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1. Introduction 

Due to remarkable capabilities of artificial neural networks (ANNs) such as generalization 

and nonlinear system modeling, ANNs have been extensively studied and applied in a wide 

variety of applications (Amiri et al., 2007; Davande et al., 2008). The rapid development of 

ANN technology in recent years has led to an entirely new approach for the solution of 

many data processing-based problems, usually encountered in real applications (Hosseini et 

al., 2007). 

ANNs are characterized in principle by a network topology, a connection pattern, neural 

activation properties and a training strategy to process data. In this section, a brief 

explanation for four types of ANNs including Multi-Layer Perceptron (MLP), Radial Basis 

Function Network (RBFN), Generalized Regression Neural Network (GRNN) and Self-

Feedback Neural Network (SFNN) is provided. The MLP, RBFN and GRNN belong to a 

feed-forward class of neural networks (FFNN), while the SFNN belongs to the other 

important class of neural networks that is recurrent neural networks (RNN). Next, we 

investigate the diverse and innovative applications of these neural networks such as 

associative neural networks for recognition of analog and digital patterns, estimating the 

release profile of betamethasone (BTM) and betamethasone acetate (BTMA) and 

optimization of drug delivery system formulation. Regarding the first application, we 

propose a hybrid model consists of the SFNN in parallel with the GRNN. In the proposed 

hybrid model, storing of desired patterns is performed by employing a new one-shot 

learning algorithm put forward in the chapter.  It will be shown that this new hybrid model 

is able to perform essential properties found in associative memories such as generalization, 

completion and recognition of corrupted patterns. Moreover, a number of case studies are 

performed for the purpose of performance comparison between the hybrid model and 

others from different classes. For the recurrent associative memory class, the comparison is 
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made by NDRAM. For comparison with the feed-forward class, the MLP and for the 

competitive class, the ART2 are used. 

Regarding the second application, ANNs are used in pharmaceutical and pharmacokinetic 

areas to model complex interactions and predict the nonlinear relationship between causal 

factors and response variables. Specifically, several experiments are performed and an 

implant controlled-release system for corticosteroid drug delivery based on biodegradable 

polymer is designed. Next, the MLP, GRNN and RBFN are employed to model the release 

data and to predict the release profile of BTM and BTMA where in situ forming systems 

consist of poly (Lactide-co-glycolide), N-methyl-1-2-pyrolidon and ethyl heptanoat as a 

polymer, solvent and additive, respectively. Several simulations are presented to compare 

the potential of each neural network. It is demonstrated that the MLP, as a data modeling 

tool, is more reliable and efficient than RBFN and GRNN for estimating the release profile of 

BTM and BTMA. At the end of this chapter, we investigate the application of the GRNN and 

MLP for optimization of drug delivery system formulation. It would appear that GRNN is 

promising in providing better solutions for determining drug formulation. Therefore, the 

application of the ANNs in biomedical research will definitely increase in the near future. 

However, the point which is noteworthy is the fact that there is no single modeling 

approach to address all requirements. 

1.1 Multi-Layer Perceptron (MLP) 
The schematic diagram of an MLP illustrated in Fig.1. In the conventional structure of an 

MLP, a neuron receives its input either from other neurons or from external inputs (input 

vector). A weighted sum of these inputs constitutes the argument of a nonlinear activation 

function. The resulting value of the activation function is the neural output. In this structure, 

the weights correspond to the synapses in a biological neuron, while the activation function 

is associated with the intracellular current conduction mechanism in the soma. An artificial 

neuron is an oversimplified but useful approximation of the biological neuron. This simple 

model ignores many of the characteristics of its biological counterpart, e.g. it does not take 

into account the time delays that affect the dynamics of the system (Amiri et al., 2009b). 

In Fig.1, the output Y of the MLP is a vector with n components determined in the terms of 

m components of an input vector X and l components of the hidden layer. The mathematical 

representation may be expressed as: 
 

 
1 1

1,...,
l m

i ij jk k wj vi
j k

y v g w x b b i n
= =

⎡ ⎤⎛ ⎞
= + + =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑  (1) 

 

 

where vij and wjk are synaptic weights, xk is kth element of the input vector, g(.) is an  

activation function and b is the bias which has the effect of increasing or decreasing the net 

input of the activation function depending on whether it is positive or negative, 

respectively. It has been shown that the MLP with a tanh nonlinearity or other monotonic 

nonlinearities is a universal approximator to any arbitrary input-output mappings provided 

that some reasonable conditions on the nonlinear mapping are satisfied (Chen and Chen 

1995).  
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Fig. 1. The MLP structure.  

1.2 Radial Basis Function Network (RBFN) 
Radial basis function neural networks are special classes of the feed-forward neural network 
models. RBF network is a three-layer network, where each hidden unit implements a radial 
activation function (a nonlinear transfer function) and each output unit implements a 
weighted sum of hidden units’ outputs. The structure of the RBF network is shown in Fig. 2. 
The output of ith neuron in the output layer of the RBF network is determined as follows: 

 ( )
1

( ) ; 1,...,
M

i ij j
j

y x w x c i mϕ
=

= − =∑  (2) 

where (.)ϕ  is the basis function which is described using jx c− , jc is the center vector for 
hidden neuron j and wij are is the weight between the node j of the hidden layer and the 
node i of the output layer, m is the number of nodes in the output layer. The norm is 
typically taken to be the Euclidean distance and the basis function is taken to be Gaussian:  

 ( )
2

2
exp

2

j

j
j

x c
x cϕ

σ

⎧ ⎫−⎪ ⎪− = −⎨ ⎬
⎪ ⎪⎩ ⎭

 (3) 

where jσ is the width parameter of the jth  hidden unit in the hidden layer (Amiri et al., 
2009). 
In an RBF network there are three types of parameters that need to be chosen to adapt the 

network for a particular task: the center vectors jc , the output weights wij , and the RBF 

width parameters jσ . In this way, the training process is usually divided into two steps: 
 

=  
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Fig. 2. The RBFN architecture. 

First, the center and width parameters of the hidden layer are determined using only the input 
data set and by utilizing unsupervised training algorithm such as K-means (Moody and 
Darken, 1991), decision trees (Kubat, 1998) and self-organizing feature maps (Robert and 
Hewlett, 2001). Second, the output weights (connecting the hidden layer with the output layer) 
are determined using both input and output data and by Singular Value Decomposition (SVD) 
or Least Mean Squared (LMS) algorithms (Bing and Xingshi, 2006). Both steps are relatively 
fast when compared to back-propagation training algorithm. The number of basis functions 
controls the complexity and the generalization ability of the RBF network. RBF networks with 
too few basis functions cannot fit the training data adequately due to limited flexibility. 

