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1. Introduction

Seafloor topography is often mapped by the use of multibeam echo sounders, see Figure 1 for
illustration of the principle on measurement with multibeam echo sounders. These systems
evolved from single beam systems twenty five years ago (Glittum et al., 1986) and are still
in development in the direction of increased measurement precision, higher density of the
sample points and higher number of measured data points per second. To ensure high quality
of the measurements, the survey system must be regularly verified and calibrated, statistics
about measurement errors derived, measurement quality monitored, spot checks of the
surveyed area performed and identification of spikes, suspicious or unexpected observations
carried out. Measurement errors can be divided into three classes: Systematic errors, random
errors and outliers. Methodologies to perform the quality assessments considered, will be
described and illustrated in some case studies. The final product in seafloor mapping is often
a digital elevation model (DEM). From a DEM different cartographic products as contour
line maps, perspective views, shaded relief maps or maps with coloured depth intervals can
be derived. Digital elevation models can also be used in navigation of vessels, ships and
boats or for the construction of technical installations in oil and gas winning. The range of
applications of DEMs is therefore large. Since the construction of DEMs can be based on
different interpolation techniques, an assessment of common methods will be presented.
Quality issues of spatial data are discussed in Guptill and Morrison (1995): Spatial data quality
is a key issue in an era where current electronic technologies and communications networks such as
Internet allow easy access to digital data in spatial form. Elements of spatial data quality are: (1)
lineage, (2) positional accuracy, (3) attribute accuracy, (4) completeness, (5) logical consistency
and (6) semantic accuracy. In the present chapter we will not cover all these aspects of spatial
data quality, but we will illustrate some quality parameters with examples from seafloor
mapping. These quality aspects are: (1) systematic and random measurements errors, (2)
identification of unexpected observations and (3) accuracy of digital elevation models. The
topics we will cover, belong to the following quality elements of Guptill and Morrison (1995):
Positional accuracy, attribute accuracy and semantic accuracy.

2. Systematic measurement errors

Systematic errors in the measurement system should be detected and corrected before the
survey is carried out. For this purpose we have developed a patented program system, SeaCal,
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Fig. 1. Principle on measurement and coordinate axes of multibeam echo sounders. A fan of
beams measures depth values on the seafloor. The coordinates of the measured points can for
simplicity be explained as polar coordinates, i.e., they are computed from information about
distance and direction from the centre of the measurement system to the seafloor.

that computes the calibration parameters from field measurements, see Bjørke (2004) and
Bjørke (2005).

2.1 SeaCal

Systematic errors can be detected from field measurements by running several overlapping
survey lines in different directions, see Figure 2. Static offsets in the three rotation angles—roll,
pitch and heading—horizontal shift of the transducer relative to the reference point of
the positioning system and systematic errors in the measured sound speed are derived
simultaneously from the application of least-squares adjustment (Bjørke, 2005) as:

V = (ATP1A)−1ATP1L1, (1)

where V is a vector of the unknown parameters, A a coefficient matrix, P1 a weight matrix
and L1 a vector of observations. Since the stability of the system of equations depends on the
relief of the seafloor and the configuration of the calibration lines, restrictions are put on the
unknown parameters by

V = (ATP1A + P2)
−1(ATP1L1 + P2L2), (2)

where P2 is a weight matrix of the unknown parameters and L2 a vector of a priori parameter
values; see for example Leick (1995). For example, in a flat area a small (differential) offset
in the parameters often have no effect on the measured depth values and several parameters
cannot med determined. Therefore, the stability conditions in Equation (2) are convenient to
prevent numerical problems in the computations.
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Survey: B 2008, trial 08m

m

Fig. 2. Field calibration of multibeam echo sounder. The map shows the selected area, named
B 2008, trial 08, with four calibration lines. There are three parallel lines and one crossing line.
The sea depth varies from 85m to 244m.

The variance-covariance matrix of the unknowns can be computed from

QV = σ
2
0 (ATP1A + P2)

−1, (3)

where σ2
0 is the variance of the unit weight. Here, the diagonal elements define the variance

of the parameters and the other elements their covariance. The variance σ2
Vi

of parameter Vi is

derived as
σ

2
Vi = QVii ,

and the covariance σVi ,Vj of the two parameters Vi and Vj is computed as

σVi ,Vj = QVij .

The correlation coefficient ρVi ,Vj measures how separable two parameters Vi and Vj are and is

derived from QV as

ρVi ,Vj =
σVi ,Vj

σVi σVj

.

SeaCal utilizes the relation between horizontal movement and the corresponding change of
the seafloor depth. This calibration methodology requires seafloor with some relief if all the
static offset parameters of the transducer are to be computed.
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The coefficient matrix A is defined in Table 1. Here, we suppose that the fan of beams
is approximately in a vertical plane which are approximately perpendicular to the strip
direction. The terrain slope is used to compute the change of the seafloor depth that
corresponds to a certain horizontal movement. Rollscale is computed on the basis of Snell’s
law—-the law about refraction. Since ray tracing is not applied, it is assumed that a correction
of the beam direction can be explained from changing the beam direction at the passage
between the transducer and the water.
Snell’s law can be written as

φ1 = arcsin
c1

c0
sin φ0 = arcsin(k sin φ0), where k =

c1

c0
;

c denotes the sound speed and φ the beam angle. We assume that c0 = 1500m/sec and get the
relation between a small change dc1 in sound speed and k as

dc1 = 1500dk.

