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Correlation and Matrix Decomposition 
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Faculty of Computer Science & Information Systems, Mansoura University,  

Egypt 

1. Introduction 

Fast pattern detection and identification is a fundamental problem for many applications of 
real-time systems (Bruce & Veloso 2003). Its reliability and performance have a major 
influence in a whole pattern recognition system. Nowadays, neural networks have shown 
very good results for detecting a certain pattern in a given image (Rowley et al. 1998; Feraud 
et al. 2000; Anifantis et al. 1999; Lang et al. 1988; El-Bakry 2001). Among other techniques 
(Schneiderman & Kanade 1998; Zhu et al. 2000; Srisuk & Kurutach 2002; Bao et al. 2006), 
neural networks are efficient pattern detectors (Rowley et al. 1998; Feraud et al. 2000; El-
Bakry 2002,a; El-bakry 2002,b; Essannouni and Ibn Elhaj 2006; Roth et al. 2006; 
Ramasubramanian & Kannan 2006). But the problem with neural networks is that the 
computational complexity is very high because the networks have to process many small 
local windows in the images (Zhu et al. 2000; Srisuk & Kurutach 2002; Yang et al. 2002). The 
main objective of this paper is to reduce the detection time using neural networks. The idea 
is to accelerate the operation of neural networks by performing the testing process in the 
frequency domain instead of spatial domain. Then, cross-correlation between the input 
image and the weights of neural networks is performed in the frequency domain. This 
model is called fast neural networks. Compared to conventional neural networks, fast 
neural networks show a significant reduction in the number of computation steps required 
to detect a certain pattern in a given image under test. Furthermore, another idea to increase 
the speed of these fast neural networks through image decomposition is presented. 
Moreover, the problem of sub-image (local) normalization in the Fourier space which 
presented in (Feraud et al. 2000) is solved.. The number of computation steps required for 
weight normalization is proved to be less than that needed for image normalization. Also, 
the effect of weight normalization on the speed up ratio is theoretically and practically 
discussed. Mathematical calculations prove that the new idea of weight normalization, 
instead of image normalization, provides good results and increases the speed up ratio. This 
is because weight normalization requires fewer computation steps than sub-image 
normalization. Moreover, for neural networks, normalization of weights can be easily done 
off line before starting the search process.  
In section 2, high speed neural networks for pattern detection are described. The details of 
conventional neural networks, high speed neural networks, and the speed up ratio of 
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pattern detection are given. A faster searching algorithm for pattern detection which 
reduces the number of the required computation steps through image decomposition is 
presented in section 3. Accelerating the new approach using parallel processing techniques 
is also introduced. Sub-image normalization in the frequency domain through 
normalization of weights is introduced in section 4. The effect of weight normalization on 
the speed up ratio is presented in section 5. 

2. Fast pattern detection using MLP and FFT 

Here, we are interested only in increasing the speed of neural networks during the test 
phase. By the words “High speed Neural Networks” we mean reducing the number of 
computation steps required by neural networks in the detection phase. First neural 
networks are trained to classify face from non face examples and this is done in the spatial 
domain. In the test phase, each sub-image in the input image (under test) is tested for the 
presence or absence of the required face/object. At each pixel position in the input image 
each sub-image is multiplied by a window of weights, which has the same size as the sub-
image. This multiplication is done in the spatial domain. The outputs of neurons in the 
hidden layer are multiplied by the weights of the output layer. When the final output is high 
this means that the sub-image under test contains the required face/object and vice versa. 
Thus, we may conclude that this searching problem is cross correlation in the spatial domain 
between the image under test and the input weights of neural networks.   
In this section, a fast algorithm for face/object detection based on two dimensional cross 
correlations that take place between the tested image and the sliding window (20x20 pixels) 
is described. Such window is represented by the neural network weights situated between 
the input unit and the hidden layer. The convolution theorem in mathematical analysis says 
that a convolution of f with h is identical to the result of the following steps: let F and H be 
the results of the Fourier transformation of f and h in the frequency domain. Multiply F and 
H in the frequency domain point by point and then transform this product into spatial 
domain via the inverse Fourier transform (Klette&Zamperon 1996). As a result, these cross 
correlations can be represented by a product in the frequency domain. Thus, by using cross 
correlation in the frequency domain a speed up in an order of magnitude can be achieved 
during the detection process (El-Bakry2005; El-Bakry 2006; El-Bakry 2007; El-Bakry 2009).       
In the detection phase, a sub-image X of size mxn (sliding window) is extracted from the tested 
image, which has a size PxT, and fed to the neural network. Let Wi be the vector of weights 
between the input sub-image and the hidden layer. This vector has a size of mxz and can be 
represented as mxn matrix. The output of hidden neurons h(i) can be calculated as follows:  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+∑
=

=
m

1j
ibk)k)X(j,(j,

z

1k
iWgih  (1) 

where g is the activation function and b(i) is the bias of each hidden neuron (i). Eq.1 
represents the output of each hidden neuron for a particular sub-image I. It can be 
computed for the whole image Ψ as follows: 
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Eq.(2) represents a cross correlation operation. Given any two functions f and g, their cross 
correlation can be obtained by (Gonzalez & Woods 2002): 

 ∑
∞

∞−=
∑
∞

∞−=
++=⊗

m z
z)ym,z)f(xg(m,y)f(x,y)g(x,  (3) 

Therefore, Eq.(2) can be written as follows: 

 ( )ibΨiWgih +⊗=  (4) 

where hi is the output of the hidden neuron (i) and hi (u,v) is the activity of the hidden unit 

(i) when the sliding window is located at position (u,v) in the input image Ψ and (u,v) ∈[P-
m+1,T-n+1].  
Now, the above cross correlation can be expressed in terms of the Fourier Transform: 

 ( ) ( )⎟
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(*) means the conjugate of the FFT for the weight matrix. Hence, by evaluating this cross 
correlation, a speed up ratio can be obtained comparable to conventional neural networks. 
Also, the final output of the neural network can be evaluated as follows:  
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where q is the number of neurons in  the hidden layer. O(u,v) is the output of the neural 

network when the sliding window located at the position (u,v) in the input image Ψ. Wo is 
the weight matrix between hidden and output layer. bo is the bias of the output neuron. 
The complexity of cross correlation in the frequency domain can be analyzed as follows: 
1. For a tested image of NxN pixels, the 2D-FFT requires a number equal to N2log2N2 of 

complex computation steps. Also, the same number of complex computation steps is 
required for computing the 2D-FFT of the weight matrix for each neuron in the hidden 
layer.  

2. At each neuron in the hidden layer, the inverse 2D-FFT is computed. So, q backward 
and (1+q) forward transforms have to be computed. Therefore, for an image under test, 
the total number of the 2D-FFT to compute is (2q+1)N2log2N2. 

3. The input image and the weights should be multiplied in the frequency domain. 
Therefore, a number of complex computation steps equal to qN2 should be added.  

4. The number of computation steps required by the faster neural networks is complex 
and must be converted into a real version. It is known that the two dimensions Fast 
Fourier Transform requires (N2/2)log2N2 complex multiplications and N2log2N2 
complex additions (Cooley&Tukey 1965). Every complex multiplication is realized by 
six real floating point operations and every complex addition is implemented by two 
real floating point operations. So, the total number of computation steps required to 
obtain the 2D-FFT of an NxN image is: 

 ρ=6((N2/2)log2N2) + 2(N2log2N2) (7) 

which may be simplified to: 
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 ρ=5N2log2N2 (8) 

Performing complex dot product in the frequency domain also requires 6qN2 real 
operations. 

