certain pattern in a given image under test. Furthermore, another idea to increase
the speed of these fast neural networks through image decomposition is presented.
Moreover, the problem of sub-image (local) normalization in the Fourier space which
presented in (Feraud et al. 2000) is solved.. The number of computation steps required for
weight normalization is proved to be less than that needed for image normalization. Also,
the effect of weight normalization on the speed up ratio is theoretically and practically
discussed. Mathematical calculations prove that the new idea of weight normalization,
instead of image normalization, provides good results and increases the speed up ratio. This
is because weight normalization requires fewer computation steps than sub-image
normalization. Moreover, for neural networks, normalization of weights can be easily done
off line before starting the search process.
In section 2, high speed neural networks for pattern detection are described. The details of
conventional neural networks, high speed neural networks, and the speed up ratio of

www.intechopen.com

 Artificial Neural Networks - Application

270

pattern detection are given. A faster searching algorithm for pattern detection which
reduces the number of the required computation steps through image decomposition is
presented in section 3. Accelerating the new approach using parallel processing techniques
is also introduced. Sub-image normalization in the frequency domain through
normalization of weights is introduced in section 4. The effect of weight normalization on
the speed up ratio is presented in section 5.

2. Fast pattern detection using MLP and FFT

Here, we are interested only in increasing the speed of neural networks during the test
phase. By the words “High speed Neural Networks” we mean reducing the number of
computation steps required by neural networks in the detection phase. First neural
networks are trained to classify face from non face examples and this is done in the spatial
domain. In the test phase, each sub-image in the input image (under test) is tested for the
presence or absence of the required face/object. At each pixel position in the input image
each sub-image is multiplied by a window of weights, which has the same size as the sub-
image. This multiplication is done in the spatial domain. The outputs of neurons in the
hidden layer are multiplied by the weights of the output layer. When the final output is high
this means that the sub-image under test contains the required face/object and vice versa.
Thus, we may conclude that this searching problem is cross correlation in the spatial domain
between the image under test and the input weights of neural networks.
In this section, a fast algorithm for face/object detection based on two dimensional cross
correlations that take place between the tested image and the sliding window (20x20 pixels)
is described. Such window is represented by the neural network weights situated between
the input unit and the hidden layer. The convolution theorem in mathematical analysis says
that a convolution of f with h is identical to the result of the following steps: let F and H be
the results of the Fourier transformation of f and h in the frequency domain. Multiply F and
H in the frequency domain point by point and then transform this product into spatial
domain via the inverse Fourier transform (Klette&Zamperon 1996). As a result, these cross
correlations can be represented by a product in the frequency domain. Thus, by using cross
correlation in the frequency domain a speed up in an order of magnitude can be achieved
during the detection process (El-Bakry2005; El-Bakry 2006; El-Bakry 2007; El-Bakry 2009).
In the detection phase, a sub-image X of size mxn (sliding window) is extracted from the tested
image, which has a size PxT, and fed to the neural network. Let Wi be the vector of weights
between the input sub-image and the hidden layer. This vector has a size of mxz and can be
represented as mxn matrix. The output of hidden neurons h(i) can be calculated as follows:

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+∑
=

=
m

1j
ibk)k)X(j,(j,

z

1k
iWgih (1)

where g is the activation function and b(i) is the bias of each hidden neuron (i). Eq.1
represents the output of each hidden neuron for a particular sub-image I. It can be
computed for the whole image Ψ as follows:

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
−=

∑
−=

+++=
m/2

m/2j

z/2

z/2k
i bk)vj,(uΨ k)(j,iWgv)(u,ih (2)

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

271

Eq.(2) represents a cross correlation operation. Given any two functions f and g, their cross
correlation can be obtained by (Gonzalez & Woods 2002):

 ∑
∞

∞−=
∑
∞

∞−=
++=⊗

m z
z)ym,z)f(xg(m,y)f(x,y)g(x, (3)

Therefore, Eq.(2) can be written as follows:

 ()ibΨiWgih +⊗= (4)

where hi is the output of the hidden neuron (i) and hi (u,v) is the activity of the hidden unit

(i) when the sliding window is located at position (u,v) in the input image Ψ and (u,v) ∈[P-
m+1,T-n+1].
Now, the above cross correlation can be expressed in terms of the Fourier Transform:

 () ()⎟
⎠
⎞⎜

⎝
⎛−=⊗ iW*FΨF1FΨiW (5)

(*) means the conjugate of the FFT for the weight matrix. Hence, by evaluating this cross
correlation, a speed up ratio can be obtained comparable to conventional neural networks.
Also, the final output of the neural network can be evaluated as follows:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

+=
q

1i
obv)(u,ih (i)oWgv)O(u, (6)

where q is the number of neurons in the hidden layer. O(u,v) is the output of the neural

network when the sliding window located at the position (u,v) in the input image Ψ. Wo is
the weight matrix between hidden and output layer. bo is the bias of the output neuron.
The complexity of cross correlation in the frequency domain can be analyzed as follows:
1. For a tested image of NxN pixels, the 2D-FFT requires a number equal to N2log2N2 of

complex computation steps. Also, the same number of complex computation steps is
required for computing the 2D-FFT of the weight matrix for each neuron in the hidden
layer.

2. At each neuron in the hidden layer, the inverse 2D-FFT is computed. So, q backward
and (1+q) forward transforms have to be computed. Therefore, for an image under test,
the total number of the 2D-FFT to compute is (2q+1)N2log2N2.

3. The input image and the weights should be multiplied in the frequency domain.
Therefore, a number of complex computation steps equal to qN2 should be added.

4. The number of computation steps required by the faster neural networks is complex
and must be converted into a real version. It is known that the two dimensions Fast
Fourier Transform requires (N2/2)log2N2 complex multiplications and N2log2N2
complex additions (Cooley&Tukey 1965). Every complex multiplication is realized by
six real floating point operations and every complex addition is implemented by two
real floating point operations. So, the total number of computation steps required to
obtain the 2D-FFT of an NxN image is:

 ρ=6((N2/2)log2N2) + 2(N2log2N2) (7)

which may be simplified to:

www.intechopen.com

 Artificial Neural Networks - Application

272

 ρ=5N2log2N2 (8)

Performing complex dot product in the frequency domain also requires 6qN2 real
operations.

5. In order to perform cross correlation in the frequency domain, the weight matrix must

have the same size as the input image. Assume that the input object/face has a size of

(nxn) dimensions. So, the search process will be done over sub-images of (nxn)

dimensions and the weight matrix will have the same size. Therefore, a number of zeros

= (N2-n2) must be added to the weight matrix. This requires a total real number of

computation steps = q(N2-n2) for all neurons. Moreover, after computing the 2D-FFT for

the weight matrix, the conjugate of this matrix must be obtained. So, a real number of

computation steps =qN2 should be added in order to obtain the conjugate of the weight

matrix for all neurons. Also, a number of real computation steps equal to N is required

to create butterflies complex numbers (e-jk(2Πn/N)), where 0<K<L. These (N/2) complex

numbers are multiplied by the elements of the input image or by previous complex

numbers during the computation of the 2D-FFT. To create a complex number requires

two real floating point operations. So, the total number of computation steps required

for the high speed neural networks becomes:

 σ=(2q+1)(5N2log2N2) +6qN2+q(N2-n2)+qN2 +N (9)

which can be reformulated as:

 σ=(2q+1)(5N2log2N2) +q(8N2-n2) +N (10)

6. Using a sliding window of size nxn for the same image of NxN pixels, q(2n2-1)(N-n+1)2
computation steps are required when using traditional neural networks for face/object

detection process. The theoretical speed up factor η can be evaluated as follows:

 N)2n-2q(8N)2N2log21)(5N(2q

 2 1)n-1)(N-2q(2nη
+++

+
= (11)

The theoretical speed up ratio (Eq.(11)) with different sizes of the input image and different

in size weight matrices is listed in Table 1. Practical speed up ratio for manipulating images

of different sizes and different in size weight matrices is listed in Table 2 using 2.7 GHz

processor and MATLAB ver 5.3. An interesting property with high speed neural networks is

that the number of computation steps does not depend on eith the size of the input sub-

image or the size of the weighth matrix (n). The effect of (n) on the the number of

computation steps is very small and can be ignored. This is incontrast to conventional

networks in which the number of computation steps is increased with the size of both the

input sub-image and the weight matrix (n).

