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Prioritising Genes with an Artificial  
Neural Network Comprising Medical  
Documents to Accelerate Positional  

Cloning in Biological Research 

Norio Kobayashi and Tetsuro Toyoda 
Bioinformatics And Systems Engineering (BASE) division, RIKEN, 

Japan 

1. Introduction 

Linkage analysis is used to identify genes with a certain phenotype or genetic defect and 

determine chromosomal intervals containing several tens to hundreds of candidate genes 

for positional cloning. Before further experiments are performed, the candidate genes must 

be prioritised using as much biological knowledge as possible. For this purpose, it is an 

ambitious challenge to create an artificial superbrain that has learned a vast amount of 

knowledge stored as various omics data.  

As conventionally such omics data have been published in different data structures and 
semantics, a data platform that integrates heterogeneous data into a single machine-readable 
data set is desired. The Semantic Web is a framework for knowledge description and 
discovery by inferences; it uses relationships given as semantic links between two entities 
denoted by Uniform Resource Identifiers (URIs) (Berners-Lee et al., 2001). A goal of the 
Semantic Web is the realisation of human-machine communication by adding metadata 
describing the semantic links of entities based on Resource Description Framework (RDF) 
(Manola & Miller, 2004). In biomedical fields, some datasets using common ontologies 
shared by people on the Semantic Web, such as the Gene Ontology (Ashburner et al., 2000, 
The Gene Ontology Consortium, 2006) and the uniprot RDF (http://dev.isb-
sib.ch/projects/uniprot-rdf/) have been published in RDF. However, because the task of 
generating consistent RDF triples (subject, predicate and object) against a vast amount of 
biomedical content is too expensive, an information space that covers our entire exhaustive 
biomedical knowledge on the Semantic Web has not been realised. 
For the practical use of published biomedical data in the Semantic Web, especially of the 

data that is difficult to utilise because of the lack of semantic links, it is beneficial to reinforce 

the acquisition of such data by supplying a hybrid methodology combining not only 

inferences over the knowledge described with RDF but also those supported by statistical 

significance over multiple raw documents. For instance, MEDLINE, a biomedical document 

repository, includes more than 18 million reports; the entire knowledge amount of 

represented by MEDLINE cannot be consistently reconstructed as well-formed ontology-

based knowledge.  
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Fig. 1. PosMed accelerates forward genetics gene discoveries (left) by integrating the omics 
knowledge collected from reverse genetics as an integrated databases named Scientists’ 
Network System (SciNetS; Masuya et al., 2010) (right). PosMed helps users narrow down 
the candidate responsible genes from those existing within chromosomal intervals. 
OmicBrowse (Matsushima et al., 2009; Toyoda et al., 2007) helps users look into every piece 
of detailed information for each candidate gene. The entire system is designed to coherently 
support positional cloning studies, plant molecular breeding research and plant-upgrading 
science. 

However, the current framework of the Semantic Web cannot handle numerical criteria such 
as relationship strength or the result of statistical tests of relationships. To effectively use 
both well-formed RDF datasets and a vast number of biomedical documents, the extension 
of current query languages should support not only Boolean relationships but also 
statistically evaluated relationships. 
In this chapter, we will discuss the development of a web-based tool named Positional 
Medline (PosMed) that can immediately suggest genes related to a certain phenotype by 
accessing a Semantic Web based databases over omics entities named the Scientists’ 
Networking System (SciNetS; Masuya et al., 2010) and document databases (Fig. 1). We 
initially developed a semantic link database for each entity, which holds relationships 
between the entity and other entities, including documents such as orthologue relationships 
and document co-citation relationships.  We then developed a search engine named General 
and Rapid Association Study Engine (GRASE) and an associated query language named 
General and Rapid Association Study Query Language (GRASQL) (Kobayashi & Toyoda, 
2008). GRASQL is a powerful language for expressing the statistical analysis of data 
retrievable by the RDF query language SPARQL (Prud’Hommeaux & Seaborne, 2008) in a 
Semantic Web manner. The current implementation of GRASE is optimised to efficiently 
calculate the statistical prioritisation of candidate genes on the bases of more than 18 million 
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medical and biological documents and to facilitate quick return of the results within a few 
seconds of computational time.  
Several software tools that have been developed for prioritising positional candidate genes 
are based on functional annotation, gene expression patterns, protein–protein interaction 
(PPI) and/or sequence-based features (Adie et al., 2006; Aerts et al., 2006; GeneSniffer; 
Köhler et al., 2008; Seelow et al., 2008; Van Driel et al., 2005). The evaluation of two of these 
tools and PosMed using their data sets has demonstrated the effectiveness of PosMed, 
which showed an accuracy of 88.7%, the highest among the three tools (Thornblad et al., 
2007).  
Currently, PosMed supports prioritisation of candidate genes for positional cloning in the 

human, mouse and rat, and prioritisation of other entities not having genomic positions 

such as metabolites, drugs, diseases and researchers (Yoshida et al., 2009).  Further, a plant 

service version of PosMed named Positional MEDLINE for plant-upgrading science 

(PosMed-plus)1 was implemented as the first cross-species integrated database that 

inferentially prioritises candidate genes for forward genetics approaches in plant science 

supporting Arabidopsis and rice (Makita et al., 2009). 

PosMed and PosMed-plus are available at http://omicspace.riken.jp/. 