1.3 Generalize Regression Neural Network (GRNN) 

GRNNs belong to the class of neural networks widely used for the continuous function 
mapping. The main function of a GRNN is to estimate a linear or nonlinear regression 
surface on independent variables (input vectors) U, given the dependent variables (desired 
output vectors) X. That is, the network computes the most probable value of an output, x̂ , 
given only training vectors U. Specifically, the network computes the joint probability 
density function of U and X. Then the expected value of X given U is expressed as 
(Wachowiak et al., 2001): 

 

( , )

[ ]

( , )

X f U X dX

E X U

f U X dX

∞

−∞
∞

−∞

=
∫

∫
 (4) 

An important advantage of the GRNN is its simplicity and fast approximation procedure. 
Another attractive feature is that, unlike back-propagation based neural networks (BP-NN), 
GRNN does not converge to local minima (Specht, 1991). In addition, the training process 
with a GRNN-type algorithm is much more efficient than with the BP-NN algorithm 
(Huang and Williamson, 1994).   
The topology of a GRNN is described in Fig. 2, and it consists of the following four parts. 
First, there is an input layer that is fully connected to the pattern layer. Second, there is a 
pattern layer that has one unit for each pattern. It computes the pattern Gaussian function 
expressed by 
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 2 2 2exp[ 2 ] ; ( ) ( )T
i i i i ih D D u U u Uσ= − = − −  (5) 

where σ denotes the smoothing parameter, u is the input presented to the network and Ui is 
each of the training vector. Third, there is a summation layer that has two units N and P. 
The first unit computes the weighted sum of the hidden layer outputs. The second unit has 
weights equal to "1", and therefore sums exponential terms (hi) alone. Fourth, there is an 
output unit that divides N by P to provide the prediction result ( x̂ ). 

 
1 1

ˆ /
n n

i i i
i i

x h X h
= =

= ∑ ∑  (6) 

In fact, this is the neural implementation of (4) (Amrouche and Rouvaen, 2006). Overall, the 
GRNN has only a single parameter (σ) that needs to be determined. 
  

 

Fig. 3. The GRNN architecture. 

1.4 Self-Feedback Neural Network (SFNN) 
A self-feedback neural network (SFNN) is a simple recurrent, two-layer network, where the 
output layer contains self-feedback units. In this model, there are no interlinks among units 
in the feedback layer. The self-feedback connection of units ensures that the output of the 
SFNN contains the complete past information of the system. Since there are no interlinks 
among units in the feedback layer, the SFNN has considerably fewer weights than the fully 
recurrent neural network and the network is noticeably simplified (Ku & Lee, 1995). 
The architecture of the SFNN model is depicted in Fig. 4. The mathematical description is as 
follows (Ku and Lee, 1995; Amiri et al., 2007): 

 
1

( ) ( ) ( 1)
n

I D
j ij i j j

i

S k W u k W X k
=

= + −∑  (7) 

 ( )( ) ( )j jX k f S k=  (8) 

 where ( ) ( 1,..., )iu k i n=  denotes the external input, and ( ) ,jS k ( )jX k ( 1,..., )j m=  are the 
state variable and output of the jth unit of the output layer, respectively. ( )f λ  is the sigmoid 
activation function defined as ( ) 1 /(1 )f e λλ −= + . ,  I D

ij jW W  are connection weights from 
input to output layer and within the output layer, respectively. 
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Fig. 4. The Structure of the SFNN model. 

2. Associative memory 

Associative neural networks (AsNN) are dynamical nonlinear systems capable of processing 
information through the evolution of its state in a high-dimensional state space (Amiri et al., 
2008a). The aim of such networks is to retrieve a previously learned pattern from an 
example which is similar to, or a noisy version of, one of the previously presented patterns. 
Therefore, these networks have the property of being robust to noisy patterns or partial 
information. The main requirement associated with AsNNs is that every given memory 
should be an asymptotically stable equilibrium (attractor) of the system (Amiri, Menhaj, & 
Yazdanpanah, 2008b; Atiya & Abu-Mostafa, 1993). These memory patterns are generally 
represented by binary (digital) or real-valued (analog) vectors. If the learning is performed 
adequately, such networks are able to generalize to new stimuli. In this way, they can 
retrieve a previously learned pattern from an example that is similar to one of the 
previously presented patterns (Chartier et al., 2009). In other words, AsNNs provide 
distributed storage of information, within which every neuron stores fragments of 
information needed to retrieve any stored data record. This property of associative neural 
networks makes them suitable for a variety of applications such as image segmentation 
(Cheng, et al., 1996) and recognition of chemical substances (Reznik, et al., 2005).  
This subject has received most research attention after the study of Hopfield (1982), so that 
many networks have been proposed to store and properly recall patterns and images. 
However, few networks can store both analog and digital patterns simultaneously. An 
example of a model with analog pattern storage capabilities is the nonlinear dynamic 
recurrent associative memory (NDRAM) (Chartier & Proulx, 2005), which is based on an 
unsupervised time-difference covariance matrix. This model is able to develop both analog 
and bipolar attractors. Moreover, the model is able to develop less spurious attractors and 
has a better recall performance under random noise than many Hopfield-type neural 
networks (Chartier & Proulx, 2005). 

1
Z

−

⇒ f )(kX)(kS
)(kU

D
jW

∑
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SFNNs are simple recurrent neural networks that have difficulties learning and storing 
analog and digital patterns as associative memories (Amiri, et al., 2008b). On the other hand, 
GRNNs can find a solution for any given problem, but lack a recurrent structure to filter 
noise. Therefore, in this chapter a hybrid model of SFNN and GRNN for associative recall of 
analog and digital patterns is proposed. 

2.1 The hybrid model 

Fig. 5 illustrates the hybrid model of the SFNN and GRNN. This model is used as an 
associative neural network to store the desired pattern representations as asymptotically 
stable equilibrium points of the SFNN. The new hybrid model can then perform 
classification over noisy versions of the original patterns. To achieve this, first the number of 
output units is determined as a function of the number of inputs. Based on the mathematical 
analysis presented by Amiri and colleagues (2007, 2008, 2010), each self-feedback unit can 
store a maximum of two asymptotically stable fixed points, a network with m self-feedback 
unit can store 2m stable fixed points. Therefore, the number of stable fixed points (2m) should 
be greater or equal to the number of desired patterns. In other words, m should be set to the 
smallest integer value such that m>=log2 (number of patterns). The selection of network 
parameter values is performed based on the training algorithm which will be presented in 
the next section. Next, we proceed with storing pattern representations in the SFNN and 
selecting the initial conditions of its dynamical equations. In our proposed approach, first, 
lower dimension representations of the patterns are stored as the asymptotically stable fixed 
points of the SFNN. Then, we utilize the input patterns and corresponding desired initial 
conditions, i.e., lower dimension representations, of the SFNN as the input and desired 
output vectors of the GRNN, respectively. These desired initial conditions are obtained by 
selecting an arbitrary point in the attraction domain of each asymptotically stable 
equilibrium point. In the recognition stage, each new pattern is applied first to the GRNN in 
order to extract the corresponding approximate initial condition ( ˆ

jx ) that will be used for 
the SFNN ( ˆ ˆ(0)j jx x= ). Next, the new input pattern is applied to the SFNN in conjunction 
with appropriate initial condition (given by GRNN). Then, the output is fed back to the 
input; (7) and (8) are computed recursively until a predefined threshold is reached. The 
initial states of the system are set equal to output given by the GRNN approximation.  
 