5. In order to perform cross correlation in the frequency domain, the weight matrix must 

have the same size as the input image. Assume that the input object/face has a size of 

(nxn) dimensions. So, the search process will be done over sub-images of (nxn) 

dimensions and the weight matrix will have the same size. Therefore, a number of zeros 

= (N2-n2) must be added to the weight matrix. This requires a total real number of 

computation steps = q(N2-n2) for all neurons. Moreover, after computing the 2D-FFT for 

the weight matrix, the conjugate of this matrix must be obtained. So, a real number of 

computation steps =qN2 should be added in order to obtain the conjugate of the weight 

matrix for all neurons.  Also, a number of real computation steps equal to N is required 

to create butterflies complex numbers (e-jk(2Πn/N)), where 0<K<L. These (N/2) complex 

numbers are multiplied by the elements of the input image or by previous complex 

numbers during the computation of the 2D-FFT. To create a complex number requires 

two real floating point operations. So, the total number of computation steps required 

for the high speed neural networks becomes: 

 σ=(2q+1)(5N2log2N2) +6qN2+q(N2-n2)+qN2 +N (9) 

which can be reformulated as: 

 σ=(2q+1)(5N2log2N2) +q(8N2-n2) +N (10) 

6. Using a sliding window of size nxn for the same image of NxN pixels, q(2n2-1)(N-n+1)2 
computation steps are required when using traditional neural networks for face/object 

detection process. The theoretical speed up factor η can be evaluated as follows: 

 
   N )2n-2q(8N )2N2log21)(5N(2q

 2 1)n-1)(N-2q(2nη
+++

+
=  (11) 

The theoretical speed up ratio (Eq.(11)) with different sizes of the input image and different 

in size weight matrices is listed in Table 1. Practical speed up ratio for manipulating images 

of different sizes and different in size weight matrices is listed in Table 2 using 2.7 GHz 

processor and MATLAB ver 5.3. An interesting property with high speed neural networks is 

that the number of computation steps does not depend on eith the size of the input sub-

image or the size of the weighth matrix (n). The effect of (n) on the the number of 

computation steps is very small and can be ignored. This is incontrast to conventional 

networks in which the number of computation steps is increased with the size of both the 

input sub-image and the weight matrix (n). 

In practical implementation, the multiplication process consumes more time than the 

addition one. The effect of the number of multiplications required for conventional neural 

networks in the speed up ratio (Eq.(11)) is more than the number of of multiplication steps 

required by the high speed neural networks. In order to clear this, the following equation 

(ηm) describes relation between the number of multiplication steps required by conventional 

and high speed neural networks: 
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Image 
size 

Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 3.67 5.04 6.34 

200x200 4.01 5.92 8.05 

300x300 4.00 6.03 8.37 

400x400 3.95 6.01 8.42 

500x500 3.89 5.95 8.39 

600x600 3.83 5.88 8.33 

700x700 3.78 5.82 8.26 

800x800 3.73 5.76 8.19 

900x900 3.69 5.70 8.12 

1000x1000 3.65 5.65 8.05 

1100x1100 3.62 5.60 7.99 

1200x1200 3.58 5.55 7.93 

1300x1300 3.55 5.51 7.93 

1400x1400 3.53 5.47 7.82 

1500x1500 3.50 5.43 7.77 

1600x1600 3.48 5.43 7.72 

1700x1700 3.45 5.37 7.68 

1800x1800 3.43 5.34 7.64 

1900x1900 3.41 5.31 7.60 

2000x2000 3.40 5.28 7.56 

Table 1. The theoretical speed up ratio for images with different sizes. 

 

Image size 
Speed up ratio 

(n=20) 
Speed up ratio 

(n=25) 
Speed up ratio 

(n=30) 

100x100 7.88 10.75 14.69 

200x200 6.21 9.19 13.17 

300x300 5.54 8.43 12.21 

400x400 4.78 7.45 11.41 

500x500 4.68 7.13 10.79 

600x600 4.46 6.97 10.28 

700x700 4.34 6.83 9.81 

800x800 4.27 6.68 9.60 

900x900 4.31 6.79 9.72 

1000x1000 4.19 6.59 9.46 

1100x1100 4.24 6.66 9.62 

1200x1200 4.20 6.62 9.57 

1300x1300 4.17 6.57 9.53 

1400x1400 4.13 6.53 9.49 

1500x1500 4.10 6.49 9.45 

1600x1600 4.07 6.45 9.41 

1700x1700 4.03 6.41 9.37 

1800x1800 4.00 6.38 9.32 

1900x1900 3.97 6.35 9.28 

2000x2000 3.94 6.31 9.25 

Table 2. Practical speed up ratio for images with different sizes using MATLAB Ver 5.3 
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.Image size 
Conventional 
Neural Nets 

Faster Neural Nets
Speed up 

ratio (ηm) 

100x100 7.8732e+007 2.6117e+007 3.0146 

200x200 3.9313e+008 1.1911e+008 3.3007 

300x300 9.4753e+008 2.8726e+008 3.2985 

400x400 1.7419e+009 5.3498e+008 3.2560 

500x500 2.7763e+009 8.6537e+008 3.2083 

600x600 4.0507e+009 1.2808e+009 3.1627 

700x700 5.5651e+009 1.7832e+009 3.1209 

800x800 7.3195e+009 2.3742e+009 3.0830 

900x900 9.3139e+009 3.0552e+009 3.0486 

1000x1000 1.1548e+010 3.8275e+009 3.0172 

1100x1100 1.4023e+010 4.6921e+009 2.9886 

1200x1200 1.6737e+010 5.6502e+009 2.9622 

1300x1300 1.9692e+010 6.7026e+009 2.9379 

1400x1400 2.2886e+010 7.8501e+009 2.9154 

1500x1500 2.6320e+010 9.0935e+009 2.8944 

1600x1600 2.9995e+010 1.0434e+010 2.8748 

1700x1700 3.3909e+010 1.1871e+010 2.8564 

1800x1800 3.8064e+010 1.3407e+010 2.8392 

1900x1900 4.2458e+010 1.5041e+010 2.8229 

2000x2000 7.8732e+007 2.6117e+007 3.0146 

Table 3. A Comparison between the number of multiplication steps required for 
conventional and faster neural nets to manipulate Images with different sizes (n=20, q=30) 

 
22

2
2

22

6qN)Nlog1)(3N(2q

1)n(Nqn
mη ++

+−
=  (12) 

The results listed in Table 3 prove that the effect of the number of multiplication steps in 

case of conventional neural networks is more than high speed neural networks and this the 

reason why practical speed up ratio is larger than theoretical speed up ratio. 

For general fast cross correlation the speed up ratio (ηg) is in the following form: 

 
τ)(N)2n-2τ)q(8(N)2τ)(N2log2τ)1)(5(N(2q

21)N2q(2n
g +++++++

−
=η  (13) 

where τ is a small number depends on the size of the weight matrix. General cross correlation 

means that the process starts from the first element in the input matrix. The theoretical speed 

up ratio for general fast cross correlation (ηg) defined by Eq.(13) is shown in Table 4. 

Compared with MATLAB cross correlation function (xcorr2), experimental results show that 

the proposed algorithm is high speed than this function as shown in Table 5. 

(Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) have proposed a multilayer 
perceptron (MLP) algorithm for fast face/object detection. The same authors claimed 
incorrect equation for cross correlation between the input image and the weights of the 
neural networks. They introduced formulas for the number of computation steps needed by 
conventional and high speed neural networks. Then, they established an equation for the 
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Image size 
Speed up ratio 

(n=20) 
Speed up ratio 

(n=25) 
Speed up ratio 

(n=30) 

100x100 5.59 8.73 12.58 

200x200 4.89 7.64 11.01 

300x300 4.56 7.12 10.26 

400x400 4.35 6.80 9.79 

500x500 4.20 6.56 9.45 

600x600 4.08 6.38 9.20 

700x700 3.99 6.24 8.99 

800x800 3.91 6.12 8.81 

900x900 3.85 6.02 8.67 

1000x1000 3.79 5.93 8.54 

1100x1100 3.74 5.85 8.43 

1200x1200 3.70 5.78 8.33 

1300x1300 3.66 5.72 8.24 

1400x1400 3.62 5.66 8.16 

1500x1500 3.59 5.61 8.08 

1600x1600 3.56 5.57 8.02 

1700x1700 3.53 5.52 7.95 

1800x1800 3.50 5.48 7.89 

1900x1900 3.48 5.44 7.84 

2000x2000 3.46 5.41 7.79 

Table 4. The Theoretical Speed up Ratio for the General Faster Cross Correlation Algorithm 
 

Image size 
Speed up ratio 

(n=20) 
Speed up ratio 

(n=25) 
Speed up ratio 

(n=30) 

100x100 10.14 13.05 16.49 

200x200 9.17 11.92 14.33 

300x300 8.25 10.83 13.41 

400x400 7.91 9.62 12.65 

500x500 6.77 9.24 11.77 

600x600 6.46 8.89 11.19 

700x700 5.99 8.47 10.96 

800x800 5.48 8.74 10.32 

900x900 5.31 8.43 10.66 

1000x1000 5.91 8.66 10.51 

1100x1100 5.77 8.61 10.46 

1200x1200 5.68 8.56 10.40 

1300x1300 5.62 8.52 10.35 

1400x1400 5.58 8.47 10.31 

1500x1500 5.54 8.43 10.26 

1600x1600 5.50 8.39 10.22 

1700x1700 5.46 8.33 10.18 

1800x1800 5.42 8.28 10.14 

1900x1900 5.38 8.24 10.10 

2000x2000 5.34 8.20 10.06 

Table 5. Simulation results of the speed up ratio for the general faster cross correlation 
compared with the MATLAB cross correlation function (XCORR2) 

www.intechopen.com



 Artificial Neural Networks - Application 

 

276 

speed up ratio. Unfortunately, these formulas contain many errors which lead to invalid 
speed up ratio. Recently, other authors developed their work based on these incorrect 
equations (Ishak et al. 2004). So, the fact that these equations are not valid must be cleared to 
all researchers. It is not only very important but also urgent to notify other researchers not to 
waste their time and effort doing research based on wrong equations.  
The authors (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) analyzed their 
proposed fast neural network as follows: For a tested image of NxN pixels, the 2D-FFT 
requires O(N2(log2N)2) computation steps. For the weight matrix Wi, the 2D-FFT can be 
computed off line since these are constant parameters of the network independent of the 
tested image. The 2D-FFT of the tested image must be computed. As a result, q backward 
and one forward transforms have to be computed. Therefore, for a tested image, the total 
number of the 2D-FFT to compute is (q+1)N2(log2N)2 (Ben-Yacoub et al. 1999; Ben-Yacoub 
1997). In addition, the input image and the weights should be multiplied in the frequency 
domain. Therefore, computation steps of (qN2) should be added. This yields a total of 
O((q+1)N2(log2N)2+qN2) computation steps for the fast neural network (Ben-Yacoub et al. 
1999; Fasel 1998). 
Using sliding window of size nxn, for the same image of NxN pixels, qN2n2 computation 
steps are required when using traditional neural networks for the face detection process. 

They evaluated theoretical speed up factor η as follows (Fasel 1998; Ben-Yacoub 1997): 

 
N21)log(q

2qnη
+

=  (14) 

The speed up factor introduced in (Ben-Yacoub et al. 1999) and given by Eq.14 is not correct 
for the following reasons: 
a. The number of computation steps required for the 2D-FFT is O(N2log2N2) and not 

O(N2log2N) as presented in (Fasel 1998; Ben-Yacoub 1997) .  Also, this is not a typing 
error as the curve in Fig.2 in (Ben-Yacoub et al. 1999) realizes Eq.(7), and the curves in 
Fig.15 in (Fasel 1998)  realizes Eq.(31) and Eq.(32) in (Fasel 1998) . 

b. Also, the speed up ratio presented in (Ben-Yacoub et al. 1999) not only contains an error 
but also is not precise. This is because for high speed neural networks, the term (6qN2) 
corresponds to complex dot product in the frequency domain must be added. Such 
term has a great effect on the speed up ratio. Adding only qN2 as stated in (Fasel 1998)  
is not correct since a one complex multiplication requires six real computation steps. 

c. For conventional neural networks, the number of operations is (q(2n2-1)(N-n+1)2) and 
not (qN2n2). The term n2 is required for multiplication of n2 elements (in the input 
window) by n2 weights which results in another new n2 elements. Adding these n2 

elements, requires another (n2-1) steps. So, the total computation steps needed for each 
window is (2n2-1). The search operation for a face in the input image uses a window 
with nxn weights. This operation is done at each pixel in the input image. Therefore, 
such process is repeated (N-n+1)2 times and not N 2 as stated in (Ben-Yacoub et al. 1999; 
Ben-Yacoub 1997). 

d. Before applying cross correlation, the 2D-FFT of the weight matrix must be computed. 
Because of the dot product, which is done in the frequency domain, the size of weight 
matrix should be increased to be the same as the size of the input image. Computing the 
2D-FFT of the weight matrix off line as stated in (Ben-Yacoub et al. 1999; Fasel 1998; and 
Ben-Yacoub 1997)  is not practical. In this case, all of the input images must have the 
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same size. As a result, the input image will have only a one fixed size. This means that, 
the testing time for an image of size 50x50 pixels will be the same as that image of size 
1000x1000 pixels and of course, this is unreliable. 

e. It is not valid to compare number of complex computation steps by another of real 
computation steps directly. The number of computation steps given by pervious 
authors (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997)  for conventional 
neural networks is for real operations while that is required by the high speed neural 
networks is for complex operations. To obtain the speed up ratio, the authors in (Ben-
Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997)  have divided the two formulas 
directly without converting the number of computation steps required by the high 
speed neural networks into a real version.  

f. Furthermore, there are critical errors in the activity of hidden neurons given in section 
3.1 in (Ben-Yacoub 1997)  and also by Eq.(2) in (Ben-Yacoub et al. 1999). Such activity 
given by those authors in (Ben-Yacoub et al. 1999; Ben-Yacoub 1997)  as follows: 

 ( )ibiWΨgih +⊗=  (15) 

is not correct and should be written as Eq.(4) given here in this chapter. This is because 

the fact that the operation of cross correlation is not commutative (W⊗Ψ ≠ Ψ⊗W). As a 
result, Eq.(15)  (Eq.(2) in their paper (Ben-Yacoub et al. 1999)) does not give the exact 
correct results as conventional neural networks. This error leads the researchers who 
consider the references (Ben-Yacoub et al. 1999; Ben-Yacoub 1997)  to think about how 
to modify the operation of cross correlation so that Eq.(15) (Eq.(2) in their paper (Ben-
Yacoub et al. 1999)) can give the exact correct results as conventional neural networks. 
Therefore, errors in these equations must be cleared to all the researchers. In (El-Bakry 
2003), the authors proved that a symmetry condition must be found in input matrices 
(images and the weights of neural networks) so that fast neural networks can give the 

same results as conventional neural networks. In case of symmetry W⊗Ψ=Ψ⊗W, the 
cross correlation becomes commutative and this is a valuable achievement. In this case, 
the cross correlation is performed without any constrains on the arrangement of 
matrices. As presented in (El-Bakry 2003), this symmetry condition is useful for 
reducing the number of patterns that neural networks will learn. This is because the 
image is converted into symmetric shape by rotating it down and then the up image 
and its rotated down version are tested together as one (symmetric) image. If a pattern 
is detected in the rotated down image, then, this means that this pattern is found at the 
relative position in the up image. So, if conventional neural networks are trained for up 
and rotated down examples of the pattern, fast neural networks will be trained only to 
up examples. As the number of trained examples is reduced, the number of neurons in 
the hidden layer will be reduced and the neural network will be faster in the test phase 
compared with conventional neural networks.  