In practical implementation, the multiplication process consumes more time than the

addition one. The effect of the number of multiplications required for conventional neural

networks in the speed up ratio (Eq.(11)) is more than the number of of multiplication steps

required by the high speed neural networks. In order to clear this, the following equation

(ηm) describes relation between the number of multiplication steps required by conventional

and high speed neural networks:

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

273

Image
size

Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 3.67 5.04 6.34

200x200 4.01 5.92 8.05

300x300 4.00 6.03 8.37

400x400 3.95 6.01 8.42

500x500 3.89 5.95 8.39

600x600 3.83 5.88 8.33

700x700 3.78 5.82 8.26

800x800 3.73 5.76 8.19

900x900 3.69 5.70 8.12

1000x1000 3.65 5.65 8.05

1100x1100 3.62 5.60 7.99

1200x1200 3.58 5.55 7.93

1300x1300 3.55 5.51 7.93

1400x1400 3.53 5.47 7.82

1500x1500 3.50 5.43 7.77

1600x1600 3.48 5.43 7.72

1700x1700 3.45 5.37 7.68

1800x1800 3.43 5.34 7.64

1900x1900 3.41 5.31 7.60

2000x2000 3.40 5.28 7.56

Table 1. The theoretical speed up ratio for images with different sizes.

Image size
Speed up ratio

(n=20)
Speed up ratio

(n=25)
Speed up ratio

(n=30)

100x100 7.88 10.75 14.69

200x200 6.21 9.19 13.17

300x300 5.54 8.43 12.21

400x400 4.78 7.45 11.41

500x500 4.68 7.13 10.79

600x600 4.46 6.97 10.28

700x700 4.34 6.83 9.81

800x800 4.27 6.68 9.60

900x900 4.31 6.79 9.72

1000x1000 4.19 6.59 9.46

1100x1100 4.24 6.66 9.62

1200x1200 4.20 6.62 9.57

1300x1300 4.17 6.57 9.53

1400x1400 4.13 6.53 9.49

1500x1500 4.10 6.49 9.45

1600x1600 4.07 6.45 9.41

1700x1700 4.03 6.41 9.37

1800x1800 4.00 6.38 9.32

1900x1900 3.97 6.35 9.28

2000x2000 3.94 6.31 9.25

Table 2. Practical speed up ratio for images with different sizes using MATLAB Ver 5.3

www.intechopen.com

 Artificial Neural Networks - Application

274

.Image size
Conventional
Neural Nets

Faster Neural Nets
Speed up

ratio (ηm)

100x100 7.8732e+007 2.6117e+007 3.0146

200x200 3.9313e+008 1.1911e+008 3.3007

300x300 9.4753e+008 2.8726e+008 3.2985

400x400 1.7419e+009 5.3498e+008 3.2560

500x500 2.7763e+009 8.6537e+008 3.2083

600x600 4.0507e+009 1.2808e+009 3.1627

700x700 5.5651e+009 1.7832e+009 3.1209

800x800 7.3195e+009 2.3742e+009 3.0830

900x900 9.3139e+009 3.0552e+009 3.0486

1000x1000 1.1548e+010 3.8275e+009 3.0172

1100x1100 1.4023e+010 4.6921e+009 2.9886

1200x1200 1.6737e+010 5.6502e+009 2.9622

1300x1300 1.9692e+010 6.7026e+009 2.9379

1400x1400 2.2886e+010 7.8501e+009 2.9154

1500x1500 2.6320e+010 9.0935e+009 2.8944

1600x1600 2.9995e+010 1.0434e+010 2.8748

1700x1700 3.3909e+010 1.1871e+010 2.8564

1800x1800 3.8064e+010 1.3407e+010 2.8392

1900x1900 4.2458e+010 1.5041e+010 2.8229

2000x2000 7.8732e+007 2.6117e+007 3.0146

Table 3. A Comparison between the number of multiplication steps required for
conventional and faster neural nets to manipulate Images with different sizes (n=20, q=30)

22

2
2

22

6qN)Nlog1)(3N(2q

1)n(Nqn
mη ++

+−
= (12)

The results listed in Table 3 prove that the effect of the number of multiplication steps in

case of conventional neural networks is more than high speed neural networks and this the

reason why practical speed up ratio is larger than theoretical speed up ratio.

For general fast cross correlation the speed up ratio (ηg) is in the following form:

τ)(N)2n-2τ)q(8(N)2τ)(N2log2τ)1)(5(N(2q

21)N2q(2n
g +++++++

−
=η (13)

where τ is a small number depends on the size of the weight matrix. General cross correlation

means that the process starts from the first element in the input matrix. The theoretical speed

up ratio for general fast cross correlation (ηg) defined by Eq.(13) is shown in Table 4.

Compared with MATLAB cross correlation function (xcorr2), experimental results show that

the proposed algorithm is high speed than this function as shown in Table 5.

(Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) have proposed a multilayer
perceptron (MLP) algorithm for fast face/object detection. The same authors claimed
incorrect equation for cross correlation between the input image and the weights of the
neural networks. They introduced formulas for the number of computation steps needed by
conventional and high speed neural networks. Then, they established an equation for the

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

275

Image size
Speed up ratio

(n=20)
Speed up ratio

(n=25)
Speed up ratio

(n=30)

100x100 5.59 8.73 12.58

200x200 4.89 7.64 11.01

300x300 4.56 7.12 10.26

400x400 4.35 6.80 9.79

500x500 4.20 6.56 9.45

600x600 4.08 6.38 9.20

700x700 3.99 6.24 8.99

800x800 3.91 6.12 8.81

900x900 3.85 6.02 8.67

1000x1000 3.79 5.93 8.54

1100x1100 3.74 5.85 8.43

1200x1200 3.70 5.78 8.33

1300x1300 3.66 5.72 8.24

1400x1400 3.62 5.66 8.16

1500x1500 3.59 5.61 8.08

1600x1600 3.56 5.57 8.02

1700x1700 3.53 5.52 7.95

1800x1800 3.50 5.48 7.89

1900x1900 3.48 5.44 7.84

2000x2000 3.46 5.41 7.79

Table 4. The Theoretical Speed up Ratio for the General Faster Cross Correlation Algorithm

Image size
Speed up ratio

(n=20)
Speed up ratio

(n=25)
Speed up ratio

(n=30)

100x100 10.14 13.05 16.49

200x200 9.17 11.92 14.33

300x300 8.25 10.83 13.41

400x400 7.91 9.62 12.65

500x500 6.77 9.24 11.77

600x600 6.46 8.89 11.19

700x700 5.99 8.47 10.96

800x800 5.48 8.74 10.32

900x900 5.31 8.43 10.66

1000x1000 5.91 8.66 10.51

1100x1100 5.77 8.61 10.46

1200x1200 5.68 8.56 10.40

1300x1300 5.62 8.52 10.35

1400x1400 5.58 8.47 10.31

1500x1500 5.54 8.43 10.26

1600x1600 5.50 8.39 10.22

1700x1700 5.46 8.33 10.18

1800x1800 5.42 8.28 10.14

1900x1900 5.38 8.24 10.10

2000x2000 5.34 8.20 10.06

Table 5. Simulation results of the speed up ratio for the general faster cross correlation
compared with the MATLAB cross correlation function (XCORR2)

www.intechopen.com

 Artificial Neural Networks - Application

276

speed up ratio. Unfortunately, these formulas contain many errors which lead to invalid
speed up ratio. Recently, other authors developed their work based on these incorrect
equations (Ishak et al. 2004). So, the fact that these equations are not valid must be cleared to
all researchers. It is not only very important but also urgent to notify other researchers not to
waste their time and effort doing research based on wrong equations.
The authors (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) analyzed their
proposed fast neural network as follows: For a tested image of NxN pixels, the 2D-FFT
requires O(N2(log2N)2) computation steps. For the weight matrix Wi, the 2D-FFT can be
computed off line since these are constant parameters of the network independent of the
tested image. The 2D-FFT of the tested image must be computed. As a result, q backward
and one forward transforms have to be computed. Therefore, for a tested image, the total
number of the 2D-FFT to compute is (q+1)N2(log2N)2 (Ben-Yacoub et al. 1999; Ben-Yacoub
1997). In addition, the input image and the weights should be multiplied in the frequency
domain. Therefore, computation steps of (qN2) should be added. This yields a total of
O((q+1)N2(log2N)2+qN2) computation steps for the fast neural network (Ben-Yacoub et al.
1999; Fasel 1998).
Using sliding window of size nxn, for the same image of NxN pixels, qN2n2 computation
steps are required when using traditional neural networks for the face detection process.