 

Fig. 5. The structure of the proposed hybrid model. It is used as an associative neural 
network.  

2.2 Learning and retrieval procedures 
Based on the stability analysis performed by Amiri and collaborators (2007, 2008, 2010), a 
simple and efficient procedure for storing and recovering the desired patterns for the 

www.intechopen.com



Artificial Neural Networks - Methodological Advances and Biomedical Applications 

 

100 

proposed hybrid model is presented. This algorithm is written for the general case where 
there are n input nodes and m self-feedback units in the output layer. It should be 
mentioned that m should be set to the smallest integer value such that 2m>= number of 
patterns. The one-shot learning algorithm is as follows: 

1. Choose an arbitrary value greater than 4 for the self-feedback coefficient of each self-
feedback unit ( 4D

jw > ).  
2. Regarding the selected value for D

jw  calculate following terms for each self-feedback 
unit: 

1

4 42
ln

2 2

D D D D
j j j j

j D D
j j

w w w w
b

w w

⎛ ⎞+ − + −⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

 2

4 42
ln

2 2

D D D D
j j j j

j D D
j j

w w w w
b

w w

⎛ ⎞− − − −⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (9) 

( 1,..., )j m=  

3. To use the maximum capacity of the SFNN, adjust the value of parameter bj as bj1<bj<bj2. 
In this way, each self-feedback unit will code two patterns, and resulting in a small 
network even for a large number of patterns.  To do this, compute bj= α bj1 + (1- α) bj2 (0< 
α<1) to ensure that bj1<bj< bj2. Furthermore, D

jw and α can be set to any arbitrary value 
satisfying those conditions mentioned previously (i.e., D

jw >4 and 0< α<1). Even, these 
values can be same for all self-feedback units. 

4. To estimate the boundaries of attraction domains for each attractor in each dimension 
use the following equations: 

 

1

4

2

D D
j jD

j j j
D
j

w w
s w b

w

⎛ ⎞+ −⎜ ⎟> +⎜ ⎟⎜ ⎟
⎝ ⎠     ( 1,..., )j m=  

(10)

 

2

4

2

D D
j jD

j j j
D
j

w w
s w b

w

⎛ ⎞− −⎜ ⎟< +⎜ ⎟⎜ ⎟
⎝ ⎠  

 

5. Based on these selected values and for every j, set  

( )( 1)
1

( ) ; ; 1,..., ; 1,... ,
n

I D I I
ij j j l i j ij

l

w b w u w w i n j m+
=

= = = =∑ to update the input weight 

matrix (WI) for each input vector. This will end the process of SFNN model training. 
6. In the recovering stage, (2) and (3) are used to calculate the output of the SFNN model. 

It is noted that for each input vector, these recursive equations should be computed 
until the SFNN converges to one of its stable states, i.e., a predefined threshold is 
reached.  

www.intechopen.com



Applied Artificial Neural Networks: from Associative Memories to Biomedical Applications 

 

101 

3. Simulation results  

In this section, simulations on auto-associative tasks are presented in order to assess the 
efficiency of the hybrid model. We have studied two tasks. The first task consists of learning 
and retrieving a numeral data set (bipolar representation) while the second task consists of 
learning a pictorial data set (analog representation). Gaussian basis functions with constant 
smoothing parameters (σ=0.85) were used for the GRNN throughout this study. All 
experiments were implemented in MATLAB (ver.7) on a personal computer with AMD 
Athlon 64 bit Processor 3500+. 

3.1 Digital numbers  
As shown in Fig. 6, the training set used here consists of ten noise-free images. The images 
represent 8x8 digital numbers (0 to 9). Each pattern has the value of u(0) initially. Using the 
training algorithm described previously, these patterns are stored in the SFNN. Since there 
are ten patterns, the smallest integer value that satisfies 2m>=10 is m=4, therefore, four self-
feedback units are needed. Parameters w1D … w4D can be determined based on step 1 of the 
training algorithm. In the examples, shown in Fig.7, the parameter values were set to 
w1D=10, w2D=20, w3D=30, w4D=40. The connections of the input weight matrix will then be 
selected using these values and the ones from parameters bj. Based on steps 2 and step 3 of 
the training algorithm, the values of the parameters bj can be calculated and are given in 
Table 1. It is noted that the fifth and sixth rows of this table are not applicable to this 
simulation, because only four self-feedback units are needed. Finally, as described in step 5, 
the values of the weight matrix can be computed using the input patterns and the selected 
network parameters.  
Storage of the desired patterns in the SFNN is continued by selecting the initial conditions of 
its dynamical equations. In this way, we select an arbitrary value from the basin of attraction 
of the attractor. The boundaries of each attraction domain are estimated using (10) and are 
given in Table 1. In order to select an arbitrary initial condition, it is sufficient to add a small 
arbitrary value, such as 1.5, to each of these calculated borders. It should be mentioned that 
sixteen 4-component initial conditions can be generated based on different combinations of 
sjk , but since there are only ten patterns to be stored, only ten initial conditions are needed. 
These selected initial conditions play the role of desired outputs for the GRNN. Considering 
the desired patterns (8x8 digital numbers) as the input vectors and these ten 4-component 
initial conditions as the desired output vectors, GRNN is trained to approximate the 
mapping function between input and desired output.  
In the retrieval stage (step 6), each new pattern is applied first to the GRNN. The output will 
then be used as the approximate initial conditions of that pattern. These initial conditions 
are used to initiate the dynamical equations of the SFNN. Next, this new input pattern is 
applied to the SFNN which is driven by appropriate initial conditions. Equations (7) and (8) 
are computed recursively until the difference between each iteration is less than 10-5. 
The numeral data set was tested for several cases of noisy patterns. The noise in each case 
was measured by the percentage of pixels that were altered from 0 to 1 and vice versa. Thus, 
if the noise was 25%, 16 out of the 64 randomly chosen pixel values were given opposite 
values. Several noise levels were tested, but in the interest of simplicity, we merely mention 
the case of 25% of noise, as presented in Fig.7. In this situation, the percent of recognition 
(PR) is 100%. As can be seen from this simulation, the results are remarkable, especially 
when one observe the extremely poor quality of the testing samples. 
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Fig. 6. Ten stored digital patterns. Each of them is an 8x8 image.  

