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1. Introduction  

Service-Oriented Architecture (SOA) enables the development of applications that are built 
by combining loosely coupled and interoperable services (Erl, 2004). In SOA, the centre of 
gravity shifts from development to integration. An application in SOA is composed from a 
set of services that are connected together in the integration platform. Such an application is 
described as an abstract composition which can be executed in containers (e.g. the 
Enterprise Service Bus), responsible for mapping abstract services to concrete service 
instances during execution. The mapping process can be performed by a user or planner 
prior to execution or during runtime. It should take into account Quality of Service aspects, 
enabling quality control to become an integral part of SOA application execution.  
Automation of quality control can explore the concept of adaptive or autonomic systems 
(Ganek & Corbi, 2003). An adaptive software system enables software to modify its 
structure and behaviour in response to changes in its execution environment (McKinley et 
al., 2004). Adaptation can be differentiated into static or dynamic, depending on when it 
takes place. Static adaptation assumes that adaptive behaviour is hardwired or configured 
before the application starts. Dynamic adaptation processes enable extensions or 
replacement of system components during execution without stopping and restarting the 
system. Thus, this category of adaptation is particularly suitable for SOA applications. 
Autonomic systems (Kephart & Chess, 2003) represent a more mature step in the evolution 
of dynamic adaptive systems. In such systems the operator does not influence the system 
directly, but only defines general policies which specify system behaviour. The system is 
able to collect new knowledge and use it in the adaptation process. In the case of SOA 
applications, this means that integrated components may be dynamically managed by 
business rules and policies, taking into account experience gathered from former application 
runs. 
In spite of the differences between adaptive and autonomic systems, their general design 
follows the same MAPE (Monitor, Analyze, Plan, and Execute) (IBM, 2006) paradigm. This 
very well known paradigm has not yet been widely adopted by the SOA application 
execution environment, creating an interesting space for research. Its practical exploitation 
requires suitable mechanisms implementing the MAPE control process to be embedded into 
execution containers for SOA services. The analysis and planning steps for SOA applications 
require a definition of metrics and their calculation on the basis of monitoring data. The 
values of these metrics could be used for the SOA application execution model construction, 
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which may subsequently be utilized in the planning step. The model represents knowledge 
about the SOA application execution history and service interdependency. Its construction is 
somewhat optional, as a planning strategy might exploit only online monitoring parameters 
which refer to simple services.  
This chapter presents the model-driven adaptive SOA application execution environment as 
a more mature version of adaptive systems. Such an execution environment is a promising 
approach to managing complexity, leveraging software models which we refer to as 
models@run.time (Blair et al., 2009). Such a model is defined as a causally connected 
self-representation of the associated system that emphasizes the structure, behaviour or 
goals of the system from a problem space perspective. Runtime models provide 
“abstractions of runtime phenomena” and support reasoning. They may used for dynamic 
state monitoring and control of systems during execution or to dynamically observe the 
runtime behaviour in order to understand a specific behavioural phenomenon. 
The chapter focuses on the construction of SOA application execution models and 
mechanisms supporting the MAPE process which allow it to be used for quality control at 
runtime. The proposed approach takes into account the fact that service delivery is 
intimately connected to Quality of Service and Quality of Experience requirements, 
expressed through contracts between service providers and end users. It is also essential 
that SOA applications – frequently composed at runtime – offer new theoretical and 
practical possibilities for QoS/QoE management. These aspects are very important for 
research on next-generation SOA (Erl, 2010) technologies, dealing with management, 
governance and support for composite services through lightweight orchestration.  
The structure of the proposed chapter is as follows. First, the requirements of QoS/QoE 
control in SOA systems are presented. A clear distinction between QoS and QoE is 
introduced. The taxonomy of QoS metrics for SOA systems is also presented. When 
referring to QoS we note that this term is used to describe quality from the point of view of 
providers as well as clients. Paradoxically, system users might be satisfied with high QoE 
even if the system itself does not implement all the functionality paid for by the clients. On 
the other hand, fulfilment of all required quality aspects does not automatically result in 
user satisfaction if QoE remains low. The importance of QoE has strong temporal 
characteristics as it is frequently analyzed in brief intervals, whereas QoS is usually 
averaged over a longer period of time. It should also be noted that clients may disagree with 
the provider as to the overall quality of the system. Since major differences between these 
assessments are commonplace, they should also be taken into account when considering 
quality control in SOA systems. 
Following this discussion, model-driven adaptive quality control of SOA applications is 
presented. A statistical model of SOA application execution which could be used for this 
purpose is introduced and its runtime updates are considered. An adaptation process based 
on a fitness function is formulated. The computation of this function relies on the proposed 
statistical model of SOA application execution. This part of the chapter is based on ongoing 
research by the authors (Szydlo & Zielinski,2008; Szydlo,2010). The following part of the 
chapter considers adaptability mechanisms for SOA systems. They exploit the fact that each 
SOA application is composed of a set of services linked to one another via the integration 
platform – ESB. Such an application can be described as an abstract composition and then 
executed in an ESB container responsible for mapping abstract services onto specific 
instances in the course of service processing. The mapping process can be performed by the 
user or planner prior to execution or it can take place at runtime. Such an approach allows 
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instances to be replaced during execution if QoS/QoE requirements are to be fulfilled. This, 
in turn, leads to practical implementation of QoS-driven composition as a foundation of the 
investigated runtime adaptability concept. Sensors and effectors for adaptation activity are 
described and location of their installation within the ESB architecture is explained. The 
usability of the proposed approach is illustrated by a case study. The chapter ends with 
conclusions. 