How a small change in k effects φ can be found from differentiation as

dφ1 =
sin φ0

√

1 − k2 sin2 φ0

dk ≈
sin φ0

√

1 − sin2 φ0

dk when k ≈ 1. (4)

We define

Φ(φ) =
sin φ0

√

1 − sin2 φ0

(5)

and write Equation 4 as
dφ1 = Φ(φ)dk. (6)

Factor dk will be termed rollscale factor.

name of parameter small change change in

of parameter sea depth

roll ∆φ [∂Hyh− y]∆φ

pitch ∆ω [−∂Hxh]∆ω

heading ∆κ [∂Hxy]∆κ

translation in X ∆X [∂Hx]∆X

translation in Y ∆Y [∂Hy]∆Y

relative tide correction ∆hi ∀ strips ∆hi

rollscale factor ∆k [∂Hyh− y]Φ(φ)∆k

horizontal scale factor my [∂Hyy]my

Table 1. Definition of the calibration parameters in SeaCal. ∂Hx and ∂Hy are the terrain slope
along the two horizontal axes, y the distance from the nadir point of the transducer to the
measured point and h the vertical distance from the transducer to the measured point.
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2.2 Field survey

The inspection of systematic errors of the multibeam echo sounder should be run on a
regularly basis. For example, at the start and at the end of a survey, or as often as once a
month. The length of the time period used to run the field measurements for the verification, is
typically thirty minutes to one hour. Figure 2 shows measurements to control the calibration of
a multibeam system. In this case four lines are measured in an area where the sea depth varies
from 85m to 244m. The survey lines are each of length 1000m, approximately. The results
of the calibration is shown in Figure 3. The table shows the corrections to be added to the
different parameter settings. For example, roll should be corrected +0.107◦, the eccentricity of
the transducer relative the GPS-antenna 1.84m in X-direction and -0.54m in Y-direction. The
standard deviation of the depth measurements after the calibration is ±0.11m. The correlation
between pitch and X is high, which says that in the present case the two parameters cannot
be well separated. The reliability factor indicates how well the parameters can be computed.
A red lamp signalises that the parameter considered should not be changed. In order to get a
reliable value of this parameter, another calibration should be run—for example, find an area
with a relieff that is more suited for field calibration of multibeam echo sounders.
Figure 4 illustrates the difference between a well calibrated multibeam echo sounder system
and a system whithout a fine tuned calibration. The two graphs show the standard deviation
of the depth measurements before and after the calibration is fine tuned. The calibration in
Figure 2 is used for the construction of the two graphs. In the fine tuned case the standard
deviation of the depth measurements is ±0.11m against ±0.49m in the case without fine
tuning.

2.3 Error budget

From the contribution of the error sources defined in Table 1 an error budget can be set up. We
assume the different error components are independent and compute their joint contribution
σ by the law of variance propagation of random measurements. The error budget in Table 2 is
computed for different beam angles and terrain slopes. The budget assumes sea depth 100m
and certain values of the standard deviation of the different error sources. The important
aspect of the computations is the exponential growth of σ as the beam angle increases.
Therefore, for seafloor mapping with multibeam echo sounder the beam angle should be
restricted to for example maximum 60◦ .

3. Computation of random measurement errors

Random measurement errors in multibeam echo sounder data are functions of the kind of
measurement equipment used; the sea depth, the terrain slope and the weather conditions
during the survey. Since the magnitude of the random measurement error may vary from one
survey to another, efficient methods to derive this error component is attractive in quality
control of the depth measurements. The method we have developed, makes it possible to
derive the random measurement error from one single survey. This makes it possible to
monitor the random measurement error during a survey, and random measurement errors can
be derived without measuring the same area several times, which saves field work. Traditional
methods, as for example proposed by Maas (2002), requires that the same area is measured
twice. The method we launch, is based on the application of semivariogram modelling in
geostatistical theory, see for example Cressie (1993); Olea (1999) or Wackernagel (1998) for an
overview of geostatistical methods.

3.1 Application of theory from geostatistics

In geostatistics we consider terrain surfaces as realizations of random functions. The height Z
in position u can then be defined as Z = (u, ω), where u ∈ D ⊂ R

2. The letter ω denotes the
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Calibration results
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Fig. 3. Field calibration of multibeam echo sounder from the survey shown in Figure 2. The
graphs show how the precision of the measurements varies with beam angle and terrain
slope. The table gives the results of the calibration computation, i.e, the parameter values,
information about correlation and reliability. A red sign indicates that evaluation is
recommended before the calibration values are entered into the system.
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Fig. 4. Demonstration of the influence of not well calibrated multibeam echo sounder. Data
used for the computation is the same as the data as used in Figure 3, i.e., survey B 2008, trial
08. The graphs show how the precision of the measurements varies with beam angle in the
two cases: (1) the system is well calibrated and (2) the calibration is not fine tuned. The
standard deviation of the residuals in the two cases is ±0.11m and ±0.49m, respectively.

particular realization, or outcome. For a fixed position u�, Z(u�, ω) is a random variable. For
a fixed ω