g. Moreover, the authors in (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997)  
stated that the activity of each neuron in the hidden layer Eq.(16) (Eq.(4) in their paper 
(Ben-Yacoub et al. 1999)) can be expressed in terms of convolution between a bank of 
filter (weights) and the input image. This is not correct because the activity of the 
hidden neuron is a cross correlation between the input image and the weight matrix. It 
is known that the result of cross correlation between any two functions is different from 
their convolution. As we proved in (El-Bakry 2003) the two results will be the same, 
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only when the two matrices are symmetric or at least the weight matrix is symmetric. A 
practical example which proves that for any two matrices the result of their cross 
correlation is different from their convolution unless that they are symmetric or at least 
the second matrix is symmetric as shown in appendix “A”. 

h. Images are tested for the presence of a face (object) at different scales by building a 
pyramid of the input image which generates a set of images at different resolutions. The 
face detector is then applied at each resolution and this process takes much more time 
as the number of processing steps will be increased. In (Ben-Yacoub et al. 1999; Fasel 
1998; and Ben-Yacoub 1997) , the authors stated that the Fourier transforms of the new 
scales do not need to be computed. This is due to a property of the Fourier transform. If 
z(x,y) is the original and a(x,y) is the sub-sampled by a factor of 2 in each direction 
image then: 

 z(2x,2y)y)a(x, =  (16) 

 )y)FT(z(x,v)Z(u, =  (17) 
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v)A(u,y))FT(a(x,  (18) 

This implies that we do not need to recompute the Fourier transform of the sub-sampled 
images, as it can be directly obtained from the original Fourier transform. But experimental 
results have shown that Eq.(16) is valid only for images shown in the form presented in 
Eq.(19). In which each block of pixels consists of 4 pixels located beside each other and have 
the same value as shown in Eq.(19). Certainly, there no guarantee that the input image will 
be in that form. Of course, it may have another form different from that one presented in 
Eq.(19).  
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In (Ben-Yacoub et al. 1999), the author claimed that the processing needs O((q+2)N2log2N) 
additional number of computation steps. Thus the speed up ratio will be (Ben-Yacoub et al. 
1999): 

 
N22)log(q

2qnη
+

=  (20) 

Of course this is not correct, because the inverse of the Fourier transform is required to be 
computed at each neuron in the hidden layer (for the resulted matrix from the dot product 
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between the Fourier matrix in two dimensions of the input image and the Fourier matrix in 
two dimensions of the weights, the inverse of the Fourier transform must be computed). So, 
the term (q+2) in Eq.(20) should be (2q+1) because the inverse 2D-FFT in two dimensions 
must be done at each neuron in the hidden layer. In this case, the number of computation 
steps required to perform 2D-FFT for the high speed neural networks will be: 

 ϕ=(2q+1)(5N2log2N2)+(2q)5(N/2)2log2(N/2)2  (21) 

In addition, a number of computation steps equal to 6q(N/2)2+q((N/2)2-n2)+q(N/2)2 must 
be added to the number of computation steps required by the high speed neural networks. 

3. A new faster algorithm for pattern detection based on image 
decomposition  

In this section, a new faster algorithm for face/object detection is presented. The number of 
computation steps required for faster neural networks with different image sizes is listed in 
Tables 6 and 7. From these tables, we may notice that as the image size is increased, the 
number of computation steps required by high speed neural networks is much increased. 
For example, the number of computation steps required for an image of size (50x50 pixels) is 
much less than that needed for an image of size (100x100 pixels). Also, the number of 
computation steps required for an image of size (500x500 pixels) is much less than that 
needed for an image of size (1000x1000 pixels). As a result, for example, if an image of size 
(100x100 pixels) is decomposed into 4 sub-images of size (50x50 pixels) and each sub-image 
is tested separately, then a speed up factor for face/object detection can be achieved. The 
number of computation steps required by high speed neural networks to test an image after 
decomposition can be calculated as follows: 
1. Assume that the size of the image under test is (NxN pixels). 

2. Such image is decomposed into α (LxL pixels) sub-images. So, α can be computed as: 

 α=(N/L)2 (22) 

3. Assume that, the number of computation steps required for testing one (LxL pixels) 

sub-image is β. So, the total number of computation steps (T) required for testing these 
sub-images resulting after the decomposition process is: 

 T = α β  (23) 

The speed up ratio in this case (ηd ) can be computed as follows: 

 
( )( )

( )( )( ) ( ) ΛsN2n2
s8Nαq2

sN2log2
s5Nα1αq

2
1nN122nq

dn
++−+++

+−−
=  (24) 

where, 
Ns: is the size of each small sub-image. 

Δ: is a small number of computation steps required to obtain the results at the 
boundaries between sub-images and depends on the size of the sub-image. 

To detect a face/object of size 20x20 pixels in an image of any size by using high speed 
neural networks after image decomposition into sub-images, the optimal size of these sub-
images must be computed. From Table 7, we may conclude that, the most suitable size for  
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Image size 
No. of computation steps in case of 

using FNN 

25x25 1.9085e+006 

50x50 9.1949e+006 

100x100 4.2916e+007 

150x150 1.0460e+008 

200x200 1.9610e+008 

250x250 3.1868e+008 

300x300 4.7335e+008 

350x350 6.6091e+008 

400x400 8.8203e+008 

450x450 1.1373e+009 

500x500 1.4273e+009 

550x550 1.7524e+009 

600x600 2.1130e+009 

650x650 2.5096e+009 

700x700 2.9426e+009 

750x750 3.4121e+009 

800x800 3.9186e+009 

850x850 4.4622e+009 

900x900 5.0434e+009 

950x950 5.6623e+009 

1000x1000 6.3191e+009 

Table  6. The number of computation steps required by faster neural networks (FNN) for 
images of sizes (25x25 - 1000x1000 pixels), q=30, n=20 

Image size 
No. of computation steps in case of 

using FNN 

1050x1050 7.0142e+009 

1100x1100 7.7476e+009 

1150x1150 8.5197e+009 

1200x1200 9.3306e+009 

1250x1250 1.0180e+010 

1300x1300 1.1070e+010 

1350x1350 1.1998e+010 

1400x1400 1.2966e+010 

1450x1450 1.3973e+010 

1500x1500 1.5021e+010 

1550x1550 1.6108e+010 

1600x1600 1.7236e+010 

1650x1650 1.8404e+010 

1700x1700 1.9612e+010 

1750x1750 2.0861e+010 

1800x1800 2.2150e+010 

1850x1850 2.3480e+010 

1900x1900 2.4851e+010 

1950x1950 2.6263e+010 

2000x2000 2.7716e+010 

Table 7. The number of computation steps required by FNN for images of sizes (1050x1050 - 
2000x2000 pixels), q=30, n=20 
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Fig. 1. The speed up ratio for images decomposed into different in size sub-images (L). 
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Fig. 2. A comparison between the number of computation steps required by FNN before and 
after Image decomposition. 