2. Data model for gene prioritisation in PosMed 

2.1 Neural Network representation of statistical algorithm for searching complex 
semantic web data 

PosMed prioritises candidate genes for positional cloning by employing our original 

database search engine GRASE. As an example of this prioritisation against mouse genes, 

GRASE is used to execute an inferential process similar to that of an artificial neural network 

comprising documental neurons (or ‘documentrons’) that represent each document 

contained in databases such as MEDLINE (Fig. 2). Given a user-specified query, PosMed 

initially performs a full-text search of each documentron in the first-layer artificial neurons 

and then calculates the statistical significance of the connections between the hit documents 

and the second-layer artificial neurons representing each mouse gene. When a chromosomal 

interval(s) in mice is specified, PosMed explores the second- and third-layer artificial 

neurons representing genes within the chromosomal interval by evaluating the combined 

significance of the connections from the hit documentrons to the genes. 

When a chromosomal interval(s) in human is specified, PosMed further explores the fourth-
layer artificial neurons representing human genes within the chromosomal interval by using 
orthologous correspondences between mouse genes and human genes. For the output, 
PosMed displays the ranked genes with evidence documents in which the user’s keyword is 
highlighted. 
PosMed is, therefore, a powerful tool that immediately ranks the candidate genes by 
connecting them to user’s keywords, with connections representing both gene–gene 
interactions and other biological interactions such as metabolite–gene, drug–gene, disease–
gene, phenotype–gene, subcellular localisation–gene, co-expression, PPI, and orthologue 
and paralogue data. By using orthologous and paralogous connections, PosMed facilitates 
the ranking of genes based on evidence found in other species. 

                                                 
1 In this article, PosMed-plus is included in PosMed unless otherwise stated. 
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Fig. 2. Neural network model for the PosMed gene search algorithm. As an example, the 
user’s keyword ‘diabetes’ can be found in several documents, including some in MEDLINE 
(Process 1). These documents are mapped to genes that are supported by manual curation 
(Process 2). Using biological knowledge (e.g. protein–protein interaction and co-citation of 
document sets), PosMed can also suggest genes that do not have the user’s keyword 
‘diabetes’ in their associated documents (Process 3). PosMed then returns the candidate 
genes that are located within the user’s specified genomic interval using orthologous 
relationships (Process 4). Thereafter, the resultant genes are displayed with documents in 
which the user's keyword is highlighted (Process 5). 

2.2 Manual curation work connecting genes to the literature 

The accuracy of PosMed is strongly correlated with its ability to make correct associations 
between genes and documents. This is because GRASE uses these associations to execute 
direct searches and inference searches that are supported by co-citations. To increase the 
accuracy of PosMed, we employed manual curation to connect genes and papers by 
semantic links. Our original curation method is based on named entity recognition (NER; 
see Section 4.2. for details). Rather than connecting every literature reference to genes, 
specialised curators create search rules to retrieve all the correct references from document 
titles, abstracts and MeSH terms.  
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Fig. 3. Sequential data flow representation of PosMed search paths. (A and B) Data flow of 
PosMed search and comparison of direct search and inference search, respectively. (C and 
D) Data flow of PosMed cross-species searches. 

2.3 Search paths of the PosMed Neural Network 

Using the search functionalities of GRASE, PosMed supports the following four types of 

search: 

i. Direct search: GRASE searches genes located in the user’s chromosomal interval by 
performing a full-text search against the set of databases with the user’s keyword; i.e. 
the following search path is realised: 

keyword document gene chromosomal→ → → interval (Fig. 3(A)). 

ii. Inference search: By applying gene–gene relationships over the genes extracted by a 

direct search outside the user’s chromosomal interval, GRASE discovers further genes 

that are indirectly related to the keyword via gene–gene relationships; i.e. the following 
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search path is realised: 1 2keyword document gene gene chromosomal→ → → →  interval. 

The link between 1gene  and 2gene  is supported by omics data (Fig. 3(B)). 

iii. Cross-species search: This is an extension of the direct search (i) to the human genome. 

The connections from mouse genes to human genes are supported by orthologue data 

(Fig. 3(C)). 

iv. Cross-species inference search: This is an extension of the inference search (ii) to the 

human genome. As for (iii) above, orthologue data connect mouse genes to human 

genes (Fig. 3(D)). 

In the final stage, these types of search result are integrated into a ranked gene list by species. 

3. Statistical query language and its processor 

As mentioned above, the core data processing software component of PosMed, which 

performs statistical inference searching, is GRASE. GRASE is implemented as a prototype of a 

language processor that interprets and executes a program written in a query language named 

GRASQL. GRASQL is our extension of SPARQL, which is highly rated because it seems 

intuitively understandable for typical biologists who are not familiar with programming 

languages, but does not adequately support statistical evaluation of semantic links. 

GRASQL is designed as a language for ranking resultant entities such as genes to discover 

entities statistically associated with a user’s keyword. It does this by considering statistical 

values computed for each entity on the basis of sets of RDF triples hit by RDF graph pattern 

matching. In the rest of this section, we present an overview of GRASQL and discuss the 

programs in PosMed that use it. 

3.1 Overview of GRASQL  

We start with researcher ranking problems as introductory programs in GRASQL to show 

how a statistical evaluation is integrated with the existing RDF search. 

The first example is researcher ranking using an index called the h index to characterise a 

researcher’s scientific output (Hirsch, 2005). The h index is introduced as follows: ‘A scientist 

has index h if h of his or her Np papers have at least h citations each, and the other (Np - h) 

papers have at most h citations each’, where Np is the number of papers published over n 

years. Figure 4 shows a GRASQL query of this problem, which uses MEDLINE abstracts 

and citation relationships.  

First, we obtain a set rd of documents published by each researcher r in the MEDLINE 

abstracts published in 2005 or later, and then documents dc  that each cite document rd d∈ . 