 

 

Fig. 7. Some noisy versions of each digital number are provided for the hybrid model. The 
percent of noise for this example is 25%. 

 

bij sij 

b11=-0.681     b12=-0.319 b1=-0.464 s11>4.23    ;    s12<-3.51 s11=5.73        s12= -5.01 

b21=-0.803     b22=-0.197 b2=-0.439 s21>10.15  ;    s22<-7.73 s21=11.65      s22=-9.23 

b31=-0.854     b32=-0.146 b3=-0.429 s31>16.09  ;    s32<-11.84 s31=17.59      s32=-13.34 

b41=-0.883    b42=-0.117 b4=-0.423 s41>22.04  ;    s42<-15.9 s41=23.54      s42=-17.41 

b51=-0.902    b52=-0.098 b5=-0.420 s51>28.00  ;    s52<-19.96 s51=29.50      s52=-21.46 

b61=-0.915    b62=-0.085 b6=-0.417 s61>33.97  ;    s62<-24.00 s61=35.47      s62=-25.50 

Table 1. Parameter values for three sets of simulations. 

For each percent of noise (PN), 100 noisy patterns are randomly generated and the PR for 
each noisy pattern is calculated. Performance was then averaged. Fig. 11 illustrates the 
results for digit “1” and “8”. As can be observed, when the PN is small, the model can 
recognize all patterns (PR=100%). As PN increases, the PR decreases. Even when the PN of 
each digit is about 35%, the PR is still greater than 80%. 
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Fig. 8. Correct retrieval percent versus percent of noise for stored patterns by using the 

proposed hybrid model. For each PN value, simulations on 100 randomly generated 

patterns were performed. Solid line is for digit “1” and the dashed line is for digit “8”. 

3.2 Grayscale pictorials 
The last set of simulations for evaluating the abilities of the proposed hybrid model in 

recognition of corrupted patterns are carried out in this section. Similar to the previous 

example, the six patterns shown in Fig. 9 are stored as stable memories in the SFNN by the 

learning algorithm developed previously. Since there are six patterns, we need 3 self-

feedback neurons for the SFNN. The parameter values of the SFNN are the same as 

preceding examples and are given in Table 1 (the first three rows of the Table 1).   Several 

simulations for recovering various corrupted patterns with different Euclidean Distance 

(ED) were performed. ED is defined as 2

1

1
( )

N

i i
i

ED op cp
N =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  where opi and cpi are 

values of the ith element of an original pattern (noise-free pattern) and a corrupted pattern, 

respectively. Several simulations for retrieving various corrupted images with different EDs 

were performed. The results of one of these simulations are depicted in Fig.10. As can be 

deduced from this experiment, the results are significant, since the ED value of noisy 

patterns is 0.34 which completely destroy the original images and produce extremely poor 

quality patterns. Fig. 11 shows some corrupted versions of the ‘‘Lena’’ and ‘‘Man with 

Camera’’ patterns and their corresponding ED values. Similar to previous examples, for 

each selected ED, we randomly generate 100 patterns. Each time, the model runs from a 

generated pattern and we check whether it is correctly recognized (we compute PRs). Next, 

the average value of these 100 PRs is calculated for “Lena” image. The result is illustrated in 

Fig.12. As can be realized from this figure, increasing the ED value leads to reducing the PR 

value. When the ED value is about 0.46, the PR value is still greater than 80% and reveals the 

advantages of the proposed model. 
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Fig. 9. Six stored patterns. Each of them is a 256 gray-level 32x32 image.  

 
 
 
 
 

 
 

 
 

 

Fig. 10. Some noisy versions of each grayscale pictorial are provided for the hybrid model. 
(ED=0.34) 

www.intechopen.com



Applied Artificial Neural Networks: from Associative Memories to Biomedical Applications 

 

105 

  

  
                                        ED= 0.289                 ED= 0.331               ED= 0.423 

Fig. 11. Examples of corrupted patterns ‘‘Lena’’ and ‘‘Man with Camera’’ and their ED values.  
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Fig. 12. Correct retrieval percent versus the ED for “Lena” image by using the proposed 
model. For each ED value, simulations on 100 randomly generated patterns are performed.  

3.3 Comparison with other models 
In this section, a number of case studies are performed for the purpose of performance 
comparison between the proposed hybrid model and others from different classes including 
Hopfield-type network (NDRAM (Chartier and Proulx, 2005), Storkey et. al, (Storkey and 
Valabregue, 1999)) and competitive model (ART2 (Carpenter and Grossberg, 1987, 2003)). In 
addition, the model was also compared with MLP, Bégin and Proulx (Bégin and Proulx, 1996) 
and Hopfield (Hopfield, 1982). Since the results of these networks were poorer than the 
previous three models, and in some cases they could only be used for one type of simulation 
(for instance, binary patterns), for the sake of simplicity we did not include their results in the 
chapter. Interested readers can refer to Amiri and colleagues (2007, 2008, 2009, 2010).  
In these simulations, all the neural network models learn forty correlated binary patterns 
placed in 64x64 grids. Those patterns present a good variety of correlation with each other. 
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Fig. 13(a) illustrates the patterns. Each pattern is converted into a vector of 4096 elements. 
For NDRAM and Storkey et al. models, a white pixel is given a value of -1 and a black pixel 
is given a value of +1, while, for the remaining models a white pixel is given a value of 0 and 
a black pixel is given a value of +1. For NDRAM model, all the parameters are set according 
to (Chartier and Proulx, 2005). Based on the preceding examples, six self-feedback units are 
required for the hybrid model to store these forty patterns. The parameter values of the 
SFNN are given in Table 1. For ART2 and for the Storkey and colleagues, the parameters are 
set according to (Freeman, 1993) and (Storkey and Valabregue, 1999), respectively. Both 

models have to find the weights in a 4096×4096 matrix.  
After the learning, the network’s performance is evaluated using two different recall tasks. 
The first task consisted of recalling noisy inputs. A noisy input is obtained by generating a 
random vector normally distributed with a mean of zero and a variance of P added to a 
given learned prototype. For the simulation, the proportion of noise varied from 0.5 to 19. 
The second recall task consists of testing the network with random pixel flip noise. For this 
trial, we flip a fixed number of pixels randomly and let the network self-stabilize. Fig. 13(b) 
depicts a noisy version of the picture “man” versus the variance of the applied noise.  Fig. 
13(c) illustrates noisy versions of the picture of an “octopus” as a function of the number of 
pixel flips. It is obvious that occluded or partially altered patterns are similar to pixel flips. 
In addition, the flipped pixels situation is more close to reality; since flipped pixels could be 
interpreted as misclassified features of an attribute vector. 
Each recall trial is accomplished according to the following procedure: 
1. A distorted patterns bank is constructed by an addition of normally distributed noise or 

a random pixel flips to each pattern. 
2. A pattern is randomly selected from the distorted patterns bank. 
3. Each model is run to check whether the corrupted pattern is properly recognized 