the sub-image which requires the smallest number of computation steps is 25x25 pixels. 
Also, the fastest speed up ratio can be achieved using this sub-image size (25x25) as shown 
in Figure 1. It is clear that the speed up ratio is reduced when the size of the sub-image (L) is 
increased. A comparison between the speed up ratio for high speed neural networks and 
high speed neural networks after image decomposition with different sizes of the tested 
images is listed in Tables 8 and 9. It is clear that the speed up ratio is increased with the size 
of the input image when using high speed neural networks and image decomposition. This 
is in contrast to using only high speed neural networks. As shown in Figure 2, the number 
of computation steps required by high speed neural networks is increased rapidly with the 
size of the input image. Therefore the speed up ratio is decreased with the size of the input 
image. While in case of using high speed neural networks and image decomposition, the 
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Image size 
Speed up ratio in 

case of using FNN 

Speed up ratio in case of using 
FNN after image 
decomposition 

50x50 2.7568 5.0713 

100x100 5.0439 12.4622 

150x150 5.6873 15.6601 

200x200 5.9190 17.3611 

250x250 6.0055 18.4073 

300x300 6.0301 19.1136 

350x350 6.0254 19.6218 

400x400 6.0059 20.0047 

450x450 5.9790 20.3034 

500x500 5.9483 20.5430 

550x550 5.9160 20.7394 

600x600 5.8833 20.9032 

650x650 5.8509 21.0419 

700x700 5.8191 21.1610 

750x750 5.7881 21.2642 

800x800 5.7581 21.3546 

850x850 5.7292 21.4344 

900x900 5.7013 21.5054 

950x950 5.6744 21.5689 

1000x1000 5.6484 21.6260 

Table  8. The speed up ratio in case of using FNN and FNN after image decomposition into 
sub-images (25x25 pixels) for images of different sizes (from N=50 to N=1000, n=25, q=30) 

Image size 
Speed up ratio in 

case of using FNN 
Speed up ratio in case of using 

FNN after image decomposition

1050x1050 5.6234 21.6778 

1100x1100 5.5994 21.7248 

1150x1150 5.5762 21.7678 

1200x1200 5.5538 21.8072 

1250x1250 5.5322 21.8434 

1300x1300 5.5113 21.8769 

1350x1350 5.4912 21.9079 

1400x1400 5.4717 21.9366 

1450x1450 5.4528 21.9634 

1500x1500 5.4345 21.9884 

1550x1550 5.4168 22.0118 

1600x1600 5.3996 22.0338 

1650x1650 5.3830 22.0544 

1700x1700 5.3668 22.0738 

1750x1750 5.3511 22.0921 

1800x1800 5.3358 22.1094 

1850x1850 5.3209 22.1257 

1900x1900 5.3064 22.1412 

1950x1950 5.2923 22.1559 

2000x2000 5.2786 22.1699 

Table 9. The speed up ratio in case of using FNN and FNN after image decomposition into 
sub-images (25x25 pixels) for images of different sizes (from N=1050 to N=2000, n=25, q=30) 
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Matrix size 
 

Speed up ratio in 
case of using 

FNN 

Speed up ratio in case of 
using FNN after matrix 

decomposition 

100000x100000 3.6109 22.7038 

200000x200000 3.4112 22.7092 

300000x300000 3.3041 22.7110 

400000x400000 3.2320 22.7119 

500000x500000 3.1783 22.7125 

600000x600000 3.1357 22.7128 

700000x700000 3.1005 22.7131 

800000x800000 3.0707 22.7133 

900000x900000 3.0448 22.7134 

1000000x1000000 3.0221 22.7136 

1100000x1100000 3.0018 22.7137 

1200000x1200000 2.9835 22.7138 

1300000x1300000 2.9668 22.7138 

1400000x1400000 2.9516 22.7139 

1500000x1500000 2.9376 22.7139 

1600000x1600000 2.9245 22.7140 

1700000x1700000 2.9124 22.7140 

1800000x1800000 2.9011 22.7141 

1900000x1900000 2.8904 22.7141 

2000000x2000000 2.8804 22.7141 

Table  10. The speed up ratio in case of using FNN and FNN after matrix decomposition into 
sub-matrices (25x25 elements) for very large matrices (from N=100000 to N=2000000, n=25, q=30) 

number of computation steps required by high speed neural networks is increased 

smoothly. Thus, the linearity of the computation steps required by high speed neural 

networks in this case is better. As a result, the speed up ratio is increased. Increasing the 

speed up ratio with the size of the input image is considered an important achievement. 

Furthermore, for very large size matrices, while the speed up ratio for high speed neural 

networks is decreased, the speed up ratio still increase in case of using high speed neural 

networks and matrix decomposition as listed in Table 10. Moreover, as shown in Figure 3, 

the speed up ratio in case of high speed neural networks and image decomposition is 

increased with the size of the weight matrix which has the same size (n) as the input 

window. For example, it is clear that the speed up ratio is for window size of 30x30 is larger 

than that of size 20x20. Simulation results for the speed up ratio in case of using fast neural 

networks and image decomposition is listed in Table 11. It is clear that simulation results 

confirm the theoretical computations and the practical speed up ratio after image 

decomposition is faster than using only fast neural networks. In addition, the practical speed 

up ratio is increased with the size of the input image. 

Also, to detect small in size matrices such as 5x5 or 10x10 using only high speed neural 

networks, the speed ratio becomes less than one as shown in Tables 12,13,14, and 15. On the 

other hand, from the same tables it is clear that using fast neural and image decomposition, 

the speed up ratio becomes higher than one and increased with the dimensions of the input 

image. The dimensions of the new sub-image after image decomposition (L) must not be 

less than the dimensions of the face/object which is required to be detected and has the 

same size as the weight matrix. Therefore, the following equation controls the relation 
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between the sub-image and the size of weight matrix (face/object to be detected) in order 

not to loss any information in the input image. 

 

Image size 
Speed up ratio in 

case of using FNN 

Speed up ratio in case of using 
FNN after image 
decomposition 

100x100 10.75 34.55 

200x200 9.19 35.65 

300x300 8.43 36.73 

400x400 7.45 37.70 

500x500 7.13 38.66 

600x600 6.97 39.61 

700x700 6.83 40.56 

800x800 6.68 41.47 

900x900 6.79 42.39 

1000x1000 6.59 43.28 

1100x1100 6.66 44.14 

1200x1200 6.62 44.95 

1300x1300 6.57 45.71 

1400x1400 6.53 46.44 

1500x1500 6.49 47.13 

1600x1600 6.45 47.70 

1700x1700 6.41 48.19 

1800x1800 6.38 48.68 

1900x1900 6.35 49.09 

2000x2000 6.31 49.45 

Table 11. The practical speed up ratio in case of using FNN and FNN after image 
decomposition into sub-images (25x25 pixels) for images of different sizes (from N=100 to 
N=2000, n=25, q=30) 
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Fig. 3. The speed up ratio in case of image decomposition and different window size (n), 
(L=25x25). 
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Image size 
Speed up ratio in 

case of using FNN 
Speed up ratio in case of using 

FNN after image decomposition

50x50 0.3361 1.3282 

100x100 0.3141 1.4543 

150x150 0.2985 1.4965 

200x200 0.2872 1.5177 

250x250 0.2785 1.5303 

300x300 0.2716 1.5388 

350x350 0.2658 1.5448 

400x400 0.2610 1.5493 

450x450 0.2568 1.5529 

500x500 0.2531 1.5557 

550x550 0.2498 1.5580 

600x600 0.2469 1.5599 

650x650 0.2442 1.5615 

700x700 0.2418 1.5629 

750x750 0.2396 1.5641 

800x800 0.2375 1.5652 

850x850 0.2356 1.5661 

900x900 0.2339 1.5669 

950x950 0.2322 1.5677 

1000x1000 0.2306 1.5683 

Table 12. The speed up ratio in case of using FNN and FNN after image decomposition into 
Sub-Images (5x5 pixels) for Images of different sizes (from N=50 to N=1000, n=5, q=30) 

 