This search implements the RDF graph pattern matching specified in the WHERE clause in 

Fig. 4, as shown in Fig. 5. Then, we compute the h index for each researcher. This statistical 

step cannot be realised with RDF graph pattern matching unless an external procedure 

against the sequences of solutions obtained in the first step is used. In Fig. 4, the 

EVALUATE clause, which is newly introduced in GRASQL, specifies a method of 

computing the h index ?h for each researcher ?researcher using the external statistical 

function ris:hIndex given in Fig. 6. Since MEDLINE does not contain citation 

information, the rip:hasCitation links should be generated on the bases of other 

resources, such as Google Scholar (Noruzi, 2005). 
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@prefix rio: <http://omicspace.riken.jp/GRASQL/> 
@prefix rip: <http://omicspace.riken.jp/GRASQL/predicate> 
@prefix ris: <http://omicspace.riken.jp/GRASQL/statistics> 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

@let  %documentSet rio:MEDLINE 
@let  %researcher rio:Researcher 

SELECT ?researcher ?h 

WHERE { 

?researcher rdf:type rio:Researcher ; 

    rip:hasDocument ?doc . 

?docCite  rip:hasCitation ?doc ; 

   rdf:type  %documentSet . 

?doc  rip:publishYear ?year ; 

  rdf:type  %documentSet . 

FILTER (?year >= 2005) 

} 

EVALUATE ?h FOR ?researcher { 
?h = ris:hIndex([?doc,?docCite]); 

} 

ORDER BY DESC(?h) 

Fig. 4. GRASQL query that ranks researchers by the h index using MEDLINE abstracts and 
citation relationships. The LET statement is written as @let %constantName value, where 
% constantName is the name of a constant that starts with %, and value is its constant value. 
The statistical function ris:hIndex in the EVALUATE clause is called for each 
?researcher value containing the sequences of solutions obtained by RDF graph pattern 
matching specified in the WHERE clause. [?doc,?docCite] is a sequence of pairs of 
?doc and ?docCite included in the sub-sequences of solutions concerning the value of 
?researcher when ris:hIndex is called. 
 

rip:hasCitation

?year

%documentSet

rip:publishYear

rdf:type

rdf:type

?doc

?docCite

?researcher

%researcher

rdf:type

rip:hasDocument

 

Fig. 5. RDF graph pattern specified in the WHERE clause in Fig. 4. 

The second example is for ranking researchers in a topic specified with a keyword. That is, 

we would like to rank researchers by considering Nr,k number of documents written by a 

researcher r including a keyword k. We call the number Nr,k the k index of researcher r. 

Figure 7 shows a query for this example in GRASQL. The documents ?doc written by the 

researcher ?r including the keyword %keyword are obtained not only by RDF graph 

pattern matching but also by calling an external program specified in the WHERE clause 
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shown in Fig. 8. The predicate rix:hasWord of this example is used to call a full-text search 

engine for finding MEDLINE abstracts including the keyword, and the results are cached in 
 

Statistic Function ris:hIndex(D): integer 
{ Input D is a sequence of pair of document doc and document docCite  
 which sites document doc.} 
begin 
  Count number Np of documents including the first element doc of D without overlap ; 
  val h:=0 ; 
  repeat 
    begin 
      h:=h+1; 
      Count number L of documents cited at least h documents utilising D ; 
      Count number M of documents cited at most h documents utilising D ; 

      if ( L ≥ h  and ( )pN M− ≤h  ) then break ; 

    end ; 
  return h  ; 
end ; 

Fig. 6. Algorithm that implements the statistical function ris:hIndex, which computes 
the h index with a sequence of pairs of document  doc and document docCite that cites 
document doc. 

 
 
 

@prefix rio: <http://omicspace.riken.jp/GRASQL/> 
@prefix rip: <http://omicspace.riken.jp/GRASQL/predicate> 
@prefix rix: <http://omicspace.riken.jp/GRASQL/procedure> 
@prefix ris: <http://omicspace.riken.jp/GRASQL/statistics> 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

@let  %documentSet rio:MEDLINE 
@let  %researcher rio:Researcher 
@let  %keyword “arabidopsis” 

SELECT ?researcher ?k 

WHERE { 

?researcher rdf:type  %researcher ; 
    rip:hasDocument ?doc . 

 ?doc   EXT:rix:hasWord %kayword ; 

   rip:publishYear ?year ; 

   rdf:type   %documentSet . 

FILTER (?year >= 2005) 

} 

EVALUATE ?k FOR ?researcher { 
?h = ris:hIndex([?doc,?docCite]); 

} 

ORDER BY DESC(?k) 

 

Fig. 7. GRASQL query that ranks researchers by k index using MEDLINE abstracts. 
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Fig. 8. RDF graph pattern specified in the WHERE clause in Fig. 7. 

RDF graphs. Further, the k index, namely the number of documents ?doc without 

duplication for each researcher ?r, is computed by calling the statistical function 

ris:countDistinct in the EVALUATE clause. 

 
 
@prefix rio: <http://omicspace.riken.jp/GRASQL/> 
@prefix rip: <http://omicspace.riken.jp/GRASQL/predicate> 
@prefix rix: <http://omicspace.riken.jp/GRASQL/procedure> 
@prefix ris: <http://omicspace.riken.jp/GRASQL/statistics> 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

@let  %keyword “type 2 diabetes” 
@let  %documentSet rio:MEDLINE 
@let  %geneSet rio:MouseGene 

SELECT ?gene ?p 

WHERE { 

?gene rip:hasDocument ?docGene ; 

   rip:hasDocument ?docIntersection ; 

   rdf:type %geneSet . 
?docKey EXT:rix:hasWord %keyword ; 
   rdf:type %documentSet . 
?docIntersection EXT:rix:hasWord %keyword ; 
   rdf:type %documentSet . 
?docGene rdf:type %documentSet . 
?docAll rdf:type %documentSet . 