2. Quality management in SOA systems 

Quality management is a crucial element as it ensures that systems meet their requirements 
with respect to specific performance metrics. Dealing with QoS is a sign that technology is 
progressing beyond initial experimentation to a production deployment stage – as in the 
case of service orientation. In order to manage quality, a set of metrics has to be defined. 
Clients and providers are bound by SLAs which define the terms and conditions of service 
quality that the provider must deliver to customers. A key aspect of SLA is QoS information 
which consists of several criteria such as execution duration, availability, execution time, 
and many others. SLA also comprises financial information such as the price for using a 
service, and the way in which penalties are calculated. To define quality requirements, a 
common understanding of offered quality between users and providers is necessary 
(Dobson & Sanchez-Macian, 2006). 
It is important for both consumer and provider to understand metric semantics  
(Ludwig, 2003). Clear definitions must be associated with particular parameters (e.g. 
response time as average value or the maximum response time over the last ten minutes). 
Similarly, the point of measurement is important. Metric values gathered on the client side 
are often different than those gathered within the service container or the service itself. 
 

 

Client
Provided

QoS

Observed

QoE

Provider

 

Fig. 1. Perceiving quality 

Analysis of existing frameworks in terms of QoS shows that this term is used 
interchangeably for describing quality from the provider as well as from the client point of 
view. Authors have therefore decided to use term Quality of Experience (QoE) for Quality of 
Service observed at the client endpoint. This idea is presented in Fig. 1. Paradoxically, 
system users might be satisfied with system behaviour that exhibits high QoE even if the 
system does not implement all the functionality for which the clients actually paid. On the 
other hand, the system may fulfil all the required quality aspects, but users might still not be 
satisfied given low QoE. The importance of QoE has a temporal character as well, as it is 
observed over a finite interval, whereas QoS is more of an average statistic. Client may 
disagree with the system provider as to the quality of the system. In fact, it is very common 
for both assessments to differ fundamentally. 
The definition and evaluation of metrics is essential for model-driven adaptive quality 
control of SOA applications as they could be composed at runtime with services offered by 
many providers. It is also a fundamental element of the MAPE process and the execution 
model. This is why the metrics classification used for in the context of SOA applications 
should be considered in more detail. 
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Fig. 2. Taxonomy of SOA metrics 

We refer the reader to the taxonomy presented in Fig. 2 which distinguishes the following 

categories: 

• Internal and External Metrics Internal metrics addresses solely those aspects of a 

system which are available exclusively for system architects. They might provide 

detailed information on source code, or the number of used software modules. External 

metrics are available for system users and provide information about system reliability, 

efficiency or response time. Evaluation of external metrics is more difficult than of 

internal ones, as such metrics often have subjective meaning. Additionally, metrics 

calculated at early stages of product development may not reflect the values of final 

versions; 

• Static and Dynamic Metrics Static metrics describe invariable parameters. These might 

include parameters derived from software documentation or semantic description, or 

metrics describing source code. Examples of such metrics include configuration and 

security aspects of software (Hershey et al., 2007). Dynamic metrics are evaluated 

during runtime. Sample metrics of this kind include execution time and network 

throughput; 

• Basic and Complex Metrics Basic metrics are directly gathered from system 

monitoring. They might provide simple information about system behaviour, e.g. the 

time necessary to deliver a message. Complex metrics are combinations of basic ones. 