Image size 
Speed up ratio in 

case of using FNN 
Speed up ratio in case of using 

FNN after image decomposition

1050x1050 0.2292 1.5689 

1100x1100 0.2278 1.5695 

1150x1150 0.2265 1.5700 

1200x1200 0.2253 1.5704 

1250x1250 0.2241 1.5709 

1300x1300 0.2230 1.5713 

1350x1350 0.2219 1.5716 

1400x1400 0.2209 1.5720 

1450x1450 0.2199 1.5723 

1500x1500 0.2189 1.5726 

1550x1550 0.2180 1.5728 

1600x1600 0.2172 1.5731 

1650x1650 0.2163 1.5733 

1700x1700 0.2155 1.5735 

1750x1750 0.2148 1.5738 

1800x1800 0.2140 1.5740 

1850x1850 0.2133 1.5742 

1900x1900 0.2126 1.5743 

1950x1950 0.2119 1.5745 

2000x2000 0.2112 1.5747 

Table 13. The speed up ratio in case of using FNN and FNN after image decomposition into 
sub-images (5x5 pixels) for images of different sizes (from N=1050 to N=2000, n=5, q=30) 
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Image size 
Speed up ratio in 

case of using FNN 
Speed up ratio in case of using 

FNN after image decomposition

50x50 1.1202 3.1369 

100x100 1.1503 3.9558 

150x150 1.1303 4.2397 

200x200 1.1063 4.3829 

250x250 1.0842 4.4691 

300x300 1.0647 4.5267 

350x350 1.0474 4.5678 

400x400 1.0321 4.5987 

450x450 1.0185 4.6228 

500x500 1.0063 4.6420 

550x550 0.9952 4.6578 

600x600 0.9851 4.6709 

650x650 0.9758 4.6820 

700x700 0.9672 4.6915 

750x750 0.9593 4.6998 

800x800 0.9519 4.7070 

850x850 0.9451 4.7133 

900x900 0.9386 4.7190 

950x950 0.9325 4.7241 

1000x1000 0.9268 4.7286 

Table 14. The speed up ratio in case of using FNN and FNN after Image decomposition into 
sub-images (5x5 pixels) for images of different sizes (from N=50 to N=1000, n=10, q=30) 

 

Image size 
Speed up ratio in 

case of using FNN 
Speed up ratio in case of using 

FNN after image decomposition

1050x1050 0.9214 4.7328 

1100x1100 0.9163 4.7365 

1150x1150 0.9114 4.7399 

1200x1200 0.9068 4.7431 

1250x1250 0.9023 4.7460 

1300x1300 0.8981 4.7486 

1350x1350 0.8941 4.7511 

1400x1400 0.8902 4.7534 

1450x1450 0.8865 4.7555 

1500x1500 0.8829 4.7575 

1550x1550 0.8795 4.7594 

1600x1600 0.8762 4.7611 

1650x1650 0.8730 4.7628 

1700x1700 0.8699 4.7643 

1750x1750 0.8669 4.7658 

1800x1800 0.8640 4.7672 

1850x1850 0.8613 4.7685 

1900x1900 0.8586 4.7697 

1950x1950 0.8559 4.7709 

2000x2000 0.8534 4.7720 

Table 15. The speed up ratio in case of using FNN and FNN after image decomposition into 
sub-images (5x5 pixels) for images of different sizes (from N=1050 to N=2000, n=10, q=30) 
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 nL ≥  (25) 

For example, in case of detecting 5x5 pattern, the image must be decomposed into sub-
images of size not less than 5x5.  
To further reduce the running time as well as increase the speed up ratio of the detection 

process, a parallel processing technique is used. Each sub-image is tested using a high speed 

neural network simulated on a single processor or a separated node in a clustered system. 

The number of operations (ω) performed by each processor / node (sub-images tested by 

one processor/node) =  

 
/nodesprocessors ofNumber 

images-sub ofnumber   totalThe
ω=  (26) 

 
Pr

αω =  (27) 

where, Pr is the number of processors or nodes. 

The total number of computation steps (γ) required to test an image by using this approach 

can be calculated as: 

 γ=ωβ (28) 

By using this algorithm, the speed up ratio in this case (ηdp) can be computed as follows: 

 
)/pr)sN)2n-2

sαq(8N)2
sN2log2

sα)(5N1)ceil(((q(α

21)n1)(N2q(2n
dp ++++

+−−
=η  (29) 

where, ceil(x) is a MATLAB function rounds the elements of x to the nearest integers 

towards infinity. 

As shown in Tables 16 and 17, using a symmetric multiprocessing system with 16 parallel 

processors or 16 nodes in either a massively parallel processing system or a clustered 

system, the speed up ratio (with respect to conventional neural networks) for face/object 

detection is increased. A further reduction in the computation steps can be obtained by 

dividing each sub-image into groups. For each group, the neural operation (multiplication 

by weights and summation) is performed for each group by using a single processor. This 

operation is done for all of these groups as well as other groups in all of the sub-images at 

the same time. The best case is achieved when each group consists of only one element. In 

this case, one operation is needed for multiplication of the one element by its weight and 

also a small number of operations (ε) is required to obtain the over all summation for each 

sub-image. If the sub-image has n2 elements, then the required number of processors to 

multiply each element in the sub-image matrix by the relevant element in the weight matrix; 

at the same time; will be n2. As a result, the number of computation steps will be αq(1+ε), 
where ε is a small number depending on the value of n. For example, when n=20, then ε=6 

and if n=25, then ε=7. The speed up ratio can be calculated as: 

 η=(2n2-1)(N-n+1)2/α(1+ε) (30) 
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Image size Speed up ratio 

50x50 81.1403 

100x100 199.3946 

150x150 250.5611 

200x200 277.7780 

250x250 294.5171 

300x300 305.8174 

350x350 313.9482 

400x400 320.0748 

450x450 324.8552 

500x500 328.6882 

550x550 331.8296 

600x600 334.4509 

650x650 336.6712 

700x700 338.5758 

750x750 340.2276 

800x800 341.6738 

850x850 342.9504 

900x900 344.0856 

950x950 345.1017 

1000x1000 346.0164 

Table 16. The speed up ratio in case of using FNN after image decomposition into sub-
images (25x25 pixels) for images of different sizes (from N=50 to N=1000, n=25, q=30) using 
16 parallel processors or 16 nodes 

Image size Speed up ratio 

1050x1050 346.8442 

1100x1100 347.5970 

1150x1150 348.2844 

1200x1200 348.9147 

1250x1250 349.4946 

1300x1300 350.0300 

1350x1350 350.5258 

1400x1400 350.9862 

1450x1450 351.4150 

1500x1500 351.8152 

1550x1550 352.1896 

1600x1600 352.5406 

1650x1650 352.8704 

1700x1700 353.1808 

1750x1750 353.4735 

1800x1800 353.7500 

1850x1850 354.0115 

1900x1900 354.2593 

1950x1950 354.4943 

2000x2000 354.7177 

Table 17. The speed up ratio in case of using FNN after image decomposition into sub-
images (25x25 pixels) for images of different sizes (from N=1050 to N=2000, n=25, q=30) 
using 16 parallel processors or 16 nodes 
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Moreover, if the number of processors = αn2, then the number of computation steps will be 

q(1+ε), and the speed up ratio becomes: 

 η=(2n2-1)(N-n+1)2/ (1+ε) (31) 

Furthermore, if the number of processors = qαn2, then the number of computation steps will 

be (1+ε), and the speed up ratio can be calculated as: 

 η=q(2n2-1)(N-n+1)2/ (1+ε)  (32) 

In this case, as the length of each group is very small, then there is no need to apply cross 
correlation between the input image and the weights of the neural network in frequency 
domain.  