} 

EVALUATE ?p FOR ?gene { 

?p = ris:statisticTest#FisherExactTest(?a,?b,?c,?d) ; 
?a = count(DISTINCT ?docIntersection) ; 
?b = count(DISTINCT ?docKey)-?a ; 
?c = count(DISTINCT ?docGene)-?a ; 
?d = count(DISTINCT ?docAll)-?a-?b-?c 

} 

ORDER BY ?p 

Fig. 9. GRASQL query for a direct search using Fisher’s exact test as a method of computing 
the statistical significance of the intersection ?docIntersection. 
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Fig. 10. RDF graph pattern satisfying the condition described in the WHERE clauses shown 
in Figs. 9 and 12. 

3.2 Statistical tests in the PosMed search 

Our method discovers entities significantly related to a user’s keyword by using the 
documents associated with the entities. In this study, we use ‘entity’ (or ‘document’) to clearly 
denote that the RDF name is a biomedical entity (or a document). The simplest method for 
discovering entities is (1) full-text search over documents to find those containing the user’s 
keyword, and then (2) obtaining entities associated with the documents found. This process is 

notated here as '  user s keyword document entity→ → . To compute the significance of the 

association between each entity and a keyword, we have introduced a statistical test based on 
the number of shared documents. More concretely, for each entity, the search engine first 
generates a 2×2 contingency table consisting of the number of documents 
a. matching both the keyword and the entity, 
b. matching the keyword but not matching the entity, 
c. not matching the keyword but matching the entity and 
d. matching neither the keyword nor the entity. 
Then, the engine applies a statistical test to the contingency table and computes a P-value, or 
the significance of the test. Finally, all resultant entities are ranked by their P-values. We call 
the discovery method described above a direct search, which is described by the query in 
Fig. 9. The statistical function ris:statisticalTest#FisherExactTest computes the 

P-value by constructing a 2×2 contingency table 
a b

c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 with its four arguments a ,b ,c and d, 

and applies Fisher’s exact test to the table. The simple method of evaluating the query 
shown in Fig. 9 is a sequential evaluation of the WHERE, EVALUATE and ORDER BY 
clauses in this order. In this method, the WHERE clause is evaluated to obtain all RDF 
graphs satisfying the condition in the WHERE clause. Figure 10 shows the RDF graph 
pattern with all variables and constants appearing in the WHERE clause. In practice, since 
the number of RDF graphs matching the pattern in Fig. 10 may be huge, this simple method 
of evaluation requires the implementation of an optimisation mechanism to achieve a 
functional language processor. Figure 11 is a chart that includes a Venn diagram of 
MEDLINE abstracts; it shows the relationship between each subset of MEDLINE abstracts 
and other RDF entities. This figure shows the primitive data structure for query searching as 
a set of relationships between each subset of MEDLINE abstracts and other entities such as 
%keyword and ?gene, rather than the relationships between each MEDLINE abstract and 
the other entities. In our example, to compute ?p, only four subsets—?docAll, ?docKey, 
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?docIntersection and ?docGene —of MEDLINE abstracts are necessary; they can be 
obtained by a specialised document search method such as the full-text search technique. 
Since this approach does not require a huge RDF graph space for computing the statistical 
significance, it opens up a new possibility for realising a practical GRASQL language 
processing system. Furthermore, the results of statistical analysis can be stored as a named 
graph using the CONSTRUCT statement instead of the SELECT statement. Figure 12 shows 
a CONSTRUCT query that generates RDF graphs with blank nodes as shown in Fig. 11. The 
generated named graph can be efficiently used as input data in SPARQL as well as in 
GRASQL. Statistical tests can also be used in a search to indirectly generate the associations 
between entities and a keyword via entity–entity relationships associated with documents. 
A typical example of entity–entity relationships is the co-citation frequencies of the entities 
in documents. The significance of the association between two entities can be computed by a 
statistical test of the number of documents, similar to a direct search. That is, for each entity–
entity relationship, a P-value is computed using a 2×2 contingency table that contains the 
number of documents 
a. matching both entities, 
b. matching the first entity but not matching the second, 
c. not matching the first entity but matching the second and 
d. matching neither entity. 
The entity–entity relationship can be obtained as a set of RDF triples using the query shown 
in Fig. 13. 
 

rdf:type
?gene

Evaluate

the statistical
significance of
the intersection

rix:hasWord

rip:hasDocument

?docIntersection

?docKey

?docGene

?docAll

Construct 

new triples

ripSingleSearch:hasWord

ripSngleSearch:hasPValue

ripSingleSearch:hasEntity

%documentSet

rdf:type

?p

%keyword

%geneSet
 

 

Fig. 11. Statistical diagram showing the relationships among the entities specified by the 
query in Fig. 12. New RDF triples are constructed by the query’s CONSTRUCT statement. 

We realise an inference search for the connection  
'user s keyword document entity document entity → → → →  by applying entity–entity 

relationships to the entities resulting from a single association search. The P-value Pd  of the 
associated entity is computed by 

 ( )( )1 1 1d s rP P P= − − −  (1) 

where Ps is the P-value of the first direct search, and Pr is the P-value of the second 
association search of the entity–entity relationship. 
Furthermore, several search connections, 

1 2'  user s keyword document entity document entity→ → → → , which reach the same entity 
entity2 via a different entity entity1, may be obtained. In this case, the P-value of the resultant 
entity entity2 can be computed by 
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2 2,entity i entity

i

P P= ∏  (2) 

where 
2,i entityP , ( )1 i n≤ ≤ are the P-values of n connections that finally reach 2entity . This 

model is based on the idea that a solution containing several connections may be more 
important than others. Another method is selecting the best connection by choosing the 
smallest P-value. In this case, the equation, 

 
2 2,min( )entity i entity

i
P P=  (3) 

is applied for computing the P-value. 
 