� ∈ Ω, Z(u, ω
�) is a deterministic function of u, called a realization of the random

function.
Let f (u) = Z(u, ω

�) denote the exact terrain surface we are trying to model. We can write:

f (u) = m(u) + z(u),

where m is the drift and z a realization of a zero mean random function. The computation of
the drift represents a challenge in geostatistics, see for example Olea (1999), page107, Cressie
(1993), page 169 or Wackernagel (1998), page 213. Later on we will show how development of
the mathematical theory of wavelets offers methods to compute approximations to the drift.
The values we observe can be seen as samples of another surface

f̃ (u) = m(u) + z(u) + w(u), (7)

where w is assumed to be a zero mean white noise component due to measurement errors. In
order to obtain an estimate of the random measurement errors of the multibeam echo sounder,
w(u) is the component we in this section want to compute; but first, we will deal with how to
compute the drift.
The drift is defined as the expected value of a random function:

m(u) = E(Z) =
∫

Ω

Z(u, ω) dP(ω), (8)
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σ in meter

Beam angle Terrain slope
0◦ 10◦ 20◦ 30◦ 40◦ 50◦

0◦ ± 0.10 ± 0.11 ± 0.13 ± 0.17 ± 0.23 ± 0.30
5◦ ± 0.10 ± 0.11 ± 0.13 ± 0.17 ± 0.23 ± 0.30
10◦ ± 0.10 ± 0.11 ± 0.13 ± 0.17 ± 0.23 ± 0.31
15◦ ± 0.10 ± 0.11 ± 0.14 ± 0.18 ± 0.23 ± 0.31
20◦ ± 0.11 ± 0.11 ± 0.14 ± 0.18 ± 0.24 ± 0.32
25◦ ± 0.11 ± 0.12 ± 0.14 ± 0.18 ± 0.24 ± 0.32
30◦ ± 0.11 ± 0.12 ± 0.15 ± 0.19 ± 0.25 ± 0.33
35◦ ± 0.12 ± 0.13 ± 0.16 ± 0.20 ± 0.26 ± 0.35
40◦ ± 0.13 ± 0.14 ± 0.17 ± 0.21 ± 0.28 ± 0.37
45◦ ± 0.15 ± 0.16 ± 0.19 ± 0.23 ± 0.30 ± 0.39
50◦ ± 0.17 ± 0.18 ± 0.21 ± 0.26 ± 0.32 ± 0.43
55◦ ± 0.21 ± 0.22 ± 0.25 ± 0.30 ± 0.37 ± 0.48
60◦ ± 0.27 ± 0.28 ± 0.31 ± 0.36 ± 0.43 ± 0.55
65◦ ± 0.37 ± 0.38 ± 0.41 ± 0.46 ± 0.54 ± 0.67
70◦ ± 0.57 ± 0.58 ± 0.60 ± 0.65 ± 0.74 ± 0.88
75◦ ± 0.99 ± 1.00 ± 1.03 ± 1.08 ± 1.17 ± 1.32
80◦ ± 2.20 ± 2.21 ± 2.24 ± 2.29 ± 2.39 ± 2.56
85◦ ± 8.77 ± 8.78 ± 8.81 ± 8.86 ± 8.96 ± 9.14

Table 2. Standard deviation of measured sea depth derived from the error budget. The sea
depth is defined to 100m. The following error components are considered: Roll
(σφ = ±0.05◦), pitch (σω = ±0.1◦), heading (σκ = ±0.1◦), error in measured sound speed at
the transducer (σv = ±1.0m/sec) which corresponds to rollscale σk = ±0.00067, error in the
measured position of the transducer in the three axis directions X (σx = ±0.1m), Y
(σy = ±0.1m) and Z (σz = ±0.1m).

where P(ω) is the distribution function of ω. The procedure we will apply to approximate the
drift, uses spatial averaging over subsets of D as proposed by Bjørke and Nilsen (2005) and
Bjørke and Nilsen (2007).
We start the drift computation by dividing the geographical area into grid blocks, making
sure a suitable number of measurements fall within each block; emphirical tests show that an
average of approximately ten values per block gives good results. Based on these values, we
estimate the average depth ai inside each block and approximate the drift by generating the
sum

m(u) =
n

∑
j=1

aj φj(u), (9)

where n is the number of blocks. Each function φj is continuous and has integral 1 over block j
and integral zero over all other blocks. The method we use to construct these functions is based
on average interpolating subdivision; for an introduction see Sweldens and Schröder (1996).
Note that we are not interpolating the observations—the surface we construct has the same
average values over the grid blocks as the original estimated values—and the surface does not
in general pass through any of the measured data points. In the Appendix a C-implementation
of the 2D-average interpolating algorithm is given.
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Fig. 5. Examples of experimental semivariogram and the fit of a linear and a Gaussian
variogram model; note the parabolic form of the Gaussian variogram near the origin.
Visually, one may expect the piecewise liner variogram to follow the linear part of the
gaussian variogram more close. A reason for the discrepancy is that the curve fitting is
computed from weighted least squares and that the number of observations in the lower part
of the experimental variogram is small compared with the number of observations in the lag
classes near the break point of the variogram.

When we have a model of the drift, we can compute the residuals between the drift and the
observations as

r(u) = f̃ (u)−m(u) = z(u) +w(u). (10)

The two components z(u) and w(u) cannot be separated from these equations, but from
the semivariogram we can derive w(u). In the semivariogram w(u) appears as the so-called
nugget effect, see e.g. Olea (1999) or Cressie (1993).
The semivariogram is defined as

γ(h) =
1

2
E[{r(u)− r(u + h)}2], (11)

where u and u + h are any two locations in the sample domain. The following expression is
an unbiased estimator for the semivariogram

γ̃(h) =
1

2n(h)

n(h)

∑
i=1

{r(u)− r(u + h)}2], (12)