They evaluated theoretical speed up factor η as follows (Fasel 1998; Ben-Yacoub 1997):

N21)log(q

2qnη
+

= (14)

The speed up factor introduced in (Ben-Yacoub et al. 1999) and given by Eq.14 is not correct
for the following reasons:
a. The number of computation steps required for the 2D-FFT is O(N2log2N2) and not

O(N2log2N) as presented in (Fasel 1998; Ben-Yacoub 1997) . Also, this is not a typing
error as the curve in Fig.2 in (Ben-Yacoub et al. 1999) realizes Eq.(7), and the curves in
Fig.15 in (Fasel 1998) realizes Eq.(31) and Eq.(32) in (Fasel 1998) .

b. Also, the speed up ratio presented in (Ben-Yacoub et al. 1999) not only contains an error
but also is not precise. This is because for high speed neural networks, the term (6qN2)
corresponds to complex dot product in the frequency domain must be added. Such
term has a great effect on the speed up ratio. Adding only qN2 as stated in (Fasel 1998)
is not correct since a one complex multiplication requires six real computation steps.

c. For conventional neural networks, the number of operations is (q(2n2-1)(N-n+1)2) and
not (qN2n2). The term n2 is required for multiplication of n2 elements (in the input
window) by n2 weights which results in another new n2 elements. Adding these n2

elements, requires another (n2-1) steps. So, the total computation steps needed for each
window is (2n2-1). The search operation for a face in the input image uses a window
with nxn weights. This operation is done at each pixel in the input image. Therefore,
such process is repeated (N-n+1)2 times and not N 2 as stated in (Ben-Yacoub et al. 1999;
Ben-Yacoub 1997).

d. Before applying cross correlation, the 2D-FFT of the weight matrix must be computed.
Because of the dot product, which is done in the frequency domain, the size of weight
matrix should be increased to be the same as the size of the input image. Computing the
2D-FFT of the weight matrix off line as stated in (Ben-Yacoub et al. 1999; Fasel 1998; and
Ben-Yacoub 1997) is not practical. In this case, all of the input images must have the

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

277

same size. As a result, the input image will have only a one fixed size. This means that,
the testing time for an image of size 50x50 pixels will be the same as that image of size
1000x1000 pixels and of course, this is unreliable.

e. It is not valid to compare number of complex computation steps by another of real
computation steps directly. The number of computation steps given by pervious
authors (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) for conventional
neural networks is for real operations while that is required by the high speed neural
networks is for complex operations. To obtain the speed up ratio, the authors in (Ben-
Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) have divided the two formulas
directly without converting the number of computation steps required by the high
speed neural networks into a real version.

f. Furthermore, there are critical errors in the activity of hidden neurons given in section
3.1 in (Ben-Yacoub 1997) and also by Eq.(2) in (Ben-Yacoub et al. 1999). Such activity
given by those authors in (Ben-Yacoub et al. 1999; Ben-Yacoub 1997) as follows:

 ()ibiWΨgih +⊗= (15)

is not correct and should be written as Eq.(4) given here in this chapter. This is because

the fact that the operation of cross correlation is not commutative (W⊗Ψ ≠ Ψ⊗W). As a
result, Eq.(15) (Eq.(2) in their paper (Ben-Yacoub et al. 1999)) does not give the exact
correct results as conventional neural networks. This error leads the researchers who
consider the references (Ben-Yacoub et al. 1999; Ben-Yacoub 1997) to think about how
to modify the operation of cross correlation so that Eq.(15) (Eq.(2) in their paper (Ben-
Yacoub et al. 1999)) can give the exact correct results as conventional neural networks.
Therefore, errors in these equations must be cleared to all the researchers. In (El-Bakry
2003), the authors proved that a symmetry condition must be found in input matrices
(images and the weights of neural networks) so that fast neural networks can give the

same results as conventional neural networks. In case of symmetry W⊗Ψ=Ψ⊗W, the
cross correlation becomes commutative and this is a valuable achievement. In this case,
the cross correlation is performed without any constrains on the arrangement of
matrices. As presented in (El-Bakry 2003), this symmetry condition is useful for
reducing the number of patterns that neural networks will learn. This is because the
image is converted into symmetric shape by rotating it down and then the up image
and its rotated down version are tested together as one (symmetric) image. If a pattern
is detected in the rotated down image, then, this means that this pattern is found at the
relative position in the up image. So, if conventional neural networks are trained for up
and rotated down examples of the pattern, fast neural networks will be trained only to
up examples. As the number of trained examples is reduced, the number of neurons in
the hidden layer will be reduced and the neural network will be faster in the test phase
compared with conventional neural networks.

g. Moreover, the authors in (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997)
stated that the activity of each neuron in the hidden layer Eq.(16) (Eq.(4) in their paper
(Ben-Yacoub et al. 1999)) can be expressed in terms of convolution between a bank of
filter (weights) and the input image. This is not correct because the activity of the
hidden neuron is a cross correlation between the input image and the weight matrix. It
is known that the result of cross correlation between any two functions is different from
their convolution. As we proved in (El-Bakry 2003) the two results will be the same,

www.intechopen.com

 Artificial Neural Networks - Application

278

only when the two matrices are symmetric or at least the weight matrix is symmetric. A
practical example which proves that for any two matrices the result of their cross
correlation is different from their convolution unless that they are symmetric or at least
the second matrix is symmetric as shown in appendix “A”.

h. Images are tested for the presence of a face (object) at different scales by building a
pyramid of the input image which generates a set of images at different resolutions. The
face detector is then applied at each resolution and this process takes much more time
as the number of processing steps will be increased. In (Ben-Yacoub et al. 1999; Fasel
1998; and Ben-Yacoub 1997) , the authors stated that the Fourier transforms of the new
scales do not need to be computed. This is due to a property of the Fourier transform. If
z(x,y) is the original and a(x,y) is the sub-sampled by a factor of 2 in each direction
image then:

 z(2x,2y)y)a(x, = (16)

)y)FT(z(x,v)Z(u, = (17)

 ⎟
⎠
⎞

⎜
⎝
⎛==

2

v
,

2

u
Z

4

1
v)A(u,y))FT(a(x, (18)

This implies that we do not need to recompute the Fourier transform of the sub-sampled
images, as it can be directly obtained from the original Fourier transform. But experimental
results have shown that Eq.(16) is valid only for images shown in the form presented in
Eq.(19). In which each block of pixels consists of 4 pixels located beside each other and have
the same value as shown in Eq.(19). Certainly, there no guarantee that the input image will
be in that form. Of course, it may have another form different from that one presented in
Eq.(19).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

............Y.........YXXSS

............Y.........YXXSS

.

.

.

.

....................CCBBAA

....................CCBBAA

Ψ (19)

In (Ben-Yacoub et al. 1999), the author claimed that the processing needs O((q+2)N2log2N)
additional number of computation steps. Thus the speed up ratio will be (Ben-Yacoub et al.
1999):

N22)log(q

2qnη
+

= (20)

Of course this is not correct, because the inverse of the Fourier transform is required to be
computed at each neuron in the hidden layer (for the resulted matrix from the dot product

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

279

between the Fourier matrix in two dimensions of the input image and the Fourier matrix in
two dimensions of the weights, the inverse of the Fourier transform must be computed). So,
the term (q+2) in Eq.(20) should be (2q+1) because the inverse 2D-FFT in two dimensions
must be done at each neuron in the hidden layer. In this case, the number of computation
steps required to perform 2D-FFT for the high speed neural networks will be:

 ϕ=(2q+1)(5N2log2N2)+(2q)5(N/2)2log2(N/2)2 (21)

In addition, a number of computation steps equal to 6q(N/2)2+q((N/2)2-n2)+q(N/2)2 must
be added to the number of computation steps required by the high speed neural networks.

3. A new faster algorithm for pattern detection based on image
decomposition

In this section, a new faster algorithm for face/object detection is presented. The number of
computation steps required for faster neural networks with different image sizes is listed in
Tables 6 and 7. From these tables, we may notice that as the image size is increased, the
number of computation steps required by high speed neural networks is much increased.
For example, the number of computation steps required for an image of size (50x50 pixels) is
much less than that needed for an image of size (100x100 pixels). Also, the number of
computation steps required for an image of size (500x500 pixels) is much less than that
needed for an image of size (1000x1000 pixels). As a result, for example, if an image of size
(100x100 pixels) is decomposed into 4 sub-images of size (50x50 pixels) and each sub-image
is tested separately, then a speed up factor for face/object detection can be achieved. The
number of computation steps required by high speed neural networks to test an image after
decomposition can be calculated as follows:
1. Assume that the size of the image under test is (NxN pixels).