 
@prefix rio:  <http://omicspace.riken.jp/GRASQL/> 
@prefix rip:  <http://omicspace.riken.jp/GRASQL/predicate> 
@prefix rix:  <http://omicspace.riken.jp/GRASQL/procedure> 
@prefix ris:  <http://omicspace.riken.jp/GRASQL/statistics> 

@prefix rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

@prefix ripSigleSearch:   

  <http://omicspace.riken.jp/GRASQL/singleSearch> 

@let  %keyword “type 2 diabetes” 
@let  %documentSet rio:MEDLINE 
@let  %geneSet rio:MouseGene 

CONSTRUCT { 

[] ripSingleSearch:hasEntity ?gene ; 

 ripSingleSearch:hasWord %keyword ; 

 ripSingleSearch:hasPValue ?p . 

} 

WHERE { 

?gene rip:hasDocument ?docGene ; 

   rip:hasDocument ?docIntersection ; 

   rdf:type %geneSet . 
?docKey EXT:rix:hasWord %keyword ; 
   rdf:type %documentSet . 
?docIntersection EXT:rix:hasWord %keyword ; 
   rdf:type %documentSet . 
?docGene rdf:type %documentSet . 
?docAll rdf:type %documentSet . 

} 

EVALUATE ?p FOR ?gene { 
?p = ris:statisticTest#FisherExactTest(?a,?b,?c,?d) ; 
?a = count(DISTINCT ?docIntersection) ; 
?b = count(DISTINCT ?docKey)-?a ; 
?c = count(DISTINCT ?docGene)-?a ; 
?d = count(DISTINCT ?docAll)-?a-?b-?c 

} 

Fig. 12. GRASQL query including a CONSTRUCT statement, which is used to save the 
results of the statistical analysis described in the WHERE and EVALUATE clauses into a set 
of RDF graphs. In the CONSTRUCT statement, as in SPARQL, a blank node [ ] is used to 
describe the relationships among ?gene, %keyword and?p. 
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3.3 GRASQL representation of gene prioritisation in PosMed 

To describe the semantics of gene prioritisation in PosMed more precisely, we will write the 

direct search and inference search patterns shown in Figs. 3(A) and 3(B), respectively, in 

GRASQL. 

A GRASQL query for a direct search is written in Fig. 12. For convenience in enumerating 

examples, we first assume that the named graph  

http://omicspace.riken.jp/GRASQL/single/Mm/MEDLINE from the direct search 

obtained by the query in Fig. 11 is generated. We also assume that the named  

graph http://omicspace.riken.jp/GRASQL/relation/Mm/MEDLINE of entity–entity 

relationships obtained by the query in Fig. 13 is generated. 

Using these two named graphs, we write a query for an inference search of the connection 

'  user s keyword document entity document entity→ → → → , as shown in Fig. 14. 

 

 
@prefix rio:  <http://omicspace.riken.jp/GRASQL/> 
@prefix rip:  <http://omicspace.riken.jp/GRASQL/predicate> 
@prefix ris:  <http://omicspace.riken.jp/GRASQL/statistics> 

@prefix rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

@prefix ripInference:   

   <http://omicspace.riken.jp/GRASQL/inference> 

@let  %documentSet rio:MEDLINE 
@let  %geneSet rio:MouseGene 

CONSTRUCT { 

[] ripInference:hasEntity1 ?gene1 ; 

 ripInference:hasEntity2 ?gene2 ; 

 ripInference:hasPValue ?p . 

} 

WHERE { 

?gene1 rip:hasDocument ?docGene1 ; 

   rip:hasDocument ?docIntersection ; 

   rdf:type %geneSet . 

?gene2 rip:hasDocument ?docGene2 ; 

   rip:hasDocument ?docIntersection ; 

   rdf:type %geneSet . 
?docGene1 rdf:type %documentSet . 
?docGene2 rdf:type %documentSet . 
?docIntersection rdf:type %documentSet . 
?docAll rdf:type %documentSet . 

} 

EVALUATE ?p FOR ?gene1 ?gene2 { 
?p = ris:statisticTest#FisherExactTest(?a,?b,?c,?d) ; 
?a = count(DISTINCT ?docIntersection) ; 
?b = count(DISTINCT ?docKey)-?a ; 
?c = count(DISTINCT ?docGene)-?a ; 
?d = count(DISTINCT ?docAll)-?a-?b-?c 

} 

Fig. 13. GRASQL query that builds RDF triples of co-citation relationships of mouse genes 
from MEDLINE abstracts. 
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@prefix rio: <http://omicspace.riken.jp/GRASQL/> 
@prefix ris:  <http://omicspace.riken.jp/GRASQL/statistics> 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

@prefix ripSingleSearch:                   

<http://omicspace.riken.jp/GRASQL/singleSearch> 

@prefix ripInference:  

   <http://omicspace.riken.jp/GRASQL/inference> 

@let  %keyword “type 2 diabetes” 
@let  %geneSet rio:MouseGene 

SELECT ?gene2 ?gene1 ?p ?pTotal 

FROM NAMED <http://omicspace.riken.jp/GRASQL/single/Mm/MEDLINE> 

FROM NAMED <http://omicspace.riken.jp/GRASQL/relation/Mm/MEDLINE> 

WHERE { 

?x ripInference:hasEntity2 ?gene2 ; 

 ripInference:hasEntity1 ?gene1 ; 

 ripInference:hasPValue ?pInference . 

?y ripSingleSearch:hasEntity ?gene1 ; 

 ripSingleSearch:hasWord %keyword ; 

 ripSingleSearch:hasPValue ?pSingle . 