For example, response time might be defined as the time needed to deliver a message to 

a service plus the time needed to process this message.  

A number of authors have tried to organize metrics for SOA (Rud et al, 2007) (Hershey & 

Runyon, 2007); however, in practice, most such schemas are variations of availability, 

execution time and throughput. 

The presented metrics could refer to simple or composite services which constitute an SOA 

application. Typically, computing composite service metrics requires additional information 

e.g. on how the execution of one service may impact the execution of another service 

(Menasce, 2004). The problem becomes even more complicated if services are invoked in 

parallel. Such additional information may be provided by the execution model which 

typically describes existing interdependencies. This problem is further elaborated in 

Section 3 where the SOA application execution model is presented. 
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3. Model driven adaptive quality control in SOA systems 

Runtime adaptability requires detailed information on how the system behaves and how 
certain services influence others. This information is necessary for proper formulation and 
implementation of adaptation strategies. The use of models for SOA adaptability seems to 
be a promising approach (Blair et al., 2009). Models represent knowledge about the working 
system and hide unnecessary information, providing only facts related to the problem on 
hand. An execution model may be constructed on the basis of monitoring data collected 
while observing service QoS/QoE and execution infrastructure load. Updating models at 
runtime enables the system to respond to changes in the execution environment. The model 
may then be used to modify composition of the application in order to achieve high-level 
system management goals. Such modifications address service selection, binding protocol 
and interaction policy choices.  
 

 

Deployable service 

description

Architecture specific 

service composition

Execution and Monitoring

QoS

QoE

Adaptation policy

Model of service 

execution

analysis
Modifications to 

deployed service

Abstract planAbstract plan

 

Fig. 3. Model-driven adaptation 

The concept of model-driven adaptation is presented in Fig. 3. The service provider 
composes an application in a selected technology and provides an adaptation policy to the 
system along with a composite service execution model. The architecture-specific service 
composition layer continuously modifies the deployed service according to the provided 
adaptation policy. The abstract plan which acts as input for architecture-specific service 
composition might be hidden and used only by the programmer during application 
development. The knowledge of how the system behaves is represented by the service 
execution model. For this purpose, statistical models can be used. The use of such models 
for adaptive quality control requires mechanisms for model identification, updates and 
exploitation in the adaptation process.  

3.1 Statistical models of composite service execution 

Composite service execution is a collection of activities applied during each service 
invocation. In other words, each invocation is a particular flow in a graph of possible 
activities represented as a model M. By observing the composite service activity at a given 
point in time, these flows can be described by statistical data associated with edges of a 
graph. Thus, the model is composed of a graph and static information which can be 
provided by the system designer or identified automatically based on system activity 
monitoring. Once used for adaptation, the model can be updated at runtime, reflecting the 
current behaviour of the system. 
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S1
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S3

S4

S5
Start Stop

p1

p2

p3

p4

p5

p6

 

Fig. 4. Sample model of complex service execution at Level1 

A formal composite service execution model is represented as a Directed Acyclic Graph 
(DAG) M = (V;E) and includes two special nodes: Start and Stop. At Level1, nodes in this 
model represent abstract services – specified by description of their functionality, e.g. WSDL 
files, while at Level2 particular Service instances (specific services) are considered. A sample 

model of complex service execution at Level1 is shown in Fig. 4. Edge (s1; s2) ∈ E means that 
service s1 communicates with service s2 with probability p(s1; s2). For each vertex sj the 
probabilities on edges originating in a given node add up to 1 provided that successors are 
not invoked in parallel: 

( ) 1
j k

j k
s SUCC( s )

p s ,s
∈

=∑  

Once the model is defined and statistical information is collected, it can be used for 
adaptation purposes. From the service provider’s perspective, statistical information can be 
very valuable because it enables identification of the busiest services and bottlenecks, as 
well as optimization of resource allocation. 