2. Such image is decomposed into α (LxL pixels) sub-images. So, α can be computed as:

 α=(N/L)2 (22)

3. Assume that, the number of computation steps required for testing one (LxL pixels)

sub-image is β. So, the total number of computation steps (T) required for testing these
sub-images resulting after the decomposition process is:

 T = α β (23)

The speed up ratio in this case (ηd) can be computed as follows:

()()

()()() () ΛsN2n2
s8Nαq2

sN2log2
s5Nα1αq

2
1nN122nq

dn
++−+++

+−−
= (24)

where,
Ns: is the size of each small sub-image.

Δ: is a small number of computation steps required to obtain the results at the
boundaries between sub-images and depends on the size of the sub-image.

To detect a face/object of size 20x20 pixels in an image of any size by using high speed
neural networks after image decomposition into sub-images, the optimal size of these sub-
images must be computed. From Table 7, we may conclude that, the most suitable size for

www.intechopen.com

 Artificial Neural Networks - Application

280

Image size
No. of computation steps in case of

using FNN

25x25 1.9085e+006

50x50 9.1949e+006

100x100 4.2916e+007

150x150 1.0460e+008

200x200 1.9610e+008

250x250 3.1868e+008

300x300 4.7335e+008

350x350 6.6091e+008

400x400 8.8203e+008

450x450 1.1373e+009

500x500 1.4273e+009

550x550 1.7524e+009

600x600 2.1130e+009

650x650 2.5096e+009

700x700 2.9426e+009

750x750 3.4121e+009

800x800 3.9186e+009

850x850 4.4622e+009

900x900 5.0434e+009

950x950 5.6623e+009

1000x1000 6.3191e+009

Table 6. The number of computation steps required by faster neural networks (FNN) for
images of sizes (25x25 - 1000x1000 pixels), q=30, n=20

Image size
No. of computation steps in case of

using FNN

1050x1050 7.0142e+009

1100x1100 7.7476e+009

1150x1150 8.5197e+009

1200x1200 9.3306e+009

1250x1250 1.0180e+010

1300x1300 1.1070e+010

1350x1350 1.1998e+010

1400x1400 1.2966e+010

1450x1450 1.3973e+010

1500x1500 1.5021e+010

1550x1550 1.6108e+010

1600x1600 1.7236e+010

1650x1650 1.8404e+010

1700x1700 1.9612e+010

1750x1750 2.0861e+010

1800x1800 2.2150e+010

1850x1850 2.3480e+010

1900x1900 2.4851e+010

1950x1950 2.6263e+010

2000x2000 2.7716e+010

Table 7. The number of computation steps required by FNN for images of sizes (1050x1050 -
2000x2000 pixels), q=30, n=20

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

281

0

2

4

6

8

10

12

14

16

100 300 500 700 900 1100 1300 1500 1700 1900

N Pixels

S
p

ee
d

 u
p

 R
at

io

L=25 L=50

L=100

Fig. 1. The speed up ratio for images decomposed into different in size sub-images (L).

0.00E+00

5.00E+09

1.00E+10

1.50E+10

2.00E+10

2.50E+10

3.00E+10

100 300 500 700 900 1100 1300 1500 1700 1900

N Pixels

N
u

m
b

er
 o

f
C

o
m

p
u

ta
ti

o
n

 S
te

p
s Number of Computation Steps

Required by FNN after Image

Decomposition
Number of Computation Steps

Required by FNN Before

Image Decomposition

Fig. 2. A comparison between the number of computation steps required by FNN before and
after Image decomposition.

the sub-image which requires the smallest number of computation steps is 25x25 pixels.
Also, the fastest speed up ratio can be achieved using this sub-image size (25x25) as shown
in Figure 1. It is clear that the speed up ratio is reduced when the size of the sub-image (L) is
increased. A comparison between the speed up ratio for high speed neural networks and
high speed neural networks after image decomposition with different sizes of the tested
images is listed in Tables 8 and 9. It is clear that the speed up ratio is increased with the size
of the input image when using high speed neural networks and image decomposition. This
is in contrast to using only high speed neural networks. As shown in Figure 2, the number
of computation steps required by high speed neural networks is increased rapidly with the
size of the input image. Therefore the speed up ratio is decreased with the size of the input
image. While in case of using high speed neural networks and image decomposition, the

www.intechopen.com

 Artificial Neural Networks - Application

282

Image size
Speed up ratio in

case of using FNN

Speed up ratio in case of using
FNN after image
decomposition

50x50 2.7568 5.0713

100x100 5.0439 12.4622

150x150 5.6873 15.6601

200x200 5.9190 17.3611

250x250 6.0055 18.4073

300x300 6.0301 19.1136

350x350 6.0254 19.6218

400x400 6.0059 20.0047

450x450 5.9790 20.3034

500x500 5.9483 20.5430

550x550 5.9160 20.7394

600x600 5.8833 20.9032

650x650 5.8509 21.0419

700x700 5.8191 21.1610

750x750 5.7881 21.2642

800x800 5.7581 21.3546

850x850 5.7292 21.4344

900x900 5.7013 21.5054

950x950 5.6744 21.5689

1000x1000 5.6484 21.6260

Table 8. The speed up ratio in case of using FNN and FNN after image decomposition into
sub-images (25x25 pixels) for images of different sizes (from N=50 to N=1000, n=25, q=30)

Image size
Speed up ratio in

case of using FNN
Speed up ratio in case of using

FNN after image decomposition

1050x1050 5.6234 21.6778

1100x1100 5.5994 21.7248

1150x1150 5.5762 21.7678

1200x1200 5.5538 21.8072

1250x1250 5.5322 21.8434

1300x1300 5.5113 21.8769

1350x1350 5.4912 21.9079

1400x1400 5.4717 21.9366

1450x1450 5.4528 21.9634

1500x1500 5.4345 21.9884

1550x1550 5.4168 22.0118

1600x1600 5.3996 22.0338

1650x1650 5.3830 22.0544

1700x1700 5.3668 22.0738

1750x1750 5.3511 22.0921

1800x1800 5.3358 22.1094

1850x1850 5.3209 22.1257

1900x1900 5.3064 22.1412

1950x1950 5.2923 22.1559

2000x2000 5.2786 22.1699

Table 9. The speed up ratio in case of using FNN and FNN after image decomposition into
sub-images (25x25 pixels) for images of different sizes (from N=1050 to N=2000, n=25, q=30)

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

283

Matrix size

Speed up ratio in
case of using

FNN

Speed up ratio in case of
using FNN after matrix

decomposition

100000x100000 3.6109 22.7038

200000x200000 3.4112 22.7092

300000x300000 3.3041 22.7110

400000x400000 3.2320 22.7119

500000x500000 3.1783 22.7125

600000x600000 3.1357 22.7128

700000x700000 3.1005 22.7131

800000x800000 3.0707 22.7133

900000x900000 3.0448 22.7134

1000000x1000000 3.0221 22.7136

1100000x1100000 3.0018 22.7137

1200000x1200000 2.9835 22.7138

1300000x1300000 2.9668 22.7138

1400000x1400000 2.9516 22.7139

1500000x1500000 2.9376 22.7139

1600000x1600000 2.9245 22.7140

1700000x1700000 2.9124 22.7140

1800000x1800000 2.9011 22.7141

1900000x1900000 2.8904 22.7141

2000000x2000000 2.8804 22.7141

Table 10. The speed up ratio in case of using FNN and FNN after matrix decomposition into
sub-matrices (25x25 elements) for very large matrices (from N=100000 to N=2000000, n=25, q=30)

number of computation steps required by high speed neural networks is increased

smoothly. Thus, the linearity of the computation steps required by high speed neural

networks in this case is better. As a result, the speed up ratio is increased. Increasing the

speed up ratio with the size of the input image is considered an important achievement.