} 

EVALUATE ?p FOR ?gene1 ?gene2 { 
?p = 1-(1-?pSingle)(1-?pInference) 

} 

EVALUATE ?pTotal FOR ?gene2 { 
?pTotal = ris:multiPValue(?p) 

} 

ORDER BY ?pTotal ?p 

Fig. 14. GRASQL query for inference search for connection %keyword →  ?gene1 →  

?gene2 using named graphs generated by CONSTRUCT statements in advance. In this 
query, the two EVALUATE clauses are evaluated sequentially in the order of their 
appearance. In the example, P-value ?p for each pair (?entity1, ?entity2) is 
computed, and then P-value ?pTotal Total for each entity ?entity2 is computed. 
Finally, by evaluating the ORDER BY clause, the solutions of 4-tuples (?entity1, 
?entity2, ?p, ?pTotal) are sorted by ?pTotal and ?p. 

The function ris:multiPValue in the second EVALUATE clause is an implementation of 
Equation 2. Furthermore, ris:minPValue is an implementation of Equation 3 that does 
not appear in this article. 

4. Data preparation and implementation 

4.1 Data sources 

Currently, PosMed employs more than 20 million documents including MEDLINE (title, 
abstract and MeSH term), genome annotation, phenome information, PPI, co-expression, 
localisation, disease, drug and metabolite records (Table 1). 

4.2 High-accuracy manual curation for generating semantic links from genes to 
documents 

To develop a set of document databases for our original search engine for PosMed, we 
developed a method of mapping between genes and documents based on an NER (Leser & 
Hakenberg, 2005) technique that extracts named entities such as genes from a document. 
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A. PosMed 

 
No. of 

documents
Data sources Data Contents Reference 

MEDLINE 18 295 132 MEDLINE 
MEDLINE title, abstract and MeSH 
term 

Coletti & Bleich, 
2001 

Mouse mutant 12 911 BRMM Mouse phenotypes Masuya et al., 2007 

OMIM 21 136 OMIM Genetic disorder descriptions 
Amberger et al., 
2009 

HsPPI 35 731 HsPPI Protein-protein interaction 
Makino & 
Gojobori, 2007 

REACTOME 10 761 REACTOME Biological pathways 
Matthews et al., 
2009 

Mouse gene 
record 

58 768 MGI Gene descriptions (annotations) Blake et al., 2009 

Rat gene record 36 634 RGD Gene descriptions (annotations) Dwinell et al., 2009 

Human gene 
record 

35 362 HGNC Gene descriptions (annotations) Wain et al., 2002 

Metabolite record 18 045 KNApSAcK Metabolite descriptions Shinbo et al., 2006 

Drug record 1 015 Original data Drug descriptions  

Disease record 1 911 Original data Disease descriptions  

RIKEN  
researcher  record 

8 603 Original data
Names of researchers appear as 
authors in MEDLINE 

 

Total 18 534 098    

 
B. PosMed-plus 

 
No. of

documents
Data sources Data Contents Reference 

MEDLINE 18 295 132 MEDLINE 
MEDLINE title, abstract and 
MeSH term 

Coletti & Bleich, 2001 

At co-
expression 

44 082 ATTED-II 
Microarray based co-expression 
prediction 

Obayashi et al., 2009 

At localisation 8 404 SUBA-2 
Experimentally validated 
subcellular localisation 

Heazlewood et al., 
2007 

24 418 AtPID Protein-protein interaction Cui et al., 2008 
At PPI 

214 RAPID 
RIKEN Arabidopsis Phenome 
Information DB 

Kuromori et al., 2006 

1 697 TAIR 
Phenotype informations from 
TAIR 

Swarbreck et al., 2008 
At phenotype 

1 784 Literature Manually collected original data  

1 712 RFLP marker Harushima et al., 1998 
Rice markers 

15 623
RAP-DB 

SSR marker McCouch et al., 2002 

Homologus 
genes 

1 553 922
Original 
data 

Homologue genes between 
Arabidopsis and rice 

Hanada et al., 2008 

Arabidopsis 
gene record 

33 003
TAIR, 
UniProt 

Gene descriptions (annotations) 
Swarbreck et al., 2008 ; 
UniProt Consortium, 
2009 

Rice gene 
record 

29 389 RAP-DB Gene descriptions (annotations) 
Rice Annotation 
Project, 2008 

Total 20 009 380    

Table 1. Data descriptions for (A) PosMed and (B) PosMed-plus. 
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Since false-positive relationships may arise from a primitive NER method that simply 
checks for the appearance of a name in a document, we instead employ a full-text search 
engine for NER, with logical queries defined as a list of names or words related to a gene 
concatenated with logical operators such as AND, OR and NOT. Specifically, as a base query 
we computationally collected all the synonym names for each gene from The Arabidopsis 
Information Resource (TAIR) and UniProt, connected these synonyms with the logical OR 
operation and added ‘Arabidopsis’ with the AND operation. Using these base queries, we 
performed a full-text search against a set of documents including MEDLINE title, abstract 
and MeSH terms (Coletti & Bleich, 2001). To reduce false-positive hits and true-negative 
hits, we carefully edited these queries manually through trial and error by performing a  
full-text search for each trial against the document set. For example, to detect all MEDLINE 
documents for the AT1G03880 (cruciferin B, CRB) gene while eliminating false-positive hits 
with the homonym ‘CRB’, which represents ‘chloroplast RNA binding’, we defined the 
following query: (‘AT1G03880’ OR ‘CRU2’ OR ‘CRB’ OR ‘CRUCIFERIN 2’ OR 
‘CRUCIFERIN B’) AND (‘Arabidopsis’) NOT (‘chloroplast RNA binding’). 
This curation method is effective for updating with the latest publications. Once we curate a 
query, the query can be reused to extract gene–document relationships by performing a full-
text search against those new document sets. 