4. Sub-image centering and normalization in the frequency domain  

(Feraud et al. 2000) stated that image normalization to avoid weak or strong illumination 
could not be done in the frequency space. This is because the image normalization is local 
and not easily computed in the Fourier space of the whole image. Here, a simple method for 
image normalization is presented. In (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 
1997), the authors stated that centering and normalizing the image can be obtained by 
centering and normalizing the weights as follows (Ben-Yacoub et al. 1999; Fasel 1998; and 
Ben-Yacoub 1997) : 

Let Xrc  be the zero-mean centered sub-image located at (r,c) in the input image ψ: 

 rcxrcXrcX −=  (33) 

where, Xrc is the mean value of the sub-image located at (r,c). We are interested in 

computing the cross correlation between the sub-image Xrc and the weights Wi that is: 

 iWrcxiWrcXiWrcX ⊗−⊗=⊗  (34) 

where,  

 
2n

rcX
rcx =  (35) 

Combining (34) and (35), the following expression can be obtained: 

 iW
2n

rcX
iWrcXiWrcX ⊗−⊗=⊗  (36) 

which is the same as: 

 
2

n

i
W

rcXiWrcXiWrcX ⊗−⊗=⊗  (37) 

The centered zero mean weights are given by: 
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2

n

i
W

i
W

i
W −=  (38) 

also, Eq. (37) can be written as: 

 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−⊗=⊗

2
n

i
W

i
WrcXiWrcX  (39) 

So, it can be concluded that: 

 iWrcX
i

WrcX ⊗=⊗  (40) 

which means that cross-correlating a normalized sub-image with the weight matrix is equal 

to the cross-correlation of the  non – normalized sub-image with the normalized weight 

matrix (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) . However, this proof 

which presented in (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997)  is not correct 

at all because it is proved here mathematically and practically that cross-correlating a 

normalized sub-image with the weight matrix is not equal to the cross-correlation of the  

non – centered image with the normalized weight matrix          

During the test phase, each sub-image in the input image is multiplied (dot multiplication) 

by the weight matrix and this operation is repeated for all possible sub-images in the input 

image. Repeating this process for all sub-images in the input image is equivalent to the cross 

correlation operation. Therefore, there is no cross correlation between each sub-image and 

the weight matrix. The cross correlation is done between the weight matrix and the whole 

input image. Thus, this proves that there is no need to the proof of Eq.(40) (presented in 

(Ben-Yacoub et al. 1999; Fasel 1998; and Ben-Yacoub 1997) ) which is mathematically wrong. 

The result of Eq.(40) is correct only for the center value which equals to the dot product 

between the two matrices (sub-image and weight matrices). For all other values except the 

center value: 

 iWrcXiWrcX ⊗≠⊗  (41) 

This fact is true for all types and values of matrices except symmetric matrices and our new 
technique of image decomposition presented in last section III. A practical example is given 
in appendix “B”.  
Furthermore, the definition of the mean value, Eq. (35) presented in (Ben-Yacoub et al. 1999; 
Fasel 1998; and Ben-Yacoub 1997)  is not correct and must be: 

 
2

n

n

1i

n

1j

)j,i(rcX∑
=

∑
=

=rcx  (42) 

which makes the proof of Eq.(40) (presented in (Ben-Yacoub et al. 1999; Fasel 1998; and Ben-
Yacoub 1997) ) not correct.  
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Moreover, the operation performed between the weight matrix and each sub-image is dot 
multiplication. Our new idea is to normalize each sub-image in the frequency domain by 
normalizing the weight matrix. The dot product of two matrices is defined as follows: 

 ∑

=

∑

=

=•
n

1i

n

1j

ij
W

ij
XWX  (43) 

The result of dot product is only one value. We have also the following definitions: 

 ∑
=

=•=•
2n

1ji,
ijXnxn1XXnxn1  (44) 

where, 1nxn is a nxn matrix where every element is 1.  

 ∑
=

=•=•
2n

1ji,
ijWnxn1WWnxn1  (45) 

Lemma :    Wnxn1xXnxn1w •=•  

Proof: 
From Eqs. 42,43,44,and 45, we can conclude that:  

 ∑
=

•∑
=

∑
=

==•
2n

1ji,
ijX

2n

1ji,
ijW

2n

1ji, 2
n

1

ijXwXnxn1w  (46) 

which can be reformulated as: 

 ∑
=

•∑
=

=•

2
n

1ji,
ij

X

2
n

1ji,
ij

W
2

n

1
X

nxn
1w  (47) 

also, 

 ∑
=

•∑
=

∑
=

==•
2n

1ji,
ijW

2n

1ji,
ijX

2n

1ji, 2
n

1

ijWxWnxn1x  (48) 

which is the same as: 

 ∑
=

•∑
=

=•
2n

1ji,
ijW

2n

1ji,
ijX

2
n

1
Wnxn1x  (49) 

It is clear that Eq.(47) is the same as Eq.(49), which means:  

 Wnxn1xXnxn1w •=•  (50) 
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Theorem: 

XW WX •=•  

Proof: 

W)nxn1x-(XWX •=•  

Wnxn1x-WX ••=  

wnxn1X-WX ••=  

)nxn1w-X(W •=  

WX •=  

So, we may conclude that: 

 iWrcXiWrcX •=•  (51) 

which means that multiplying a normalized sub-image with a non-normalized weight 
matrix dot multiplication is equal to the dot multiplication between the non – normalized 
sub-image and the normalized weight matrix. The validation of Eq. (51) and a practical 
example is given in appendix “C”.  
As proved in the previous paper (El-Bakry 2002,a), the relation defined by Eq. (40) is true only 

for the resulting middle value. This is under two conditions. The first is to apply the technique 

of high speed neural networks and image decomposition. In this case, the cross correlation is 

performed between each input sub-image and the weight matrix which has the same size as 

the resulting sub-image after image decomposition. The resulting middle value equals to the 

dot product between the input sub-image and the weight matrix (the value which we 

interested in). The second is that the required face/object is completely located in one of these 

sub-images (not between two sub-images). However applying cross correlation consumes 

more computation steps than applying dot product which makes Eq. (40) useful less. 

5. Effect of weight normalization on the speed up ratio 

Normalization of sub-images in the spatial domain (in case of using traditional neural 
networks) requires 2n2(N-n+1)2 computation steps. On the other hand, normalization of sub-
images in the frequency domain through normalizing the weights of the neural networks 
requires 2qn2 operations. This proves that local image normalization in the frequency 
domain is faster than that in the spatial one. By using weight normalization, the speed up 

ratio for image normalization Γ can be calculated as:  

 
q

21)n(NΓ +−
=  (52) 

The speed up ratio of the normalization process for images of different sizes is listed in 
Table 18. As a result, we may conclude that: 
1. Using this technique, normalization in the frequency domain can be done through 

normalizing the weights in spatial domain.  
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Image size Speed up ratio 

100x100 62 

200x200 328 

300x300 790 

400x400 1452 

500x500 2314 

600x600 3376 

700x700 4638 

800x800 6100 

900x900 7762 

1000x1000 9624 

1100x1100 11686 

1200x1200 13948 

1300x1300 16410 

1400x1400 19072 

1500x1500 21934 

1600x1600 24996 

1700x1700 28258 

1800x1800 31720 

1900x1900 35382 

2000x2000 39244 

Table 18. The speed up ratio of the normalization process for images of different sizes (n 
=20, q =100) 

 
2. Normalization of an image through normalization of weights is faster than 

normalization of each sub-image.  
3. Normalization of weights can be done off line. So, the speed up ratio in the case of 

weight normalization can be calculated as follows: 

a) For Conventional Neural Networks:  

The speed up ratio equals the number of computation steps required by conventional neural 
networks with image normalization divided by the number of computation steps needed by 
conventional neural networks with weight normalization, which is done off line. The speed 
up ratio ηc in this case can be given by: 

 
21)n1)(N2q(2n

21)n(N22n21)n1)(N2q(2n
cη

+−−

+−++−−
=  (53) 

which can be simplified to: 

 
1)2q(2n

22n
1cη

−
+=  (54) 

b) For High speed neural networks: 

The over all speed up ratio equals the number of computation steps required by 

conventional neural networks with image normalization divided by the number of 
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computation steps needed by high speed neural networks with weight normalization, which 

is done off line. The over all speed up ratio ηo can be given by: 

 
  N)2n-2q(8N)2N2log21)(5N(2q

)22n1)2q(2n (21)n(N
oη

+++

+−+−
=  (55) 

 

The relation between the speed up ratio before (η) and after (ηo) the normalization process 

can be summed up as: 

 
   N)2n-2q(8N)2N2log21)(5N(2q

21)n(N22nηoη
+++

+−
+=  (56) 

 

The overall speed up ratio (Eq. (56)) with images of different sizes and different sizes of 

windows is listed in Table 19. We can easily note that the speed up ratio in case of image 

normalization through weight normalization is larger than the speed up ratio (without 

normalization) listed in Table 1. This means that the search process with normalized high 

speed neural networks is done faster than conventional neural networks with or without 

normalization of the input image. The overall practical speed up ratio (Eq. (56)) after 

normalization of weights off line is listed in Table 20.  