3.2 Model updates at run-time 

Updating statistical models at runtime strongly depends on the implementation technology 
of integration middleware. SOA leverages loose coupling of services, which might be 
connected by additional infrastructural elements, e.g. Enterprise Application Integration 
(EAI) patterns (Hohpe & Woolf, 2003). 
The composite service execution model at Level1 contains abstract services, whereas in the 
execution environment each abstract service might be represented by several instances, used 
interchangeably. Hereinafter, the number of messages sent between abstract services s1 and 
s2 is understood as a sum of messages sent between all instances of these abstract services.  
 

Instance1

(Bean-SU)

ServiceBC

(HTTP-BC)

Instance2

(Bean-SU)

START STOP

p1
S1

S2
p2

1.0

1.0

a) b)

 

Fig. 5. Model synchronization a) complex service execution model; b) EAI model 

When a model contains all the services involved in message passing, calculating the 
probabilities for model edges becomes straightforward – they reflect the number of 
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messages sent between services divided by the total sum of messages originating at a 
source node. Nevertheless, the complex service execution model may not contain all the 
services deployed in ESB, as shown in Fig. 5 where the EAI content router is excluded from 
the model. This is justified by the fact that such an element plays a strictly technical role 
and does not influence the functionality of the composite service. It has also been 
optimistically assumed that the number of messages sent between services s1 and s2 is the 
minimum number of messages sent between services that are on the shortest path between 
s1 and s2. 

3.3 Adaptation process 

The proposed execution model can be used for computation of expected values of selected 
metrics if some service instances take part in execution. The adaptation process may analyze 
all the possible combinations of service instance invocation flows that might occur in the 
execution process and select one for execution, based on metric values. 
When decisions are made locally, i.e. without analysis of how a particular service instance 
may affect the overall application, the results often lead to unsatisfactory solutions. The 
concept of statistical models presented in this chapter enables estimating global behaviour 
of systems when a certain invocation flow of instances is selected for execution. 
Referring to the example in Fig. 4, let us assume that for services s1,…, s5, instances i1,…,i5 
are selected. Thus, the presented model now is at Level2. Let us now consider the execution 
time metric. Let tk be the execution time of service ik. If TimeC is the predicted total execution 
time for subsequent invocations of a composite service, then for the presented model and 
selected instances, it can be given as: 

( )
( )

( )

1 1 2 2 2 4 4 4 5 5

1 1 3 3 3 4 4 4 5 5

1 1 3 3 3 5 5

1 3 6

2 4 6

2 5

RTT RTT RTT
C i i ,i i i ,i i i ,i i

RTT RTT RTT
i i ,i i i ,i i i ,i i

RTT RTT
i i ,i i i ,i i

Time p p p t t t t t t t

p p p t t t t t t t

p p t t t t t

= + + + + + +

+ + + + + + +

+ + + + +

 

The composite service model at Level1 may generate several models C at Level2 because for 
each abstract service several instances may be available. Given a set of metrics Q, for each 

service C a QoSC vector can be calculated. For each i-th metric QoSiC ∈ [0;1] is the value of 
that metric based on historical invocations of a complex service and information stored in 
the composite service execution model.  
There might be several ways to select the most suitable solution. For example, let us define a 
fitness function that determines how well a selected set of services matches user 
expectations. The weights of each metric express its importance in the overall fitness 
indicator: 

( ) i
C i C

i

fitness QoS w QoS= ×∑  

Providing exact weights for each metric is a multidimensional decision problem. Despite its 

inherent complexity, it can be approached through decomposition. The Analytic Hierarchy 

Process (Forman & Selly, 2001) is a technique based on mathematics and human psychology 

for prioritizing elements of a decision problem. For each pair of metrics the user specifies 

which one is preferred, in the form of a fraction between 1/9 and 9/1. The result of AHP is a 
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vector of weights wi for each metric i. From the number of possible solutions, one chooses 

the solution with the highest fitness factor and modifies the execution container in order to 

use the selected service instances. A different approach assumes the use of QoE during 

adaptation. For example, when the client pays for a particular level of quality, the system 

may constantly switch between sets of service instances so that the client finally receives 

what he paid for.  

The presented concept of quality control requires suitable mechanisms which should extend 
the SOA integration to support execution of service instances selected by the adaptation 
policy. Contrary to other solutions (Vuković, 2006; Gubala et al., 2006; Chafle et al., 2006), 
the proposed approach requires the service provider to compose applications in the selected 
technology and then provide an adaptation policy along with a model of composite service 
execution. The adaptation system monitors the deployed composite services and modifies 
their operating parameters in accordance with the provided adaptation policy. All these 
stages of adaptation are described in detail in next section, referring to the MAPE paradigm. 