433Quality Assessments of Seafloor Mapping with Multibeam Echo Sounders

www.intechopen.com



0 100 200 300 400 500
0

100

200

300

400

500

B4

m

m

0 2000 4000 6000
0

2000

4000

6000

M1m

m

0 100 200 300 400
0

100

200

300

400

HH7m

m

0 200 400 600 800
0

200

400

600

800

Ha0m

m

0 40 80 120 160 200
0

40

80

120

160

200 S11
m

m

0 1000 2000 3000
0

1000

2000

3000 Ho53

m

m

sea depth
10m to 21m

sea depth 15m to 47m

sea depth 59m to 253m

sea depth 42m to 139m

sea depth 1781m to 3200m

sea depth
130m to 234m

Fig. 6. Six maps of the twelve survey areas used for the study of random measurement errors
of the multibeam echo sounder and for comparing different DEM-methods. Map S11 is also
representative for survey S1, map HH7 representative for survey HH0 and so on.
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Fig. 7. Random errors of multibeam echo sounders used in the study areas. The values of σw
are derived from the linear variogram as presented in Table 3. The kind of multibeam echo
sounder used for the measurements is indicated, i.e., EM1002 and EM710; EM710 is a more
modern system than EM1002.

where n(h) is the number of pairs of variables at distance class h. Figure 5 shows two
examples of experimental variograms. The number of permissible functions to be used for
variogram fit is infinite, but in practice the options is reduced to a handful (Olea 1999, page 76).
Some popular models are spherical, exponential, Gaussian, power and linear semivariogram
models.
In the forthcoming experiments a linear and a Gaussian model will be used. The linear model
is composed of two pieces. The first fits the part of the experimental variogram with small
lags, and the next the rest of the variogram. Let h be the lag. Then the piecewise linear
semivariogram is the model

γ(h) =

{

w + Ch , 0 < h ≤ a
w + Ca , h > a,

(13)

where w is the noise and a the range, i.e., the lag at which the semivariogram reaches a
constant value.

Let h be the lag. Then the Gaussian semivariogram is the model

γ(h) = w + C
(

1 − e−3( h
a )

2
)

, (14)

where w is the noise and a the range. The Gaussian semivariogram has a parabolic form near
the origin. This property is useful when the noise of the measurements is to be computed.
In many applications the noise is set to zero, but in our use of the variogram, the noise is
a component we want to derive. Therefore, in the case of quality assessment of multibeam
measurements, the ability of the variogram model to detect the noise, is important.
The standard deviation of the measurement errors can be derived from the variogram as

σw =
√

γ(0), (15)

see for example the explanation in Bjørke and Nilsen (2007) and the noise component as
indicated in Figure 5. The variogram models are fitted by the use of least squares method
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Survey Sea depth γ(0) σw =
√

γ(0) a γ(a) σz =
√

γ(a)

linear linear Gaussian linear linear linear
m m2 m m m2 m

S1 12-21 0.00181 ±0.043 ±0.038 1.8 0.00252 ±0.050
S11 10-21 0.00121 ±0.035 ±0.029 1.6 0.00162 ±0.040

HH0 18-43 0.00584 ±0.076 ±0.064 1.8 0.00717 ±0.085
HH7 15-47 0.00398 ±0.063 ±0.045 1.7 0.00507 ±0.071

Ho53 43-197 0.08879 ±0.298 ±0.235 17.4 0.19108 ±0.437
Ho83 42-139 0.07188 ±0.268 ±0.233 12.0 0.09913 ±0.315

Ha0 59-253 0.03719 ±0.193 ±0.108 9.3 0.10530 ±0.325
Ha5 62-261 0.04562 ±0.214 ±0.100 11.8 0.16232 ±0.403

B4 130-234 0.02791 ±0.167 ±0.146 3.6 0.03214 ±0.179
B6 145-244 0.02938 ±0.171 ±0.146 4.7 0.04102 ±0.203

M1 1781-3200 24.72150 ±4.972 ±4.964 84.8 32.76960 ±5.725
M10 1780-3092 7.74608 ±2.783 ±2.473 85.8 17.94542 ±4.236

Table 3. Computation of random measurement errors derived from the linear and the
Gaussian semivariogram. In the table γ(0) represents the variance of the random

measurement errors and σw its standard deviation, i.e.,
√

γ(0). The value of the lag when the
variogram reaches a constant value, is termed the range and denoted a. The corresponding
value γ(a) of the semivariogram is termed the sill. The square root of the sill approximates
the standard deviation σz of the residuals.

where the number of observations in each lag class is used as weights such that more
observations gives higher weight. When the Gaussian model is computed, one should watch
for invalid solutions; visual presentation of the variogram model is recommended. One
should also test for invalid semivariograms, for example, if the least squares curve fitting
gives negative semivariance at the origin.

3.2 Demonstration of the computation of random measurement errors

Computation of random measurement errors from the experimental semivariogram will be
derived from the twelve surveys illustrated in Figure 6. By applying Equation 15 to the two
variogram models in Figure 5, we find that in area Ha0 σw is ±0.178 for the linear variogram
and ±0.119 for the Gaussian variogram. In area Ho53 the linear and the Gaussian variogram
give σw is ±0.277 and ±0.248, respectively. This indicates that the Gaussian variogram may
give lower values for σw than the linear variogram. Note the parabolic form of the Gaussian
model near the origin.