 

Image size 
Speed up ratio 

(n=20) 
Speed up ratio 

(n=25) 
Speed up ratio 

(n=30) 

100x100 3.7869 5.2121 6.5532 

200x200 4.1382 6.1165 8.3167 

300x300 4.1320 6.2313 8.6531 

400x400 4.0766 6.2063 8.7031 

500x500 4.0152 6.1467 8.6684 

600x600 3.9570 6.0796 8.6054 

700x700 3.9039 6.0132 8.5334 

800x800 3.8557 5.9502 8.4603 

900x900 3.8120 5.8915 8.3891 

1000x1000 3.7723 5.8369 8.3212 

1100x1100 3.7360 5.7862 8.2568 

1200x1200 3.7027 5.7391 8.1961 

1300x1300 3.6719 5.6952 8.1389 

1400x1400 3.6434 5.6542 8.0849 

1500x1500 3.6169 5.6158 8.0340 

1600x1600 3.5922 5.5798 7.9858 

1700x1700 3.5690 5.5458 7.9403 

1800x1800 3.5472 5.5138 7.8971 

1900x1900 3.5266 5.4835 7.8560 

2000x2000 3.5072 5.4547 7.8169 
 

Table 19. Theoretical Results for the Speed up Ratio in case of Image Normalization by 
Normalizing the Input Weights 
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Image size 
Speed up ratio 

(n=20) 
Speed up ratio 

(n=25) 
Speed up ratio 

(n=30) 

100x100 8.91 12.03 16.74 

200x200 7.43 10.42 15.39 

300x300 6.72 9.72 14.45 

400x400 5.99 8.61 13.59 

500x500 5.75 8.32 12.94 

600x600 5.61 8.09 11.52 

700x700 5.49 7.97 11.04 

800x800 5.41 7.83 10.74 

900x900 5.32 7.71 10.56 

1000x1000 5.29 7.58 10.45 

1100x1100 5.41 7.83 10.81 

1200x1200 5.36 7.77 10.76 

1300x1300 5.32 7.71 10.71 

1400x1400 5.28 7.65 10.66 

1500x1500 5.24 7.60 10.62 

1600x1600 5.21 7.56 10.58 

1700x1700 5.18 7.52 10.52 

1800x1800 5.14 7.48 10.47 

1900x1900 5.11 7.44 10.43 

2000x2000 5.08 7.41 10.38 

Table 20. The theoretical speed up ratio for images with different sizes 

6. Conclusion   

Normalized neural networks for fast pattern detection in a given image have been 

presented. It has been proved mathematically and practically that the speed of the detection 

process becomes high speed than conventional neural networks. This has been 

accomplished by applying cross correlation in the frequency domain between the input 

image and the normalized input weights of the neural networks. A new general formulas 

for fast cross correlation as well as the speed up ratio have been given. A new high speed 

neural network approach for pattern detection has been introduced. Such approach has 

decomposed the input image under test into many small in size sub-images. Furthermore, a 

simple algorithm for fast pattern detection based on cross correlations in the frequency 

domain between the sub-images and the weights of the neural net has been presented in 

order to speed up the execution time. Simulation results have shown that, using a parallel 

processing technique, large values of speed up ratio could be achieved. In addition, by using 

high speed neural networks and image decomposition, the speed up ratio has been 

increased with the size of the input image. Moreover, the problem of local sub-image 

normalization in the frequency space has been solved. It has been generally proved that the 

speed up ratio in the case of image normalization through normalization of weights is faster 

than sub-image normalization in the spatial domain. This speed up ratio is faster than the 

one obtained without normalization. Simulation results have confirmed theoretical 

computations by using MATLAB. The proposed approach can be applied to detect the 

presence/absence of any other object in an image. 
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Appendix “A” 

An Example Proves that the Cross Correlation between any Two Matrices ıs Different from their 
Convolution 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

89

56
Wand   ,XLet

73

15
,  

Then, the cross correlation between X and W can be obtained as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

73

15

89

56
XW  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

76753635

7916783915563855

19591858

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

425315

6911849

95340

 

The convolution between W and X can be obtained as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
◊=◊
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15
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎡
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

568727

4310663

53130

 

which proves that W⊗X ≠ W◊X.  
When the second matrix W is symmetric, the cross correlation between W and X can be 
computed as follows: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦
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⎢
⎢
⎢

⎣

⎡
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⎥
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78793839
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15

89
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while the convolution can be between W and X can be obtained as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
◊=◊

73

15

89

98
XW  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

78793839
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

565345

7110679

98740

  

which proves that under the condition that the second matrix is symmetric (or the two 
matrices are symmetric) the cross correlation between any the two matrices equals to their 
convolution. 

Appendix “B” 

A cross correlation Example between a normalized matrix and other non-normalized one and Vise 
versa 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89

56
Wand,

73

15
XLet  

Then the normalized matrices X, and W can be computed as :
− −

 

1 3 1 2
X , and W

1 3 2 1

− −− − −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

Now, the cross correlation between a normalized matrix and the other non-normalized one 
can be computed as follows: 

18 9 5
1 3 6 5

9 6 3
1 3 9 8

27 15 8

X W

−⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎢ ⎥⊗ = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎢ ⎥− −⎣ ⎦

  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−−−

=⎥
⎦

⎤
⎢
⎣

⎡ −−
⎥
⎦

⎤
⎢
⎣

⎡
=

−
⊗

5112

7613

6177

12

21

73

15
WX  

which means that WXWX ⊗≠⊗ . 
However, the two results are equal only at the center element which equals to the dot 
product between the two matrices. The value of the center element (2,2) =6 as shown above 
and also in appendix “C”. 
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Appendix “C” 

A dot product Example  between a Normalized Matrix and other Non-Normalized one and Vise 
Versa 

This is to validate the correctness of Eq. (51). The left hand side of Eq. 51 can be expresseded 
as follows: 
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and also the right hand side of the same can be repressented as:  
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X and W are defined as follows :
− −

 

 

X X ................................. Xn,n1,1 1,2
X

2n

W W ................................. Wn,n1,1 1,2
W

2n

+ + +−
=

+ + +−
=

 (59) 

By substituting from Eq.(60) in Eq.(58) and Eq.(59), then simplifying the results we can 

easily conclude that iWrcXiWrcX •=• . 

Here is also a practical example:  

⎥
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⎡
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Then the normalized matrices X, and W can be computed as :
− −
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1 3 1 2
X , and W

1 3 2 1

− −− − −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

Now, the dot product between a normalized matrix and the other non-normalized one can 
be performed as follows: 
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15
WX  

which means generally that the dot product between a normalized matrix X and non-
normalized matrix W equals to the dot product between the normalized matrix W and non-
normalized matrix X. On the other hand, the cross correlation results are different as proved 
in appendix “C”. 
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