Furthermore, for very large size matrices, while the speed up ratio for high speed neural

networks is decreased, the speed up ratio still increase in case of using high speed neural

networks and matrix decomposition as listed in Table 10. Moreover, as shown in Figure 3,

the speed up ratio in case of high speed neural networks and image decomposition is

increased with the size of the weight matrix which has the same size (n) as the input

window. For example, it is clear that the speed up ratio is for window size of 30x30 is larger

than that of size 20x20. Simulation results for the speed up ratio in case of using fast neural

networks and image decomposition is listed in Table 11. It is clear that simulation results

confirm the theoretical computations and the practical speed up ratio after image

decomposition is faster than using only fast neural networks. In addition, the practical speed

up ratio is increased with the size of the input image.

Also, to detect small in size matrices such as 5x5 or 10x10 using only high speed neural

networks, the speed ratio becomes less than one as shown in Tables 12,13,14, and 15. On the

other hand, from the same tables it is clear that using fast neural and image decomposition,

the speed up ratio becomes higher than one and increased with the dimensions of the input

image. The dimensions of the new sub-image after image decomposition (L) must not be

less than the dimensions of the face/object which is required to be detected and has the

same size as the weight matrix. Therefore, the following equation controls the relation

www.intechopen.com

 Artificial Neural Networks - Application

284

between the sub-image and the size of weight matrix (face/object to be detected) in order

not to loss any information in the input image.

Image size
Speed up ratio in

case of using FNN

Speed up ratio in case of using
FNN after image
decomposition

100x100 10.75 34.55

200x200 9.19 35.65

300x300 8.43 36.73

400x400 7.45 37.70

500x500 7.13 38.66

600x600 6.97 39.61

700x700 6.83 40.56

800x800 6.68 41.47

900x900 6.79 42.39

1000x1000 6.59 43.28

1100x1100 6.66 44.14

1200x1200 6.62 44.95

1300x1300 6.57 45.71

1400x1400 6.53 46.44

1500x1500 6.49 47.13

1600x1600 6.45 47.70

1700x1700 6.41 48.19

1800x1800 6.38 48.68

1900x1900 6.35 49.09

2000x2000 6.31 49.45

Table 11. The practical speed up ratio in case of using FNN and FNN after image
decomposition into sub-images (25x25 pixels) for images of different sizes (from N=100 to
N=2000, n=25, q=30)

0

5

10

15

20

25

30

35

100 300 500 700 900 1100 1300 1500 1700 1900

N Pixels

S
p

ee
d

 u
p

 R
at

io

Speed up ratio (n=20 pixels)
Speed up ratio (n=25 pixels)
Speed up ratio (n=30 pixels)

Fig. 3. The speed up ratio in case of image decomposition and different window size (n),
(L=25x25).

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

285

Image size
Speed up ratio in

case of using FNN
Speed up ratio in case of using

FNN after image decomposition

50x50 0.3361 1.3282

100x100 0.3141 1.4543

150x150 0.2985 1.4965

200x200 0.2872 1.5177

250x250 0.2785 1.5303

300x300 0.2716 1.5388

350x350 0.2658 1.5448

400x400 0.2610 1.5493

450x450 0.2568 1.5529

500x500 0.2531 1.5557

550x550 0.2498 1.5580

600x600 0.2469 1.5599

650x650 0.2442 1.5615

700x700 0.2418 1.5629

750x750 0.2396 1.5641

800x800 0.2375 1.5652

850x850 0.2356 1.5661

900x900 0.2339 1.5669

950x950 0.2322 1.5677

1000x1000 0.2306 1.5683

Table 12. The speed up ratio in case of using FNN and FNN after image decomposition into
Sub-Images (5x5 pixels) for Images of different sizes (from N=50 to N=1000, n=5, q=30)

Image size
Speed up ratio in

case of using FNN
Speed up ratio in case of using

FNN after image decomposition

1050x1050 0.2292 1.5689

1100x1100 0.2278 1.5695

1150x1150 0.2265 1.5700

1200x1200 0.2253 1.5704

1250x1250 0.2241 1.5709

1300x1300 0.2230 1.5713

1350x1350 0.2219 1.5716

1400x1400 0.2209 1.5720

1450x1450 0.2199 1.5723

1500x1500 0.2189 1.5726

1550x1550 0.2180 1.5728

1600x1600 0.2172 1.5731

1650x1650 0.2163 1.5733

1700x1700 0.2155 1.5735

1750x1750 0.2148 1.5738

1800x1800 0.2140 1.5740

1850x1850 0.2133 1.5742

1900x1900 0.2126 1.5743

1950x1950 0.2119 1.5745

2000x2000 0.2112 1.5747

Table 13. The speed up ratio in case of using FNN and FNN after image decomposition into
sub-images (5x5 pixels) for images of different sizes (from N=1050 to N=2000, n=5, q=30)

www.intechopen.com

 Artificial Neural Networks - Application

286

Image size
Speed up ratio in

case of using FNN
Speed up ratio in case of using

FNN after image decomposition

50x50 1.1202 3.1369

100x100 1.1503 3.9558

150x150 1.1303 4.2397

200x200 1.1063 4.3829

250x250 1.0842 4.4691

300x300 1.0647 4.5267

350x350 1.0474 4.5678

400x400 1.0321 4.5987

450x450 1.0185 4.6228

500x500 1.0063 4.6420

550x550 0.9952 4.6578

600x600 0.9851 4.6709

650x650 0.9758 4.6820

700x700 0.9672 4.6915

750x750 0.9593 4.6998

800x800 0.9519 4.7070

850x850 0.9451 4.7133

900x900 0.9386 4.7190

950x950 0.9325 4.7241

1000x1000 0.9268 4.7286

Table 14. The speed up ratio in case of using FNN and FNN after Image decomposition into
sub-images (5x5 pixels) for images of different sizes (from N=50 to N=1000, n=10, q=30)

Image size
Speed up ratio in

case of using FNN
Speed up ratio in case of using

FNN after image decomposition

1050x1050 0.9214 4.7328

1100x1100 0.9163 4.7365

1150x1150 0.9114 4.7399

1200x1200 0.9068 4.7431

1250x1250 0.9023 4.7460

1300x1300 0.8981 4.7486

1350x1350 0.8941 4.7511

1400x1400 0.8902 4.7534

1450x1450 0.8865 4.7555

1500x1500 0.8829 4.7575

1550x1550 0.8795 4.7594

1600x1600 0.8762 4.7611

1650x1650 0.8730 4.7628

1700x1700 0.8699 4.7643

1750x1750 0.8669 4.7658

1800x1800 0.8640 4.7672

1850x1850 0.8613 4.7685

1900x1900 0.8586 4.7697

1950x1950 0.8559 4.7709

2000x2000 0.8534 4.7720

Table 15. The speed up ratio in case of using FNN and FNN after image decomposition into
sub-images (5x5 pixels) for images of different sizes (from N=1050 to N=2000, n=10, q=30)

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

287

 nL ≥ (25)

For example, in case of detecting 5x5 pattern, the image must be decomposed into sub-
images of size not less than 5x5.
To further reduce the running time as well as increase the speed up ratio of the detection

process, a parallel processing technique is used. Each sub-image is tested using a high speed

neural network simulated on a single processor or a separated node in a clustered system.

The number of operations (ω) performed by each processor / node (sub-images tested by

one processor/node) =

/nodesprocessors ofNumber

images-sub ofnumber totalThe
ω= (26)

Pr

αω = (27)

where, Pr is the number of processors or nodes.

The total number of computation steps (γ) required to test an image by using this approach

can be calculated as:

 γ=ωβ (28)

By using this algorithm, the speed up ratio in this case (ηdp) can be computed as follows:

)/pr)sN)2n-2

sαq(8N)2
sN2log2

sα)(5N1)ceil(((q(α

21)n1)(N2q(2n
dp ++++

+−−
=η (29)

where, ceil(x) is a MATLAB function rounds the elements of x to the nearest integers

towards infinity.