(calculation of PR). 
4. Steps (1) to (3) are repeated for 100 times and the PR for each trial is computed. 
5. The average value of these 100 PRs is considered as the factual value of recognition for 

that percent of noise. 
6. Steps (1) to (5) are repeated for the next value of noise. 
Results and discussion: Fig. 14(a) shows that the performance of the hybrid model is better 
than those of NDRAM, Storkey and ART models when the recall is accomplished from the 
normally distributed random noise. For example, even under a noise proportion of 15.0, the 
hybrid model still has a performance of about 85%, rather than only 63% for the NDRAM 
model 2.5% for the ART and 70% for Storkey. If we look at the performance for the random 
flip noise task (Fig. 14(b)), one can easily notice that again the hybrid model performs better 
than NDRAM, Storkey and ART2 models. To illustrate, at a noise proportion of 44% (1800 
pixel flips), the hybrid model still reaches 98% of good recall, rather than 77% for the 
NDRAM model, 2.5% for the ART and 96.9% for Storkey. In this random flip noise task, the 
hybrid model and Storkey model closely matched each other.  It should be mentioned that 
according to (Chartier and Proulx, 2005) the performance of the NDRAM is much better 
than other models such as Kanter and Sompolinsky (Kanter and Sompolinsky, 1987), 
Diederich and Opper (Diederich and Opper, 1987).   
In comparison to the above-mentioned models, the hybrid model has at least four significant 
advantages: First, just like any one-shot learning procedure, the training process of the 
hybrid model is much faster than NDRAM, and Storkey. This leads to the reduction of 
computational time and cost. Second and more important is that, contrarily to Hopfield-type 
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(a) 

 
(b) 

 
(c) 

Fig. 13. (a) Forty 64x64 digital patterns used for performance comparison of NDRAM,  ART2 
and Storkey et al., with the proposed hybrid model. Density graphics illustrating different 
proportion of (b) normally distributed noise for the picture "man". Values are the variance of 
the applied noise. (c) Pixel flips noise for the picture "octopus". Values are the number of 
pixels that are flipped. 

N = 0 N = 1800N = 600 N = 1200

P = 0 P = 1 P = 13P = 7
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associative memory, the hybrid model does not have any spurious attractor (like ART2) since 
the initial conditions which are used to initiate the dynamical equations of the SFNN are 
determined through equations (10). In other words, using a mapping from the original input 
into lower mutually exclusive attraction domain enables the hybrid model to overcome the 
problem of spurious attractors. The third advantage of the hybrid model is that, unlike in 
Hopfield-type networks (e.g. NDRAM and Storkey), the performance does not decrease as the 
memory load increases. In the hybrid model (as well as the other models) the memory load 
will affect the performances indirectly by the degree of correlation between the stimuli. The 
fourth distinct characteristic is the lack of any additional adjustment when the hybrid model 
encounters a digital or real-valued vector as the input pattern, unlike the ART2 model that 
needs a 5-layered preprocessing step to deal with real value vectors. 
 

 
(a) 

 

 
(b) 

Fig. 14. (a) Performance percentage in function of random noise proportion (b) Performance 
of correct categorization in function of the number of pixels flips. As these simulations 
shows, the hybrid model performs much better than NDRAM, ART2 and Storkey in 
recognition of corrupted patterns. 
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4. Biomedical applications 

Recently there has been increased interest in applications of artificial neural networks 
(ANNs) in biomedical researches (Hosseini et al., 2007, Amiri et al., 2009, Rafienia et al., 
2010).  ANNs are used in pharmaceutical and pharmacokinetic areas to model complex 
relationships and to predict the nonlinear relationship between causal factors and response 
variables. The distinct features of the ANN make this approach very useful in situations 
where the functional dependence between the inputs and outputs is not clear. The basic 
concepts of the multiobjective simultaneous optimization technique of drug formulations, 
by utilizing ANN, were reviewed by Takayama and colleagues (2003). The applicability of 
the ANN in modeling and predicting drug release profiles was investigated to evaluate an 
experimental study in transdermal iontophoresis (Lim et al. 2003). An ANN-based system 
was reported to predict peaks and troughs of gentamicin serum concentrations based on a 
set of empirical data, and the results were comparable with those using nonlinear mixed 
effect modeling (Brier et al. 1995). Furthermore, some researchers focused on developing 
pharmacokinetic models to predict plasma drug concentration based on ANNs and 
calculate the estimated concentrations of heparin for patients undergoing hemodialysis 
treatment (Valafar & Valafar, 1999). In the following, we review and discuss two recent 
applications of ANNs in biomedical applications including estimation of Betamethasone 
release profiles from an in situ forming system based on the biodegradable polymer (PLGA 
75/25) and optimization of a new drug delivery formulation. 

4.1 Estimation of the release profile of drugs 
Considering the recent researches published by Amiri and colleagues (2009) and Rafienia 
and collaborators (2010), here, we presented an ANN based approach to estimate the 
nonlinear correlation between the drug loaded formulations and the release profiles. 
Specifically, the potential of three FFNNs including MLP, RBFN and GRNN to estimate the 
release profiles of two kinds of drugs, i.e. betamethasone and betamethasone acetate is 
compared and discussed. The 22 data samples used to train each network were collected 
from the in vitro experiments of drug release evaluations where in situ forming systems 
consist of poly (lactide-co-glycolide), N -methyl-1-2-pyrolidon, and ethyl heptanoat as a 
polymer, solvent, and additive, respectively. The nonlinear principal component analysis 
(NLPCA) feature extraction technique was utilized to extract three features from each 
release graphs.  In this way, as proposed by Kramer, a 3-hidden layer auto-associative 
neural network is used as the NLPCA structure which is shown in Fig. 15.  
In a 3-hidden layer NLPCA (Fig.15), the input vector is transferred to the encoding neurons in 
the first hidden layer. The hyperbolic tangent function (tanh) is used as the transfer function in 
all of the neurons in hidden layers and output layer. Basically, a nonlinear function maps from 
the higher dimension input space to the low dimensional bottleneck space, followed by an 
inverse transform mapping from the bottleneck space back to the original space represented by 
the outputs. This is an auto-associative network, where the target and input data sets are the 
same. The cost function, which is the mean square error (MSE) between the outputs and the 
inputs, is minimized by adjusting the weight matrices of the neural network. Data 
compression is achieved by the bottleneck. The bottleneck neurons in Fig.15 give the nonlinear 
principal components of the input vectors. The numbers of encoding and decoding neurons 
are adjustable for the optimal fit, but are set the same for simplicity. The NLPCA in Fig.15 with 
15, 7, 3, 7, 15 neurons in its 5 layers will be referred to a 15-7-3-7-15 model.  
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In this research, using NLPCA, three features are extracted from each release graphs which 
are shown in Fig 16. To do this, each release is fed into the NLPCA with structure of 15-7-3-
7-15.  Since each neuron in the output layer has a tanh transfer function, the output of the 
network is at the range of (-1, 1). To overcome this limitation and also maintaining the 
symmetry of the network, a possible technique is to normalize the input data set to this 
range. Another possibility is to add a layer which contains linear neurons. In this case, 
which is used in this research, the output of the network can be extended to an arbitrary 
range depending on the input data sets. The dashed lines in the Fig. 15 illustrate the 
augmented layer to the standard NLPCA structure. By utilizing these three features, we 
have converted and reduced the released graphs into three more effective values which are 
used in the simulations later.  
 