4.3 Implementation 
PosMed was developed as a web-oriented tool based on a client-server model in which 
users access the system with conventional web browsers. However, we recommend using 
Microsoft Internet Explorer 8 or later or Firefox 3 or later for Windows, and Safari 4 or later 
or Firefox 3 or later for Macintosh. The core software component GRASE must execute a 
search process by very rapidly interpreting a GRASQL query program. To develop GRASE, 
we employed Apache Lucene, a rapid full-text search engine with a rich query language, for 
testing the predicate rix:hasWord. Since a search process can be executed for each target 
entity in parallel, we use nine distributed computers to realise a high-throughput search. 
Therefore, we distributed the data for each entity; i.e. MEDLINE abstracts and mouse  
gene–mouse gene relationship data associated with each distributed mouse gene and 
researcher are distributed among the computers to achieve a parallel search. 

5. Applications of PosMed 

We describe examples illustrating the power of PosMed and PosMed-plus below. 

5.1 General usage of PosMed  
5.1.1 Search with user-specified keywords and chromosomal intervals 

A typical application of PosMed is searching with user-specified keywords and 
chromosomal intervals suggested by linkage analysis. As an example, we retrieved  
diabetes- or insulin-related genes in the chromosomal interval from 90 Mbp to 140 Mbp on 
chromosome 1 in the mouse genome (Fig. 15(A)). In this example, PosMed retrieved 
candidate genes ranked by the statistical significance between the user’s keyword and each 
gene. Although PosMed found > 470 000 documents, it returned results in 0,865 s. Users can 
download all the candidate genes together with the associated gene annotations by using the 
‘download rank list’ button in the blue box on the left (Fig. 15(D)). PosMed also supports an 
expert mode that allows users to select possible search paths and confirm the number of 
resulting genes for each search path. Clicking on a gene name listed in the gene search result 
 

www.intechopen.com



Prioritising Genes with an Artificial Neural Network Comprising Medical  
Documents to Accelerate Positional Cloning in Biological Research   

 

189 

(D)

(A)

(B)

(C)

Select genomic interval graphically

Clicking here displays Fig. 16

 
 

Fig. 15. Example search result for mouse genes against the query keyword ‘diabetes or 
insulin’ and the genomic interval between 90 Mbp and 140 Mbp on chromosome 1 in the 
NCBIm 37 genome. Users can construct queries at the top of the output display (A). To 
select a genomic interval visually, PosMed cooperates with the Flash-based genomic 
browser OmicBrowse. The ‘All Hits’ tab (B) shows a list of selectable document sets to be 
included in the search. As a default parameter, PosMed sets ‘Associate the keyword with 
entities co-cited within the same sentences’. If the total number of candidate genes is less 
than 20, PosMed will automatically change this to ‘Associate the keyword with entities co-
cited within the same document’ to show more candidates (B). Search results are ranked in 
(C). Users can download at most 300 candidate genes and their annotations from (D). 
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(A)

(B)

(C)

(D)

(E)

 

Fig. 16. Detailed document screen in PosMed. This page shows document sets supporting 
both the Adipor1 gene ranked fifth in Fig. 15(C) and the Adipoq gene. Gene descriptions are 
shown in (A). Users can select the type of documents from the mouse mutant, HsPPI, 
MEDLINE mouse gene record or REACTOME in (B). The bar chart represents the number of 
related documents per year. Red and blue indicate the number of documents with and 
without a user-specified keyword, respectively. All documents are shown at (D). The 
Adipor1-related genes are listed in (E). 
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page shown in Fig. 15(B) reveals the supporting evidence for each candidate gene. To confirm 
the expression pattern of candidate genes with a genome browser, we provide a link to our 
genome browser OmicBrowse (Matsushima et al., 2009; Toyoda et al., 2007) from the gene 
location (Fig. 15(C)). OmicBrowse covers genome versions for mouse, human, rat, Arabidopsis 
and rice, and each genome is mapped to omic-type databases and a total of 344 data sources. 

5.1.2 Search with phenotypic keywords 
PosMed also allows users to discover genes related to phenotypic keywords. For example, if 
users search on the keyword ‘rumpled leaves’ in Arabidopsis, PosMed-plus shows four 
known cases via the direct search and one new candidate gene via the inference search. For 
the four known cases, PosMed-plus shows the link to the RIKEN Arabidopsis Phenome 
Information Database (RAPID), and users can confirm the phenotypes by looking at 
pictures. PosMed-plus also shows the evidence documents in the inference path to the 
AT1G51500 candidate gene. In this case, AT1G51500 is retrieved via the AT1G17840 gene, 
which is one of the four known genes found in the direct search. They are highly connected 
with co-expression, PPI and co-citation data. 

5.1.3 Reference search with gene IDs 
It is difficult to retrieve all the appropriate references based on gene names because of the 
wide variation in synonyms. Moreover, sometimes the same abbreviated names are used for 
functionally different genes, causing false-positive hits. In PosMed, we carefully extracted 
these gene–reference relationships manually, as described above. Therefore, users can 
retrieve the curated results with the gene ID (e.g. MGI code and AGI code) even if the 
abstracts do not contain the gene ID itself. 

5.1.4 Search for omics data  

As shown in Fig. 16, PosMed integrates various data such as gene annotations, mouse mutant 
records and human PPIs. Users can select any document set (the default setting is to search 
everything) and retrieve the required data, all within the same interface. PosMed links not 
only to the original databases but also to OmicBrowse, which also assists users in accessing 
and downloading various omics data. 