As shown in Tables 16 and 17, using a symmetric multiprocessing system with 16 parallel

processors or 16 nodes in either a massively parallel processing system or a clustered

system, the speed up ratio (with respect to conventional neural networks) for face/object

detection is increased. A further reduction in the computation steps can be obtained by

dividing each sub-image into groups. For each group, the neural operation (multiplication

by weights and summation) is performed for each group by using a single processor. This

operation is done for all of these groups as well as other groups in all of the sub-images at

the same time. The best case is achieved when each group consists of only one element. In

this case, one operation is needed for multiplication of the one element by its weight and

also a small number of operations (ε) is required to obtain the over all summation for each

sub-image. If the sub-image has n2 elements, then the required number of processors to

multiply each element in the sub-image matrix by the relevant element in the weight matrix;

at the same time; will be n2. As a result, the number of computation steps will be αq(1+ε),
where ε is a small number depending on the value of n. For example, when n=20, then ε=6

and if n=25, then ε=7. The speed up ratio can be calculated as:

 η=(2n2-1)(N-n+1)2/α(1+ε) (30)

www.intechopen.com

 Artificial Neural Networks - Application

288

Image size Speed up ratio

50x50 81.1403

100x100 199.3946

150x150 250.5611

200x200 277.7780

250x250 294.5171

300x300 305.8174

350x350 313.9482

400x400 320.0748

450x450 324.8552

500x500 328.6882

550x550 331.8296

600x600 334.4509

650x650 336.6712

700x700 338.5758

750x750 340.2276

800x800 341.6738

850x850 342.9504

900x900 344.0856

950x950 345.1017

1000x1000 346.0164

Table 16. The speed up ratio in case of using FNN after image decomposition into sub-
images (25x25 pixels) for images of different sizes (from N=50 to N=1000, n=25, q=30) using
16 parallel processors or 16 nodes

Image size Speed up ratio

1050x1050 346.8442

1100x1100 347.5970

1150x1150 348.2844

1200x1200 348.9147

1250x1250 349.4946

1300x1300 350.0300

1350x1350 350.5258

1400x1400 350.9862

1450x1450 351.4150

1500x1500 351.8152

1550x1550 352.1896

1600x1600 352.5406

1650x1650 352.8704

1700x1700 353.1808

1750x1750 353.4735

1800x1800 353.7500

1850x1850 354.0115

1900x1900 354.2593

1950x1950 354.4943

2000x2000 354.7177

Table 17. The speed up ratio in case of using FNN after image decomposition into sub-
images (25x25 pixels) for images of different sizes (from N=1050 to N=2000, n=25, q=30)
using 16 parallel processors or 16 nodes

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

289

Moreover, if the number of processors = αn2, then the number of computation steps will be

q(1+ε), and the speed up ratio becomes:

 η=(2n2-1)(N-n+1)2/ (1+ε) (31)

Furthermore, if the number of processors = qαn2, then the number of computation steps will

be (1+ε), and the speed up ratio can be calculated as:

 η=q(2n2-1)(N-n+1)2/ (1+ε) (32)

In this case, as the length of each group is very small, then there is no need to apply cross
correlation between the input image and the weights of the neural network in frequency
domain.

4. Sub-image centering and normalization in the frequency domain

(Feraud et al. 2000) stated that image normalization to avoid weak or strong illumination
could not be done in the frequency space. This is because the image normalization is local
and not easily computed in the Fourier space of the whole image. Here, a simple method for
image normalization is presented. In (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub
1997), the authors stated that centering and normalizing the image can be obtained by
centering and normalizing the weights as follows (Ben-Yacoub et al. 1999; Fasel 1998; and
Ben-Yacoub 1997) :

Let Xrc be the zero-mean centered sub-image located at (r,c) in the input image ψ:

 rcxrcXrcX −= (33)

where, Xrc is the mean value of the sub-image located at (r,c). We are interested in

computing the cross correlation between the sub-image Xrc and the weights Wi that is:

 iWrcxiWrcXiWrcX ⊗−⊗=⊗ (34)

where,

2n

rcX
rcx = (35)

Combining (34) and (35), the following expression can be obtained:

 iW
2n

rcX
iWrcXiWrcX ⊗−⊗=⊗ (36)

which is the same as:

2

n

i
W

rcXiWrcXiWrcX ⊗−⊗=⊗ (37)

The centered zero mean weights are given by:

www.intechopen.com

 Artificial Neural Networks - Application

290

2

n

i
W

i
W

i
W −= (38)

also, Eq. (37) can be written as:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−⊗=⊗

2
n

i
W

i
WrcXiWrcX (39)

So, it can be concluded that:

 iWrcX
i

WrcX ⊗=⊗ (40)

which means that cross-correlating a normalized sub-image with the weight matrix is equal

to the cross-correlation of the non – normalized sub-image with the normalized weight

matrix (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) . However, this proof

which presented in (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) is not correct

at all because it is proved here mathematically and practically that cross-correlating a

normalized sub-image with the weight matrix is not equal to the cross-correlation of the

non – centered image with the normalized weight matrix

During the test phase, each sub-image in the input image is multiplied (dot multiplication)

by the weight matrix and this operation is repeated for all possible sub-images in the input

image. Repeating this process for all sub-images in the input image is equivalent to the cross

correlation operation. Therefore, there is no cross correlation between each sub-image and

the weight matrix. The cross correlation is done between the weight matrix and the whole

input image. Thus, this proves that there is no need to the proof of Eq.(40) (presented in

(Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997)) which is mathematically wrong.

The result of Eq.(40) is correct only for the center value which equals to the dot product

between the two matrices (sub-image and weight matrices). For all other values except the

center value:

 iWrcXiWrcX ⊗≠⊗ (41)

This fact is true for all types and values of matrices except symmetric matrices and our new
technique of image decomposition presented in last section III. A practical example is given
in appendix “B”.
Furthermore, the definition of the mean value, Eq. (35) presented in (Ben-Yacoub et al. 1999;
Fasel 1998; and Ben-Yacoub 1997) is not correct and must be:

2

n

n

1i

n

1j

)j,i(rcX∑
=

∑
=

=rcx (42)

which makes the proof of Eq.(40) (presented in (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-
Yacoub 1997)) not correct.

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

291

Moreover, the operation performed between the weight matrix and each sub-image is dot
multiplication. Our new idea is to normalize each sub-image in the frequency domain by
normalizing the weight matrix. The dot product of two matrices is defined as follows:

 ∑

=

∑

=

=•
n

1i

n

1j

ij
W

ij
XWX (43)

The result of dot product is only one value. We have also the following definitions:

 ∑
=

=•=•
2n

1ji,
ijXnxn1XXnxn1 (44)

where, 1nxn is a nxn matrix where every element is 1.

 ∑
=

=•=•
2n

1ji,
ijWnxn1WWnxn1 (45)

Lemma : Wnxn1xXnxn1w •=•

Proof:
From Eqs. 42,43,44,and 45, we can conclude that:

 ∑
=

•∑
=

∑
=

==•
2n

1ji,
ijX

2n

1ji,
ijW

2n

1ji, 2
n

1

ijXwXnxn1w (46)

which can be reformulated as:

 ∑
=

•∑
=

=•

2
n

1ji,
ij

X

2
n

1ji,
ij

W
2

n

1
X

nxn
1w (47)

also,

 ∑
=

•∑
=

∑
=

==•
2n

1ji,
ijW

2n

1ji,
ijX

2n

1ji, 2
n

1

ijWxWnxn1x (48)

which is the same as:

 ∑
=

•∑
=

=•
2n

1ji,
ijW

2n

1ji,
ijX

2
n

1
Wnxn1x (49)

It is clear that Eq.(47) is the same as Eq.(49), which means:

 Wnxn1xXnxn1w •=• (50)

www.intechopen.com

 Artificial Neural Networks - Application

292

Theorem:

XW WX •=•

Proof:

W)nxn1x-(XWX •=•

Wnxn1x-WX ••=

wnxn1X-WX ••=

)nxn1w-X(W •=

WX •=

So, we may conclude that:

 iWrcXiWrcX •=• (51)

which means that multiplying a normalized sub-image with a non-normalized weight
matrix dot multiplication is equal to the dot multiplication between the non – normalized
sub-image and the normalized weight matrix. The validation of Eq. (51) and a practical
example is given in appendix “C”.
As proved in the previous paper (El-Bakry 2002,a), the relation defined by Eq. (40) is true only

for the resulting middle value. This is under two conditions. The first is to apply the technique

of high speed neural networks and image decomposition. In this case, the cross correlation is

performed between each input sub-image and the weight matrix which has the same size as

the resulting sub-image after image decomposition. The resulting middle value equals to the

dot product between the input sub-image and the weight matrix (the value which we

interested in). The second is that the required face/object is completely located in one of these

sub-images (not between two sub-images). However applying cross correlation consumes

more computation steps than applying dot product which makes Eq. (40) useful less.