 

Fig. 15. NLPCA architecture. 

 

 

Fig. 16. Three extracted features of each release graph. Red circles, blue squares and black 
diamonds are first, second and third features, respectively.   

B
B  

B  B B  

encoding 
neurons  

bottleneck 
neurons 

decoding 
neurons 

output 
neurons 

linear 
neurons 

input 
nodes 

www.intechopen.com



Applied Artificial Neural Networks: from Associative Memories to Biomedical Applications 

 

111 

In order to train an ANN model, the most common approach is to divide the data samples 
collected from experiments into two groups, the training and validation data sets. The 
training group is used to train the ANN model by adjusting the weight matrices of the 
network model. The validation group is used to ensure that the ANN has properly learned 
the relationship between inputs and outputs and has been able to generalize the results. This 
data set should include samples which are not included in the training data set. This method 
is suitable when there are enough data samples to train the neural network. Therefore due 
to lack of enough data samples, another training approach, i.e., a cross validation algorithm 
was used. In this method, the data are divided into k subsets. The ANN is trained where 
each time one of the k subsets is used as the validation set and the other (k-1) subsets are put 
together to form a training set. The average error across all k trials is computed. The 
advantage of this method is that every subset appears once in a validation set and (k -1) 
times in a training set. This is known as k-fold cross-validation. The variance of the estimated 
results decreases as k increases. Leave-one-out (L.O.O.) cross-validation is a k-fold cross 
validation where k is equal to the total number (n) of the data samples. This means that one 
data sample is used for validation and the remaining samples are used for training, and the 
process is repeated n separate times. As before, the average error is computed and used to 
evaluate the model. In this case, each of the neural networks takes four input variables 
consisting of drug concentration, gamma irradiation, additive substance, type of drug 
(BTMA and BTM), and provides three output variables, which are the extracted features by 
NLPCA. In order to train the MLP network, resilient back-propagation (RP) was utilized as 
a learning algorithm. The initial weight matrices are randomly selected and the learning 
process continues until a sufficiently low MSE (10-3) on validation data is achieved. A tanh 
function is used as the activation function in all of the neurons in hidden and output layers. 
Gaussian basis functions with constant smoothing parameters were used for the RBFN and 
GRNN. After several trial-and-error simulations and to improve generalization, we selected 
σ=0.2 for RBF network and σ=1.05 for GRNN. It is noted that training processes in RBFN 
and GRNN use optimized number of hidden neurons that in turn allow for efficient 
approximation of the mapping function between the input and output spaces. In this 
technique, neurons are added to the network until the sum-squared error falls beneath an 
error goal or a maximum number of neurons have been reached. RBFN and GRNN require 
more neurons than MLP network, but they can be designed in a fraction of the time that it 
takes to train MLP network. Next, we used a L.O.O. cross-validation training algorithm with 
22 data samples. To evaluate the precision of estimations for each data set, according to 
Rafienia and colleagues (2010) , we calculated the mean prediction error (MPE) as defined 
by: 

 
ˆ( )i ix x

MPE
n

−
= ∑  (11) 

where x and x̂  are the target value and the estimated value of the variable, respectively and 

n is the number of data set. This quantity was computed for each of the testing data set. In 
this case, we had 22 MPEs, in which their mean value was used as an index to evaluate the 
trained neural network performance. For this criterion, the mean value error of the each 
extracted feature for each network is shown in Table 2. The average mean prediction error 
(AMPE) for each network is also shown in Table 1. Since, different executions of the MLP 
network leads to the different MPE, this process should be repeated several times to 
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guarantee the accuracy of the neural network response. Fig. 17 shows these 10 mean value 
errors computed for each of the 10 trials and for each feature. The variance of the 
aforementioned process for the first, second and the third feature respectively are about 
0.1%, 0.28%, and 0.12%. This confirms the accuracy of the estimations for the MLP network. 
Noteworthy that there is no need to carry out this process for RBFN and GRNN since the 
performance of these two networks will not changed during different trails. In fact, this is 
one the main advantages of these networks. They don't depend on different executions.  
 

 
MPE of the first 

feature 
MPE of the 

second feature 
MPE of the third 

feature 
Average  MPE 

MLP 0.1109 0.2389 0.1334 0.1611 

RBFN 0.1417 0.2045 0.2001 0.1821 

GRNN 0.1438 0.2109 0.1792 0.1780 

Table 2. Mean prediction errors of the each feature for each neural network 

As can be seen from Table 2, the performance of the MLP network in estimation of release 
profile is better than the RBFN and GRNN. To verify this, the estimated features are used as 
the input vectors for the next part of the NLPCA network (from bottleneck neurons toward 
output neurons). Fig. 18 shows the performance of each neural network and compares the 
release profiles calculated by the ANN with the release profiles measured by HPLC. It is 
apparent that MLP is more reliable and has better performance in estimation of BTM and 
BTMA release profiles than GRNN and RBF networks. 
 

 

Fig. 17. Ten mean value errors computed for each of the ten trials for each extracted features. 
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(a) 

    
(b) 

Fig. 18. Estimated release profiles and experimental release profiles of (a) BTM (b) BTMA for 
one sample. 