5.2 In silico positional cloning after QTL analysis in rice 

To evaluate the efficiency of PosMed with a concrete example, we confirmed whether PosMed 
(PosMed-plus in this rice example) could successfully retrieve correct genes that have been 
identified by qualitative trait locus (QTL) analysis. Three examples are described below. 
Ren et al. (2005) isolated the SKC1 gene and through QTL analysis found that it encoded an 
Na+-selective transporter. In this example, we need to prioritise candidate genes without the 
functionally related keyword ‘transporter’. Instead of the functional keyword, we retrieved 
genes with the phenotypic keyword ‘salt tolerance’ and selected the genomic interval 
between the markers C955 and E50811 on chromosome 1. PosMed-plus returned the 
Os01g0307500 (cation transporter family protein) gene with a high ranking. This is because 
the keyword ‘salt tolerance’ was mapped to the sodium ion transmembrane transporter 
gene AT4G10310, and Os01g0307500 was suggested as a homologue of AT4G10310. 
Using a no-pollen type of male-sterile mutant (xs1), Zuo et al. (2008) revealed that mutant 
microspores are abnormally condensed and agglomerated to form a deeply stained cluster 
at the late microspore stage. This halts the microspore vacuolation process, and therefore, 

www.intechopen.com



 Artificial Neural Networks - Methodological Advances and Biomedical Applications 

 

192 

the mutant forms lack functional pollen. This mutation is controlled by a single recessive 
gene, VR1 (vacuolation retardation 1), which is located between the molecular markers 
RM17411 and RM5030 on chromosome 4. We searched for candidate genes with the 
phenotypic keyword ‘sterility’ in the suggested chromosome region. PosMed-plus 
suggested the Os04g0605500 gene (similar to calcium-transporting ATPase) as the 
homologue of the Arabidopsis calcium-transporting ATPase, AT3G21180. Since Schiøtt et al. 
(2004) found that mutation of AT3G21180 results in partial male sterility, we conclude that 
PosMed-plus found an appropriate candidate. 
Lastly, Zhang et al. (2008) found a male sterility mutant of anther dehiscence in advance, 
add(t), between the markers R02004 and RM300 on chromosome 2. In this search, PosMed-plus 
returned RNA-binding region RNP-1, Os02g0319100 and disease-resistance protein family 
protein Os02g0301800, with strong homology with Arabidopsis genes. PosMed-plus retrieved 
the Os02g0319100 gene as a homologue of Arabidopsis mei2-like (AML) protein 5, 
AT1G29400. As supporting evidence, Kaur et al. (2006) showed that multiple mutants of all the 
AML genes displayed a sterility phenotype. The other candidate gene, Os02g0301800, was 
derived via an inference search. First, PosMed-plus retrieved the keyword ‘sterility’ in a 
document describing the AT2G26330 gene. Next, AT2G26330 was linked to AT5G43470 as 
supported by three co-citations. Finally, Os02g0301800 was returned as a homologue of 
AT5G43470. PosMed-plus originally suggested the Os02g0301800 gene because AT2G26330 is 
linked to the keyword ‘sterility’ in a document. However, this document states that 
AT2G26330 causes aberrant ovule development and female-specific sterility. Since Zhang et al. 
(2008) focused on male sterility, we conclude that Os02g0319100 is the appropriate candidate. 

5.3 Other example results 
In RIKEN’s large-scale mouse ENU mutagenesis project, PosMed was used to prioritise 
genes and has contributed to the successful identification of more than 65 responsible genes 
(Masuya et al., 2007). PosMed is also used by researchers worldwide and has successfully 
narrowed the candidate genes responsible for a specific function after QTL analysis (Kato et 
al., 2008; Moritani et al., 2006). 

5.4 Further usage 

We here introduced PosMed as a web tool for assisting in the prioritisation of candidate 
genes for positional cloning. Using the search engine GRASE, we also implemented 
inference-type full-text search functions for metabolites, drugs, mutants, diseases, 
researchers, document sets and databases. For cross-searching, users can select ‘any’ for the 
search items at the top right on the PosMed web page. Since this system can search various 
omics data, we named it OmicScan. In addition to English, GRASE accepts queries in 
Japanese and French. More advanced usage of PosMed is explained in the PosMed tutorial 
available at http://omicspace.riken.jp/tutorial/HowToUseGPS_Eng.pdf.  

6. Discussion and conclusion 

To use not only well-formed knowledge in RDF but also non-well-formed document data on 
the Semantic Web, we have introduced statistical concepts into the existing RDF query 
language SPARQL using a literature mining technique for searching a vast number of 
documents written in a natural language. The core data structure in our method is that 
documents are linked with each entity accurately associated by NER with human 
refinement, namely manual curation. The advantages of this simple structure are as follows. 
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• Facility of keyword selection: An arbitrary keyword appears in at least one document. 
Thus, a user can choose a keyword that is not necessarily related to an entity the user 
wants to find. 

• Open-ended extensibility of documents: A new document can be added to the system if 
it is associated with at least one existing entity. Documents about an entity written from 
various viewpoints enrich knowledge so that the entity can be linked to the user’s 
keyword. 

• Open-ended extensibility of entities: A new entity can be added if at least one document 
associated with it exists. Therefore, entities of different categories can be introduced, 
which allows association search among them. 

• Open-ended extensibility of semantic knowledge: Existing biomedical data in RDF 
format can be introduced directly into a GRASQL query. 

Thanks to these advantages, PosMed can support various types of heterogeneous omics 
knowledge. 
PosMed has been widely used to prioritise candidate genes after QTL analysis in species 
including mouse and Arabidopsis and to successfully identify responsible genes. Our 
approach is novel compared to gene prioritisation systems such as BIOTLA (Hristovski et 
al., 2005), Manjal (Sehgal & Srinibasan, 2005) and LitLinker (Yetisgen-Yildiz & Pratt, 2006), 
since PosMed is based on P-values computed by Fisher’s exact test via tables of numbers of 
documents and used as correlation scores between a user’s keyword and the resulting genes 
for ranking. 
Our future work will include data extension of PosMed with not only well-formed omics 
knowledge in RDF but also non-well-formed document data on the Semantic Web using the 
statistical concepts of GRASQL.   
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