Table 3 shows the results from applying the linear and the Gaussian variogram models to
the data in the twelve test areas. The standard deviation of the random measurement errors
increases with increasing sea depth. In the shallow water areas σw is some centimeters and
is of the magnitude several meters in the deep water areas. The range a represents the
correlation distance. For lags less than a, the residuals are correlated. The value of a varies
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Fig. 9. Outliers identified in two surveys of the same area. In the red circle numbered 1 there
are unexpected observations in both the surveys. The vertical distance between the contour
lines is 5m

from approximately two meter in the shallow water area and up to almost one hundred meter
in the deep water area. We notice that σw systematically is lower for the Gaussian model than
the linear model. In a coming section on quality of digital elevation models the discrepancies
between the two models will be discussed. The conclusion from this evaluation is that the
Gaussian model seems to give more reliable semivariograms than the linear model.
Figure 7 shows how the random measurement error varies with the sea depth. The main
impression is that σw increases with increasing sea depth, but at depth 100m there are two
surveys—Ho53 and Ho83—that show higher value of σw than surveys at depth 150m to 200m.
This can be explained from the survey equipment used. For Ho53 and Ho83 multibeam echo
sounder EM1002 is used, and in the other case EM710 is applied. Since EM710 belongs to
a newer generation multibeam echo sounders than EM1002, the measurement precision of
EM710 is improved compared with the precision of EM1002. This explains why Figure 7 does
not show a monotonic increasing relation between σw and increasing sea depth.
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there are unexpected observations in all the surveys. The vertical distance between the
contour lines is 5m. A perspective view of outliers in circle 4 in survey B4 is shown.

4. Detection of outliers in the measurements

Some case studies will illustrate the detection and the interpretation of outliers in depth
measurements with multibeam echo sounder. We define an outlier as an unexpected large
residual between the drift surface and the measured depth values. Unexpected large may be
set to a threshold derived from the standard deviation σ of the residuals, for example 6σ. In the
selected test areas the portion of the residuals greater than 6σ is less than 0.1% of the number
of measured depth points. Average interpolation wavelets algorithm will be used for the drift
computation, see the Appendix for description of this method. The average interpolation
wavelets algorithm is well suited for detection of outliers, because average values are resistant
against large measurement errors.
Figure 8 illustrates the detection of isolated outliers in the two surveys Ho53 and Ho83. In both
cases the outlier is of magnitude 4m-5m. A question is: Can these unexpected observations be
regarded as measurement errors?. For example, is there a human construction on the seafloor
that have caused the spike or have we detected a ship wreck? In principle, we need more
information to classify an outlier as a huge measurement error. Knowledge of properties of the

438 Applications and Experiences of Quality Control

www.intechopen.com



1

2

3

4

1 2 3 4

s
e

a
d

e
p

th

position in horizontal plane

5

5

1

2

3

4

1 2 3 4
s
e

a
d

e
p

th
5

5

2e 3e

position in horizontal plane

Fig. 11. Demonstration on how a horizontal position error may effect a measured terrain
profile. In the first case we assume no position error. In the second case point 2 is associated
to position 2e and point 3 to position 3e. The other terrain points in the second case are
associated to their correct positions. The red profile line shows how the position errors have
changed the profile from a monotonic increasing profile to a profile with a sharp local
minima.

measurement system, weather conditions during the survey and other additional information
will be of value when outliers are to be evaluated.
In Figure 9 the same area is measured twice. This gives us more information about the outliers
compared with information from one single measurement of the seafloor. The red circles in
Figure 9 mark areas with outliers. As we can see, the area numbered 1 occur in both surveys.
Therefore, this indicates that there may be some terrain features in this area that cause the
unexpected observations.
Figure 10 shows three surveys of the same area. Also in this case there are areas with
outliers that are marked in all the tree surveys, see the circle numbered 1. The outliers in
circle 4 in survey B4 are illustrated in the perspective view. A group of outliers of size 10m,
approximately, occurs in an area of size 8m×8m.
Figure 11 demonstrates how a horizontal position error may effect a measured terrain profile.
In the first case we assume no position error. In the second case point 2 is associated to position
2e and point 3 to position 3e. The other terrain points in the second case are associated to their
correct positions. The red profile line shows how the position errors have changed the profile
from a monotonic increasing profile to a profile with a sharp local minima.
The identification of outliers in the depth measurements raises several questions of how these
measurements should be treated:

1. Should the measurments classified as outliers be removed from the data set?;

2. should the area with the outliers be inspected by new measurements?;

3. should the trend surface be used as a substitute for the measured data points?;

4. how to implement a system for automated detection and elimination of outliers?;

5. and how to design the user interaction in an automated system for handling of outliers.

Therefore, there are research question to be answered when an automated system for
elimination of outliers are to be realized.
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5. Quality of interpolation methods in digital elevation models

A product from seafloor mapping is often digital elevation models (DEMs). From a DEM
different cartographic products as contour line maps, perspective views, shaded relief maps
or maps with coloured depth intervals can be derived. Digital elevation models can also be
used in navigation of vessels, ships and boats or for the construction of technical installations
in oil and gas winning. The range of applications of DEMs is therefore large. Since the
construction of a DEM can be based on different interpolation methods, an assessment
of common interpolation methods will be presented. The methods we will investigate is
average interpolation wavelets, triangle methods (TIN), moving surface and kriging. A brief
description of these methods will be presented before we run the experiment.

5.1 Average interpolating wavelets

Average interpolating wavelets was presented in Section 3; see this section and the Appendix
where a C implementation of the 2D-average interpolating wavelets algorithm is given..