4.2 Optimization of drug delivery system formulation 
Cardiovascular disease (CVD) has recently become the leading cause of death in developing 
countries (Mackay et al., 2004). Several drugs have been used to control these diseases. 
Furosemide 5-(aminosulfonyl)-4-chloro-2-[(furanylmethyl) amino] benzoic acid is a potent 
diuretic and antihypertensive drug which belongs to class an IV of Biopharmaceutical 
Classification System (BCS) (Lindenberg et al., 2004). This drug has poor and erratic 
absorption after orally administration, and inter- subject variation in pharmacokinetic 
parameters (Hua ett al., 2003; Derakhshandeh et al., 2007).  In the last few years, new drug 
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delivery systems such as microparticles, liposomes, nanocapsules, micellar systems and 
conjugates have become increasingly important, because these systems can overcome these 
pharmacokinetic problems, and maintain the pharmacological effect for an appropriate 
extended time. Controlled release therapeutic systems present some advantages over 
traditional pharmaceutical preparations due to the fact, less active drug is necessary for 
similar results and consequently less secondary effects are present (Dadashzadeh et al., 
2008; Derakhshandeh et al., 2010a, 2010b,  2010c,  2010d). Since these systems are often 
polymeric and submicron in size, they can in general be used to provide targeted delivery 
(cellular/tissue) of drugs, to improve bioavailability, to sustain drug effect in target tissue, 
to solubilize drug for intravascular delivery and to improve the stability of therapeutic 
agents from enzymatic degradation (Derakhshandeh et al., 2010b). 
Sodium alginate as a biocompatible and biodegradable compound have lower toxicity 
compared to other polymers when taken orally and as a carrier could be suitable for 
encapsulation of drug. In this section, sodium alginate microparticle for oral delivery of 
furosemide was designed whether the encapsulation into microparticles might improve the 
oral absorption of this potent loop diuretic. To prepare an optimum formulation, MLP and 
GRNN are employed. The drug loaded formulation parameters are the input vectors of each 
network and are listed in Table 3.  
The microparticles drug loading (Y1), size of microspheres (Y2) and the amount of drug 
release in 2 h (Y3) constitute the output vector of GRNN and MLP. In this way, ANN was 
trained to investigate the functional dependence of input variables on the output response.  
 

Factors                                                        Low level High level 

X1 concentration of sodium alginate (%) 0.8 4 

X2 concentration of CaCl2 (%)                                     1 6 

X3 volume t of internal phase (ml)                                15 30 

X4 volume of external phase (ml)                                  20 75 

Table 3. Factorial design parameters and experimental conditions. 

Microspheres were prepared by ionotropic gelation technique (Chan et al., 2002). Sodium 
alginate was dissolved in distilled water with agitation to have different concentrations of 1.5 
to 4% (w/v). The drug was added to aqueous solutions of sodium alginate and the solution 
was dropped using a hypodermic syringe into a second solution, containing CaCl2 with 
different concentration to cure for 15 min. After the microspheres formed, were separated, 
washed with distilled water, and dried in oven for 48 h. 
Based on preliminary study of the effect of parameters on the drug loading, size and 
preparation method yield of microparticle, 20 formulations were prepared. 
In vitro drug release study was carried out in USP XXII basket type dissolution test 
apparatus using Phosphate buffer solution (pH 7.4), simulated gastric fluid (SGF, pH 1.2) 
and simulated intestinal fluid (SIF, pH 7.4) as dissolution medium. Volume of dissolution 
medium was 500 ml and bath temperature was maintained at (37±10°C) throughout study. 
Basket speed was adjusted to 50 rpm. An interval of 1 hr, 5 ml of sample was withdrawn 
with replacement of fresh medium and analyzed for furosemide content by UV-Visible 
spectrophotometer at 273 nm. All the experimental units were analyzed in triplicate (n=3). 
At the end of this procedure, 20 formulations were prepared and are listed in Table 4. 
Indeed, the data of this table constitute the training and validation data sets which are used 
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to obtain the optimum formulation. The variables X1-X4 are the four input variables of the 
ANN while the variables Y1-Y3 represent the output variables of the network. In other 
words, the network has four inputs and three outputs. In this research, MLP and GRNN are 
employed to approximate the function between input and output spaces and consequently 
to obtain the optimum values of the input variables.     
 

Run X1 (%) X2 (%) X3 ( ml) X4 (ml) Y1 (%) Y2 (µm) Y3 (%) 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
F10 
F11 
F12 
F13 
F14 
F15 
F16 
F17 
F18 
F19 
F20 

1.20 

1.50 
2.00 
2.00 
2.00 
2.50 
2.50 
2.50 
2.50 
2.50 
2.50 
2.50 
2.50 
3.00 
3.00 
3.00 
3.00 
3.50 
4.00 
4.00 

1.00 
2.00 
1.50 
2.00 
2.50 
1.00 
1.50 
2.00 
2.50 
3.00 
2.50 
2.50 
6.00 
1.50 
2.00 
2.50 
3.00 
2.00 
3.00 
3.00 

15.00 

25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
15.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
30.00 
20.00 

20.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
75.00 
25.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 

10.00±0.5 
52.00±0.64
61.22±0.75
63.10±0.91
64.12±0.95
56.12±0.85
60.81±0.94
65.45±0.87
74.25±0.92 

79.58±0.75
60.23±0.91
62.21±0.94
58.10±0.89
49.21±0.92
54.21±0.94
60.52±0.84
64.61±0.95
50.09±0.87
44.9±0.94 

70.27±0.90 

500.15±51.20 
550.11±50.10 
600.14±49.25 
621.14±50.05 

650.45±50.17 
670.27±52.41 
700.09±33.15 
705.34±28.46 
750.24±42.15 
800.07±35.67 
850.27±34.25 
854.11±43.65 
873.27±41.27 
850.78±40.25 
907.58±39.57 
935.67±43.57 
1010.25±74.21 
1205.08±69.74 
1350.08±97.25 
1200.89±49.67 

41.26±4.66 
53.24±2.56 
68.29±1.25 
68.15±3.85 
69.23±6.59 
60.48±7.65 
42.14±3.34 
63.26±3.78 
62.49±5.61 
55.58±5.59 
59.45±4.25 
49.26±7.21 
54.33±6.98 
46.85±6.31 
52.18±5.36 
45.54±2.52 
40.27±3.56 
35.64±2.25 
28.67±4.50 
36.33±7.21 

Table 4. Experimental design and percentage of drug loading, size and microparticle yield 
responses (n = 3) 