5. Effect of weight normalization on the speed up ratio

Normalization of sub-images in the spatial domain (in case of using traditional neural
networks) requires 2n2(N-n+1)2 computation steps. On the other hand, normalization of sub-
images in the frequency domain through normalizing the weights of the neural networks
requires 2qn2 operations. This proves that local image normalization in the frequency
domain is faster than that in the spatial one. By using weight normalization, the speed up

ratio for image normalization Γ can be calculated as:

q

21)n(NΓ +−
= (52)

The speed up ratio of the normalization process for images of different sizes is listed in
Table 18. As a result, we may conclude that:
1. Using this technique, normalization in the frequency domain can be done through

normalizing the weights in spatial domain.

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

293

Image size Speed up ratio

100x100 62

200x200 328

300x300 790

400x400 1452

500x500 2314

600x600 3376

700x700 4638

800x800 6100

900x900 7762

1000x1000 9624

1100x1100 11686

1200x1200 13948

1300x1300 16410

1400x1400 19072

1500x1500 21934

1600x1600 24996

1700x1700 28258

1800x1800 31720

1900x1900 35382

2000x2000 39244

Table 18. The speed up ratio of the normalization process for images of different sizes (n
=20, q =100)

2. Normalization of an image through normalization of weights is faster than

normalization of each sub-image.
3. Normalization of weights can be done off line. So, the speed up ratio in the case of

weight normalization can be calculated as follows:

a) For Conventional Neural Networks:

The speed up ratio equals the number of computation steps required by conventional neural
networks with image normalization divided by the number of computation steps needed by
conventional neural networks with weight normalization, which is done off line. The speed
up ratio ηc in this case can be given by:

21)n1)(N2q(2n

21)n(N22n21)n1)(N2q(2n
cη

+−−

+−++−−
= (53)

which can be simplified to:

1)2q(2n

22n
1cη

−
+= (54)

b) For High speed neural networks:

The over all speed up ratio equals the number of computation steps required by

conventional neural networks with image normalization divided by the number of

www.intechopen.com

 Artificial Neural Networks - Application

294

computation steps needed by high speed neural networks with weight normalization, which

is done off line. The over all speed up ratio ηo can be given by:

 N)2n-2q(8N)2N2log21)(5N(2q

)22n1)2q(2n (21)n(N
oη

+++

+−+−
= (55)

The relation between the speed up ratio before (η) and after (ηo) the normalization process

can be summed up as:

 N)2n-2q(8N)2N2log21)(5N(2q

21)n(N22nηoη
+++

+−
+= (56)

The overall speed up ratio (Eq. (56)) with images of different sizes and different sizes of

windows is listed in Table 19. We can easily note that the speed up ratio in case of image

normalization through weight normalization is larger than the speed up ratio (without

normalization) listed in Table 1. This means that the search process with normalized high

speed neural networks is done faster than conventional neural networks with or without

normalization of the input image. The overall practical speed up ratio (Eq. (56)) after

normalization of weights off line is listed in Table 20.

Image size
Speed up ratio

(n=20)
Speed up ratio

(n=25)
Speed up ratio

(n=30)

100x100 3.7869 5.2121 6.5532

200x200 4.1382 6.1165 8.3167

300x300 4.1320 6.2313 8.6531

400x400 4.0766 6.2063 8.7031

500x500 4.0152 6.1467 8.6684

600x600 3.9570 6.0796 8.6054

700x700 3.9039 6.0132 8.5334

800x800 3.8557 5.9502 8.4603

900x900 3.8120 5.8915 8.3891

1000x1000 3.7723 5.8369 8.3212

1100x1100 3.7360 5.7862 8.2568

1200x1200 3.7027 5.7391 8.1961

1300x1300 3.6719 5.6952 8.1389

1400x1400 3.6434 5.6542 8.0849

1500x1500 3.6169 5.6158 8.0340

1600x1600 3.5922 5.5798 7.9858

1700x1700 3.5690 5.5458 7.9403

1800x1800 3.5472 5.5138 7.8971

1900x1900 3.5266 5.4835 7.8560

2000x2000 3.5072 5.4547 7.8169

Table 19. Theoretical Results for the Speed up Ratio in case of Image Normalization by
Normalizing the Input Weights

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

295

Image size
Speed up ratio

(n=20)
Speed up ratio

(n=25)
Speed up ratio

(n=30)

100x100 8.91 12.03 16.74

200x200 7.43 10.42 15.39

300x300 6.72 9.72 14.45

400x400 5.99 8.61 13.59

500x500 5.75 8.32 12.94

600x600 5.61 8.09 11.52

700x700 5.49 7.97 11.04

800x800 5.41 7.83 10.74

900x900 5.32 7.71 10.56

1000x1000 5.29 7.58 10.45

1100x1100 5.41 7.83 10.81

1200x1200 5.36 7.77 10.76

1300x1300 5.32 7.71 10.71

1400x1400 5.28 7.65 10.66

1500x1500 5.24 7.60 10.62

1600x1600 5.21 7.56 10.58

1700x1700 5.18 7.52 10.52

1800x1800 5.14 7.48 10.47

1900x1900 5.11 7.44 10.43

2000x2000 5.08 7.41 10.38

Table 20. The theoretical speed up ratio for images with different sizes

6. Conclusion

Normalized neural networks for fast pattern detection in a given image have been

presented. It has been proved mathematically and practically that the speed of the detection

process becomes high speed than conventional neural networks. This has been

accomplished by applying cross correlation in the frequency domain between the input

image and the normalized input weights of the neural networks. A new general formulas

for fast cross correlation as well as the speed up ratio have been given. A new high speed

neural network approach for pattern detection has been introduced. Such approach has

decomposed the input image under test into many small in size sub-images. Furthermore, a

simple algorithm for fast pattern detection based on cross correlations in the frequency

domain between the sub-images and the weights of the neural net has been presented in

order to speed up the execution time. Simulation results have shown that, using a parallel

processing technique, large values of speed up ratio could be achieved. In addition, by using

high speed neural networks and image decomposition, the speed up ratio has been

increased with the size of the input image. Moreover, the problem of local sub-image

normalization in the frequency space has been solved. It has been generally proved that the

speed up ratio in the case of image normalization through normalization of weights is faster

than sub-image normalization in the spatial domain. This speed up ratio is faster than the

one obtained without normalization. Simulation results have confirmed theoretical

computations by using MATLAB. The proposed approach can be applied to detect the

presence/absence of any other object in an image.

www.intechopen.com

 Artificial Neural Networks - Application

296

Appendix “A”

An Example Proves that the Cross Correlation between any Two Matrices ıs Different from their
Convolution

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

89

56
Wand ,XLet

73

15
,

Then, the cross correlation between X and W can be obtained as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

73

15

89

56
XW

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

76753635

7916783915563855

19591858

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

425315

6911849

95340

The convolution between W and X can be obtained as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
◊=◊

73

15

65

98
XW

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

78793839

7518763519583659

15165556

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

568727

4310663

53130

which proves that W⊗X ≠ W◊X.
When the second matrix W is symmetric, the cross correlation between W and X can be
computed as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

565345

7110679

98740

78793839

9718781939583859

19185958

73

15

89

98
XW

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

297

while the convolution can be between W and X can be obtained as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
◊=◊

73

15

89

98
XW

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

78793839

9718781939583859

19185958

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

565345

7110679

98740

which proves that under the condition that the second matrix is symmetric (or the two
matrices are symmetric) the cross correlation between any the two matrices equals to their
convolution.

Appendix “B”

A cross correlation Example between a normalized matrix and other non-normalized one and Vise
versa

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89

56
Wand,

73

15
XLet

Then the normalized matrices X, and W can be computed as :
− −

1 3 1 2
X , and W

1 3 2 1

− −− − −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

Now, the cross correlation between a normalized matrix and the other non-normalized one
can be computed as follows:

18 9 5
1 3 6 5

9 6 3
1 3 9 8

27 15 8

X W

−⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎢ ⎥⊗ = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎢ ⎥− −⎣ ⎦

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−−−

=⎥
⎦

⎤
⎢
⎣

⎡ −−
⎥
⎦

⎤
⎢
⎣

⎡
=

−
⊗

5112

7613

6177

12

21

73

15
WX

which means that WXWX ⊗≠⊗ .
However, the two results are equal only at the center element which equals to the dot
product between the two matrices. The value of the center element (2,2) =6 as shown above
and also in appendix “C”.

www.intechopen.com

 Artificial Neural Networks - Application

298

Appendix “C”

A dot product Example between a Normalized Matrix and other Non-Normalized one and Vise
Versa

This is to validate the correctness of Eq. (51). The left hand side of Eq. 51 can be expresseded
as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

=•

nn,
.W....................

n,1
W

.