5.2 TIN

Triangle models are often used in digital terrain models. The method is frequently referenced
as triangulation irregular network (TIN). The construction principle of the network follows the
so-called Delaunay principle. There exist several methods for the computation of a Delaunay
triangulation of a set of points, see for example Kreveld (1997). When the triangles are
computed, interpolation of depth values in a point with coordinates (x, y) is carried out from
the linear interpolation

z(x, y) = a1 + a2x + a3y,

where the coefficients are computed on the basis of the depth value in the three corners of the
circumscribing triangle of the point considered.

5.3 Moving surface

Moving surface interpolates the depth z in position (x, y) from a polynomial. In our
application we select coefficients from the bi-cubic polynomial

z(x, y) = a1 + a2x + a3y + a4xy +

a5x
2 + a6y

2 + a7x
2y + a8xy

2 + a9x
2y2 +

a10x
3 + a11y

3 + a12x
3y (16)

+a13xy
3 + a14x

3y2 + a15x
2y3 + a16x

3y3;

which can be written as

z(u) =
k

∑
j=1

ajbj(u) (17)

where k is the number of coefficients of the polynomial and bj(u) a function of the (x, y)
coordinates of point u.
The coefficients aj of the polynomial is derived by applying least squares approximation to
the data points in a neighbourhood of the point to be interpolated. This requires the following
system of equations to be solved:

v = f − B∆,
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where

v =











v1
v2
...
vn











; f =











z1
z2
...
zn











; B =











b1(u1) b2(u1) · · · bk(u1)
b1(u2) b2(u2) · · · bk(u2)

...
...

...
...

b1(un) b2(un) · · · bk(un)











and ∆ =











a1
a2
...
ak











;

such that
n

∑
i=1

pivivi = min . (18)

Here,

pi is the weight of data point ui;

n is the number of data points;

k is the number of coefficients to be computed;

f is a vector of observed depth values;

∆ is a vector of the coefficients to be computed;

and B is a matrix of variables defined in Equations 16 to 17 such that bj(ui) is variable j for
data point i.

Weight pi is computed from the euclidian distance d(·) between point q0 to be interpolated
and its neighbouring point qi as

pi =
1

ǫ + (d(q0, qi))2
,

where ǫ is a small positive number to prevent division by zero. By defining P as a n× n weight
matrix as

P =















p1 0 0 · · · 0
0 p2 0 · · · 0
0 0 p3 · · · 0
...

...
...

...
...

0 0 0 · · · pn















,

the solution for ∆ is
∆ = N

−1
t, where N = B

t
PB and t = B

t
Pf. (19)

5.4 Kriging

The roots of kriging goes back to pioneering work seventy years ago. Kriging is a form of
generalized regression for the formulation of a minimum square error sense. There are several
forms of kriging: Simple kriging, ordinary kriging, universal kriging, block kriging and other
forms. In our experiment we will apply simple kriging and universal kriging. Details of the
kriging equations are well covered in geostatistical literature, for example, Olea (1999) gives
a presentation well suited to be read by engineers. Therefore, only a summary of the kriging
equations will be given in the present paper.
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5.4.1 Simple kriging

Simple kriging requires knowledge of the drift m(u) and the semivariogram γ(h) of the

residuals r(u) between the drift and the observations f̃ (u), see Equationes 10 and 12. The
simple kriging equations take the form

MA = S, (20)

where

M =











γ(u1, u1) γ(u1, u2) · · · γ(u1, uk)
γ(u2, u1) γ(u2, u2) · · · γ(u2, uk))

...
...

...
...

γ(uk, u1) γ(uk, u2) · · · γ(uk, uk)











and

A = (λ1 λ2 · · · λk)
t and S = γ(u1, u0) γ(u2, u0) · · · γ(uk, u0)

t.

The interpolated value in u0 is derived from

f̂ (u0) =
k

∑
j=1

λjr(uj) + m(u0),

which expresses that that the interpolated value is computed from a linear kombination of
the residuals in the neighbouring data points.

In simple kriging the variance in the interpolated point is computed as

σ2 = A
t
S. (21)

5.4.2 Universal kriging

Universal kriging does not require knowledge of the drift, but the semivariogram of the
residuals between the drift and the observations must be known. Therefore, determination of
the semivariogram may in universal kriging also require knowledge of the drift. The equations
in universal kriging represents a generalization of the equations of simple kriging and takes
the form

CV = F (22)

where

C =





























γ(u1, u1) γ(u1, u2) · · · γ(u1, uk) b1(u1) b2(u1) · · · bn(u1)
γ(u2, u1) γ(u2, u2) · · · γ(u2, uk) b1(u2) b2(u2) · · · bn(u2)

...
...

...
...

...
...

...
...

γ(uk, u1) γ(uk, u2) · · · γ(uk, uk) b1(uk) b2(uk) · · · bn(uk)
b1(u1) b1(u2) · · · b1(uk) 0 0 · · · 0
b2(u1) b2(u2) · · · b2(uk) 0 0 · · · 0

...
...

...
...

...
...

...
...

bn(u1) bn(u2) · · · bn(uk) 0 0 · · · 0





























and

V = [λ1 λ2 · · · λk μ1 μ2 · · · μn] and F = [γ(u1, u0) γ(u2, u0) · · · γ(uk, u0) b1(u0) b2(u0) · · · bn(u0)].
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The parameters λi are Lagrange multipliers to ensure that universal kriging becomes an
unbiased estimator. The drift is represented by the coefficients b(u). In our implementation
we have taken them from the bi-cubical ploynomial in Equation 17. How many coefficients
that are used, is decided from the number of data points in the neighbourhood of the point to
be estimated.