To find the optimum formulation, at first, GRNN and MLP are trained using the data sample 
listed in Table 4. In so doing, we divide the data samples into two groups, the training and 
validation data sets. The training group contains 17 randomly selected samples from Table 4 
and the validation group includes the other three remaining samples. There are significant 
variations in the scales of the values of the input variables. These different scales of the inputs 
led to ill-conditioning of the problem and hence the ANN could not be trained efficiently. To 
avoid this problem, all the data listed in Table 4 are normalized to the range of [-1, 1] before 
training of the networks. The selection of suitable network architecture is another important 
factor, since it affects the network convergence as well as the accuracy of estimations (Simon 
and Frenandes, 2004). There exist no analytical methods to determine the optimum number of 
neurons required for a specific problem (Hosseini et al., 2007). Several rules of thumb to select 
the number of hidden neurons in an ANN have been proposed by various researchers (Amiri 
et al., 2009; Rafeinia et al., 2010). It should be mentioned that the number of hidden neurons 
generally depends on many factors, especially the distribution of training data and the number 
of data samples. However, in this work, MLP network was trained with a different number 
(from three to seven) of hidden neurons. The error value is high when the number of neurons 
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is low; in addition, increasing the number of hidden neurons decreases the final error value 
and makes the network move towards the global minimum. However, when we have more 
than four neurons in the hidden layer, over-fitting occurs. In this case the number of network 
parameters that should be adjusted through the learning algorithm is more than the required 
ones. Therefore, four neurons are required in the hidden layer which leads to the fast 
convergence and stable minimum error. Resilient back-propagation (RP) was utilized as a 
learning algorithm. In this optimization technique, the sign of the derivative is only used to 
determine the direction of the weight updating and the magnitude of the derivative has no 
effect on the weight updating (Riedmiller and Braun, 1993). Furthermore, like the other 
gradient based approaches, this learning algorithm will finally settle on the local minimum. 
This drawback certainly introduces inaccuracies into the results. 
To train GRNN, after several simulations and based on trial and error method, σ=0.5 was 
selected for GRNN. This results in better generalization for new input vectors occurring 
between input vectors used in the design. When the MLP and GRNN are trained, we used the 
lower and upper limits of the input variables given in Table 3 to partition the input space into 
smaller regions. In this way, the interval between upper and lower limits of each input 
variable is divided into several segments. In this research, for the first input variable X1, the 
interval [0.8, 4] is divided into 32 segments with each step length equal to 0.1. For the second, 
third and fourth input variables the step lengths are 0.1, 2.5 and 5 respectively.  Next, the 
values of these segments constitute the input vector of trained MLP or trained GRNN to 
produce the corresponding outputs. Since we want to optimize the output variables such that 
the drug loading (Y1) to be maximized and at the same time the size of microspheres (Y2) and 
the amount drug release in 2 h (Y3) to be minimized, we define the following cost function:  

 2 3 1J Y Y Y= + −  (12) 

Based on this definition, minimizing the cost function J corresponds to the minimization of 
Y2 and Y3 and maximization of Y1. Next, we use an exhaustive search method to search in 
the partitioned input space. In this way, we will find the optimum value of the input 
variables (X1-X4) such that the output variables (Y1-Y3) which produced by the trained MLP 
or GRNN, minimize the cost function (12). Since the performance of the trained GRNN to 
minimize (12) is superior to the performance of the trained MLP, the results of this network 
are only mentioned in Table 5. Therefore, in this application, GRNN can effectively 
approximate the function between input and output vectors to find the optimum 
formulation and is more reliable than MLP. 
 

X4: Ext. Phase (ml) X3: Int. Phase (ml) X2: Cacl2 (%) X1: Alg. (%) RUN 

50 20 2.5 3.1 F* 

Table 5. The optimum formulation of alginate microsphere obtained by the GRNN. 

The optimum formulation showed a narrow size distribution with an average diameter of 700 
± 50µm, and drug loading of more than 75%. The drug release profile showed a sustained 
released pattern about 36% in 2 hour. In vitro drug release rate for microspheres was found to 
be sustained over 24 hours, obeying Higushi order kinetic with good entrapment efficiency. 
The results of this section showed that utilizing ANN to obtain optimum formulation needs 
fewer experiments which may present new opportunities for the development of easy, 
reproducible and cost effective method in drug delivery applications. 
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5. Conclusion 

In this chapter, we provided a brief description of four types of ANNs including SFNN, 
GRNN, RBFN and MLP. Next, we investigated the diverse and innovative applications of 
these neural networks such as associative neural networks for recognition of analog and 
digital patterns, estimating the release profile of the betamethasone (BTM) and 
betamethasone acetate (BTMA) and optimizing the forusemide microcarrier formulation. 
Considering the first application, a hybrid model consists of SFNN in parallel with GRNN 
was proposed. SFNN is a simple recurrent neural network which has difficulty learning and 
storing analog and digital patterns as associative memories (Amiri et al., 2008). GRNN can 
find solutions for any given problem, but lack a recurrent structure to filter noise. Therefore, 
the hybrid model of SFNN and GRNN was proposed and a new one-shot learning 
algorithm for training the hybrid model put forwarded in the chapter.  It was shown that 
this new hybrid model is able to perform essential properties found in associative memories 
such as generalization, completion and recognition of corrupted patterns. Moreover, a 
number of case studies were performed for the purpose of performance comparison 
between the hybrid model and others from different classes such as NDRAM, ART2 and 
Storkey. It was discussed that in comparison to classic associative memory models, the 
hybrid model has at least three significant advantages. First, the learning and recalling 
processes in the hybrid model are very short and efficient which make the hybrid model act 
much faster compared to the other networks. This is very helpful when either the 
dimensionality or the number of patterns to be stored is large, which results in significant 
reduction of computational time and cost. Second, more importantly the hybrid model does 
not have any spurious attractor. The third distinct feature is that the hybrid model not only 
realizes association of binary patterns but can also realize association of analog patterns 
without any preprocessing (Amiri et al., 2007, 2008, 2010). Consequently, we believe that 
this hybrid model constitutes a serious candidate for associative recall of analog and digital 
patterns which should be explored further in future studies.   
Regarding the biomedical application, the MLP, GRNN and RBFN are employed to model the 
release data and to predict the release profile of the BTM and the BTMA where in situ forming 
systems consist of poly (Lactide-co-glycolide), N-methyl-1-2-pyrolidon and ethyl heptanoat as 
a polymer, solvent and additive, respectively. Several simulations were presented to compare 
the potential of each neural network. NLPCA feature extraction technique was utilized to 
extract three features from each release graph, constituting the outputs of the neural network. 
By utilizing these three features, we converted and reduced the released graphs into three 
more effective values. Training the networks was carried out using L.O.O. cross-validation 
approach. This approach allows the training algorithm to use the entire data set for training 
and at the same time to test the performance of the trained network on new data which has not 
already seen by the network. It was demonstrated that the MLP as a data modeling tool, is 
more reliable and efficient tool than RBFN and GRNN, in order to estimate the release profile 
of BTM and BTMA drugs. Furthermore, we investigated the application of the GRNN and 
MLP for optimization of drug delivery system formulation.  It would appear that performance 
of the trained GRNN to minimize the cost function is superior to the performance of the 
trained MLP. In this way, GRNN is promising to determine the optimum drug formulation. In 
sum, the application of the ANNs in biomedical research will definitely increase in the near 
future. However, the point which is noteworthy is the fact that there is no single modeling 
approach to address all requirements. 
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