.

.

.

..

n1,
.W....................

1,1
W

X
nn,

.....X..........X
n,1

X

.

.

.

.

X
n1,

...X............X
1,1

X

WX (57)

and also the right hand side of the same can be repressented as:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

•

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=•

_
W

nn,
.....W..........

_
W

n,1
W

.

.

.

.

_
W

n1,
...W............

_
W

1,1
W

nn,
.X....................

n,1
X

.

.

.

.

..

n1,
.X....................

1,1
X

_
WX (58)

X and W are defined as follows :
− −

X X Xn,n1,1 1,2
X

2n

W W Wn,n1,1 1,2
W

2n

+ + +−
=

+ + +−
=

 (59)

By substituting from Eq.(60) in Eq.(58) and Eq.(59), then simplifying the results we can

easily conclude that iWrcXiWrcX •=• .

Here is also a practical example:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89

56
W

73

15
X and,Let

Then the normalized matrices X, and W can be computed as :
− −

www.intechopen.com

Design of High Speed Neural Networks for Fast Pattern Detection
by using Cross Correlation and Matrix Decomposition

299

1 3 1 2
X , and W

1 3 2 1

− −− − −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

Now, the dot product between a normalized matrix and the other non-normalized one can
be performed as follows:

6249156
89

56

31

31
WX =+−−=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=•

−

6=++−−=⎥
⎦

⎤
⎢
⎣

⎡ −−
⎥
⎦

⎤
⎢
⎣

⎡
=

−
• 7625

12

21

73

15
WX

which means generally that the dot product between a normalized matrix X and non-
normalized matrix W equals to the dot product between the normalized matrix W and non-
normalized matrix X. On the other hand, the cross correlation results are different as proved
in appendix “C”.

7. References

Anifantis D., Dermatas E., Kokkinakis G. (1999) A neural network method for accurate face
detection on arbitrary images. In: Proceedings of 6th IEEE international conference on
electronics .Circuits and systems, Paphos, Cyprus, 5–8 September, pp. 109–112.

Bao J-P, Shen J-Y, Liu H-Y, Liu X-D (2006) A fast document copy detection model. Soft
Comput J Fusion Found Methodol Appl, vol.10, no. 1, 2006, pp. 41–46.

Ben-Yacoub S. (1997) Fast object detection using MLP and FFT, IDIAP-RR 11, IDIAP.
Ben-Yacoub S., Fasel B., Luettin J. (1999) Fast face detection using MLP and FFT. In:

Proceedings of the second international conference on audio and video-based
biometric person authentication (AVBPA’99)

Bruce J., Veloso M. (2003) Fast and accurate vision-based pattern detection and
identification. In: Proceedings of ICRA’03, the 2003, IEEE International Conference
on Robotics and Automation, Taiwan, May 2003, pp. 1-6

El-Bakry HM. (2002,a) Face detection using fast neural networks and image decomposition,
Neurocomputing Journal, vol. 48, 2002, pp. 1039-1046.

El-Bakry HM. (2002,b) Human Iris Detection Using Fast Cooperative Modular Neural
Networks and Image Decomposition,” Machine Graphics & Vision Journal (MG&V),
Vol. 11, No. 4, 2002, pp. 498-512.

El-Bakry HM. (2003) Comments on Using MLP and FFT for Fast Object/Face Detection,
Proc. of IEEE IJCNN’03, Portland, Oregon, 20-24 July, 2003, pp. 1284-1288.

El-Bakry HM. (2005) Human Face Detection Using New High Speed Modular Neural
Networks, Lecture Notes in Computer Science, Springer, Vol. 3696, September 2005,
pp. 543-550.

El-Bakry HM. (2006) New Fast Time Delay Neural Networks Using Cross Correlation
Performed in the Frequency Domain, Neurocomputing Journal, Vol. 69, pp. 2360-
2363.

www.intechopen.com

 Artificial Neural Networks - Application

300

El-Bakry HM. (2007) New Fast Principal Component Analysis for Face Detection,
International Journal of Advanced Computational Intelligence and Intelligent Informatics,
vol.11, no.2, 2007, pp. 195-201.

El-Bakry HM. (2009) New Fast Principal Component Analysis for Real-Time Face Detection,
Machine Graphics & Vision Journal (MG&V), vol. 18, no. 4, pp. 405-426.

Essannouni L., Ibn Elhaj E. (2006) Face identification of video sequence. In: Proceedings of
2006 the second European international symposium on communications, control and signal
processing, 13–15 March 2006, Marrakech, Morocco, 4 p

Fasel B. (1998) Fast multi-scale face detection, IDIAP-Com 98-04
Feraud R., Bernier O., Viallet JE. & Collobert M. (2000) A fast and accurate face detector for

indexation of face images. In: Proceedings of the fourth IEEE international conference on
automatic face and gesture recognition, Grenoble, France, pp. 28–30, March 2000.

Gonzalez RC. & Woods RE. (2002) Digital image processing. Prentice-Hall, USA
Ishak KA, Samad SA, Hussian A, Majlis BY (2004) A fast and robust face detection using

neural networks. In: Proceedings of the international symposium on information and
communication technologies. Multimedia University, Putrajaya, Malaysia, Vol 2, 7–8
October, pp 5–8

Cooley JW. & Tukey JW. (1965) An algorithm for the machine calculation of complex Fourier
series, Math. Comput. 19, 297–301.

Klette R. & Zamperon P. (1996) Handbook of image processing operators. Wiley, New York
Lewis JP (1988) Fast Normalized Cross Correlation. Available from,

http://www.idiom.com/*zilla/Papers/nvisionInterface/nip.html
Lang KJ, Hinton GE (1988) The development of time-delay neural network architecture for

speech recognition, Technical Report CMU-CS-88-152. Carnegie-Mellon University,
Pittsburgh, PA

Ramasubramanian P. & Kannan A. (2006) A genetic-algorithm based neural network short-
term forecasting framework for database intrusion prediction system. Soft Comput
J Fusion Found Methodol Appl, Vol. 10, No. 8, 2006, pp. 699-714.

Roth S., Gepperth A. & Igel C. (2006) Multi-objective neural network optimization for visual
object detection, Vol 16. Springer, Berlin

Rowley HA., Baluja S. & Kanade T. (1998) Neural network-based face detection. IEEE Trans
Pattern Anal Mach Intell, Vol. 20, No.1, 1998, pp.23–38.

Schneiderman H. & Kanade T. (1998) Probabilistic modeling of local appearance and spatial
relationships for object recognition, In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Santa Barbara, CA, pp 45–51.

Srisuk S. & Kurutach W. (2002) A new robust face detection in color images In: Proceedings of
IEEE Computer Society International Conference on Automatic Face and Gesture
Recognition, Washington DC, USA, 20–21 May, 2002, pp 306–311.

Yang M., Kriegman DJ. & Huja N. (2002) Detecting faces in images: a survey. IEEE Trans
Pattern Anal Mach Intell 24(1):34–58.

Zhu Y., Schwartz S. & Orchard M. (2000) Fast face detection using subspace discriminate
wavelet features, Proceedings of IEEE Computer Society International Conference on
Computer Vision and Pattern Recognition (CVPR’00), South Carolina, Vol. 1, 13–15
June, pp 1636–1643.

www.intechopen.com

Artificial Neural Networks - Application

Edited by Dr. Chi Leung Patrick Hui

ISBN 978-953-307-188-6

Hard cover, 586 pages

Publisher InTech

Published online 11, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book covers 27 articles in the applications of artificial neural networks (ANN) in various disciplines which

includes business, chemical technology, computing, engineering, environmental science, science and

nanotechnology. They modeled the ANN with verification in different areas. They demonstrated that the ANN is

very useful model and the ANN could be applied in problem solving and machine learning. This book is

suitable for all professionals and scientists in understanding how ANN is applied in various areas.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hazem M. El-Bakry (2011). Design of High Speed Neural Networks for Fast Pattern Detection by using Cross

Correlation and Matrix Decomposition, Artificial Neural Networks - Application, Dr. Chi Leung Patrick Hui (Ed.),

ISBN: 978-953-307-188-6, InTech, Available from: http://www.intechopen.com/books/artificial-neural-networks-

application/design-of-high-speed-neural-networks-for-fast-pattern-detection-by-using-cross-correlation-and-

matri

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