The interpolated value in u0 is derived from

f̂ (u0) =
k

∑
j=1

λj f̃ (uj).

In universal kriging the variance in the interpolated point is computed as

σ
2 = V

t
F. (23)

When solving kriging equations, one should be aware of possible numerical problems, see for
example Davis and Morris (1997). For example, if two points have identical coordinates, they
will produce equal kriging equations, and the system of equations will become singular.

5.5 Evaluation of the interpolation methods

Computation of interpolation errors of different interpolation methods will be derived from
the twelve surveys as indicated in Figure 6. A portion of the sample points are selected as
control points. This subset C is subtracted from the original data set A, and a new set B
is derived as B = A \ C. Set B is used for the interpolation of depth values in the points
of C. The residuals between the measured and the interpolated depth values of set C is
computed. Interpolation methods to be investigated are simple and universal kriging, TIN,
moving surface and wavelets. The results of the computations are shown in Table 4. In nine
cases the variation of the standard deviation in the control points for the different interpolation
methods is less than 10%. In one case the variation is of magnitude 30% and in two cases
100%. In seven cases universal kriging performs better than TIN and equal in five. Moving
surface works better than TIN in six cases, equal in four and weaker two cases. Average
interpolating wavelets performs better than TIN in two cases, equal in one and weaker in nine
cases. Ranking the methods on basis of the standard deviation in the control points gives:

1. Universal kriging,

2. simple kriging,

3. moving average,

4. TIN,

5. and average interpolating wavelets.

An attractive property of kriging is its ability to estimate the variance of the interpolated depth

values. From Equation 23 the average kriging variance σ
2
u in the control points of the twelve

survey areas can be derived. The results of these computations are presented in Table 5. The

realism of σ
2
u depends on how well the variogram is modelled. An evaluation of σ

2
u will be

carried in the following. The residual r(u) between the measured value f̃ (u) and universal
kriging value g(u) in point u is

r(u) = f̃ (u)− g(u).

From the law of variance propagation of independent measurements we can compute the

variance σ̂
2
r of r(u) as

σ̂
2
r = σ

2
w + σ

2
u ,
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Survey Sea depth Simp. kr. Univ. kr.. TIN Mov. surf. Wavelets
m m m m m m

S1 12-21 ±0.045 ±0.044 ±0.045 ±0.044 ±0.051
S11 10-21 ±0.041 ±0.041 ±0.041 ±0.040 ±0.044

HH0 18-43 ±0.052 ±0.053 ±0.073 ±0.067 ±0.078
HH7 15-47 ±0.057 ±0.058 ±0.060 ±0.059 ±0.074

Ho53 43-197 ±0.316 ±0.304 ±0.317 ±0.277 ±0.381
Ho83 42-139 ±0.275 ±0.285 ±0.301 ±0.259 ±0.304

Ha0 59-253 ±0.152 ±0.144 ±0.146 ±0.178 ±0.324
Ha5 62-261 ±0.155 ±0.151 ±0.148 ±0.196 ±0.388

B4 130-234 ±0.175 ±0.180 ±0.204 ±0.175 ±0.183
B6 145-244 ±0.168 ±0.166 ±0.175 ±0.165 ±0.191

M1 1781-3200 ±6.259 ±0.6.084 ±6.201 ±5.098 ±5.494
M1 1780-3092 ± 3.302 ±3.245 ±3.437 ± 2.876 ± 4.138

Table 4. Standard deviation for different interpolation methods. The standard deviation is
computed from the residuals between measured depth value and interpolated value in the
control points.

Survey σ Survey σ

m m
S1 ±0.043 Ha0 ±0.194
S11 ±0.036 Ha5 ±0.222
HH0 ±0.078 B4 ±0.169
HH7 ±0.063 B6 ±0.174
Ho53 ±0.306 M1 ±5.124
Ho83 ±0.265 M10 ±2.759

Table 5. Average standard deviation of depth values computed from universal kriging
variance, see Equation 23

where the noise component σ2
w of the measurements can be derived from the semivariogram

and the universal kriging variance σ2
u by the application of Equation 23. The variance of r(u)

can also be computed from the residuals in the control points as

σ
2
r =

1

n

n

∑
i=1

( f̃ (u)− g(u))2,

where f̃ (u) is the measured depth value in u and the g(u) the value computed from universal
kriging and n the number of control points. From the standard deviation of the two variances
the relation

q =
σ̂r

σr
(24)

is computed and presented in Table 6.
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Survey Gaussian linear Survey Gaussian linear

S1 1.30 1.38 Ha0 1.54 1.90
S11 1.12 1.22 Ha5 1.61 2.04
HH0 1.90 2.05 B4 1.24 1.32
HH7 1.33 1.54 B6 1.37 1.47
Ho53 1.27 1.41 M1 1.17 1.17
Ho83 1.24 1.32 M10 1.14 1.21
mean value 1.35 1.50

Table 6. Factor computed to evaluate the realism of the kriging variance in the control points,
see Equation 24. The factor is computed for both the Gaussian and linear semivariogram
given in Table 3. The closer the factor is to 1, the more realistic the semivariogram is
modelled.

From Table 6 we can see that the Gaussian and the linear semivariogram on average give
q-factor 1.35 and 1.50, respectively. The closer the factor is to 1, the more realistic the
kriging variance will be. Therefore, the Gaussian semivariogram gives slightly more realistic
values of the kriging variance than the linear semivariogram. The Gaussian variogram seems
therefore to be preferable when applied to seafloor mapping from multibeam echo sounder
measurments.

6. Conclusions

Quality issues of spatial data are illustrated by examples from seafloor mapping with
multibeam echo sounder. The methodologies to compute systematic errors and random
errors of the multibeam echo sounders represent rather new approaches—although, well
known techniques as least squares adjustment and geostatistical tools are applied. The
average interpolating wavelets algorithm shows its strength in the computation of the drift of
seafloor models, and we have demonstrated how the drift is used to derive residuals for the
computation of random errors, outliers and the semivariogram used in kriging interpolation.
We have shown how the three error components—random measurement errors, systematic
errors and outliers—can be identified from depth measurements with multibeam echo
sounders. Since these error sources are important to the quality of seafloor maps and digital
elevation models, their parameters should be documented and follow the measurements as
so-called metadata.
Different interpolation methods are compared. These methods can be used to compute digital
terrain models with regular sampling patterns from scattered data. Grid models, for example,
have regular sampling pattern and are very popular computer representations of digital
elevations models. The interpolation methods investigated, are selected from the class of
models often used in seafloor mapping. The general impression of the comparison is kriging
interpolation shows slightly higher precision than the other methods. For practical purposes
we recommend that factors as speed of computation and numerical stability should be considered
when interpolation methods are to be implemented.
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9. Appendix: 2D average interpolating wavelets algorithm

The average interpolating wavelets algorithm used in our experiments, will presented as a
C-implementation The implementation follows the descriptions in Bjørke and Nilsen (2002)
and Bjørke and Nilsen (2003), see also applications of the metod in Bjørke and Nilsen (2007;
2009) and Bjørke and Nilsen (2005). The calling syntax of the algorithm is 2dforward( A, i, j, q )

where A is a 2n × 2n matrix of cell average values, i and j are the number of rows and columns
of A, and q the number of levels in the expansion. The following example will clarify the role
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of expansion. Assume matrix A0 as

A0 =







2.1 4.3 1.8 2.9
3.5 5.8 7.1 3.2
8.7 3.2 7.8. 3.6
4.1 6.9 4.4 6.7







with spatial resolution 10m. From this matrix we want to make an expansion to a matrix with
spatial resolution 2.5m. This means that we must increase the size of A0 from 4× 4 cells to
size 16× 16 cells. From A0 we construct a new matrix A with size 16× 16 cells by filling out
the extra cells with zeros as

A =





















































2.1 0 0 0 4.3 0 0 0 1.8 0 0 0 2.9 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3.5 0 0 0 5.8 0 0 0 7.1 0 0 0 3.2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8.7 0 0 0 3.2 0 0 0 7.8. 0 0 0 3.6 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.1 0 0 0 6.9 0 0 0 4.4 0 0 0 6.7 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





















































.

By calling 2dforward(A, 4, 4, 2), the function returns a matrix A where the empty cells are
filled in with interpolated values.

int forward2d(double *matrix,int size_i,int size_j,int numlevels)

{

int i,j,step,smallstep,level,maxlev,tmp,Tmp,minsize;

if(size_i<size_j){

tmp=size_i;

Tmp=size_j;

}else{

Tmp=size_i;

tmp=size_j;

}

minsize=3;

maxlev=0;

step=1;
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while(((tmp%2)==0) && ((Tmp%2)==0) && ((tmp/2)>=minsize) &&
(maxlev<numlevels)){

tmp/=2;
Tmp/=2;
maxlev++;

}
for(level=1;level<=maxlev;level++){

smallstep=step;
step*=2;
for(i=0;i<size_i;i+=smallstep){

for(j=0;j<size_j;j+=step){
matrix[size_j*i+j+smallstep]-=matrix[size_j*i+j];
matrix[size_j*i+j+smallstep]*=0.5;
matrix[size_j*i+j]+=matrix[size_j*i+j+smallstep];

}
matrix[size_j*i+smallstep]-=

-0.375*matrix[size_j*i]
+0.500*matrix[size_j*i+step]
-0.125*matrix[size_j*i+2*step];

for(j=step;j<size_j-step;j+=step){
matrix[size_j*i+j+smallstep]-=

+0.125*matrix[size_j*i+j+step]
-0.125*matrix[size_j*i+j-step];

}
matrix[size_j*(i+1)-smallstep]-=

+0.125*matrix[size_j*(i+1)-3*step]
-0.500*matrix[size_j*(i+1)-2*step]
+0.375*matrix[size_j*(i+1)-step];
}
for(j=0;j<size_j;j+=smallstep){

for(i=0;i<size_i;i+=step){
matrix[size_j*(i+smallstep)+j]-=matrix[size_j*i+j];
matrix[size_j*(i+smallstep)+j]*=0.5;
matrix[size_j*i+j]+=matrix[size_j*(i+smallstep)+j];

}
matrix[size_j*smallstep+j]-=

-0.375*matrix[j]
+0.500*matrix[size_j*step+j]
-0.125*matrix[size_j*2*step+j];

for(i=step;i<size_i-step;i+=step){
matrix[size_j*(i+smallstep)+j]-=

+0.125*matrix[size_j*(i+step)+j]
-0.125*matrix[size_j*(i-step)+j];

}
matrix[size_j*(size_i-smallstep)+j]-=

+0.125*matrix[size_j*(size_i-3*step)+j]
-0.500*matrix[size_j*(size_i-2*step)+j]
+0.375*matrix[size_j*(size_i-step)+j];

}
}
return(maxlev);

}
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