4. Adaptability mechanisms for SOA systems 

The MAPE paradigm consists of four sets of functionality: monitor, analyze, plan and 
execute. Analyzing and planning responses to changes in the execution infrastructure can be 
affected by model-driven adaptation described in the previous section. Other sets of 
functionality are strictly related to the managed resource. Monitor functions collect details 
from the managed resource and correlate them into symptoms that can be analyzed. The 
execute functions provide mechanisms for performing necessary changes to the system.  
Currently, the Enterprise Service Bus (ESB) looms large as a promising approach for 
deployment of SOA applications. Most of the ESB implementations are compliant with Java 
Business Integration (JBI), developed under the Java Community Process (JCP) and 
specified as Java Specification Request (JSR) 208, as an approach to implementing SOA. ESB 
provides mechanisms for message normalization, routing between selected components and 
location transparency, making it possible to access services by name without prior 
knowledge of their exact location. This is why ESB is the suitable place for mechanisms 
required by the adaptation process. 
 

 

Adaptability Mechanisms

Architectural
Decisions

Effectors

Decision enforcement 
point

Sensors

Execution conditions 
identification

SOA
Integration Layer

 

Fig. 6. Extending the integration layer with adaptability mechanisms 
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Fig.6 depicts a processing cycle based on the MAPE paradigm and corresponding to a 

standard control/adaptation loop. The Architectural Decision block continuously monitors 

the system and handles events whenever an action needs to be taken. It monitors the 

environment using sensors, analyses what is found and then plans and executes specific 

actions through effectors operations. Sensors monitor current system state while effectors have 

the ability to change the state or configuration in order to perform adaptation. 

Sensors 

An adaptive system acts in accordance to various goals, requiring several sorts of 

information gathered from ESB. In most cases, this information will be disjunctive, so one 

would expect to deploy specialized types of sensors rather than generic ones. It has been 

found that the interceptor design pattern (Schmidt et al., 2000) fulfils requirements for 

dynamic installation and reinstallation of sensors. This leads to the conclusion that sensors 

can be implemented as interceptors and installed whenever necessary. 

The most appropriate location of sensors is the place where inter-service/inter-component 

message transmission takes place. JBI specification defines elements which participate in 

sending and passing messages. A message is created in a service, passes through a 

specialized Service Engine (SE) or Binding Component (BC) and is then sent (through a 

Delivery Channel – DC) to a Normalized Message Router (NMR), which reroutes it to a 

particular destination through the same components. Injecting interceptors into services or 

SEs requires knowledge of various types of services and engines. Thus, a better place to 

inject message exchange interceptors is the DC through which every SE is connected to 

NMR. 

The amount of monitoring information gathered from ESB would be overwhelming. A more 

suitable approach is to correlate or aggregate events and send notifications only if complex 

events take place. For this purpose, the stream of simple events from ESB could be 

processed by a Complex Event Processor (CEP) (Luckham, 2002) which, in due time, would 

notify the Architectural Decision block.  

Effectors 

Implementing an adaptation policy requires action, i.e. a set of operations which modify the 

execution of an application. These operations are performed by effectors which have to be 

implemented and installed in the execution environment. It has been found that modifying 

message routes between service instances is crucial for implementation of the proposed 

SOA application adaptation concept.  

Rerouting messages to other instances is justified only when these instances share the same 

interface and provide identical functionality. This process could be performed effectively by 

installing suitable effectors in ESB. Current implementations of ESBs that are compliant with 

the JBI specification share some common attributes used during message processing. Each 

invocation of a complex service is described by its CID (Correlation ID) and is constant for 

one invocation, even when passed among services. A particular message sent between 

services is described by EID (Exchange ID). Generally speaking, the invocation of a complex 

service is described by CID and consists of several message exchanges described by EID 

which complies with the execution model proposed in Section 3. Extending NMR with 

effectors implementing a selected routing algorithm, capable of modifying message routing, 

would yield an adaptable ESB. 
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Priority CID
Intentional 

Service Name
EID

Destination  
Service Endpoint 

1 n/a n/a + Service Endpoint 1

2 + + n/a Service Endpoint 2

3 n/a + n/a Service Endpoint 3

4 + n/a n/a Service Endpoint 4

5 n/a n/a n/a Service Endpoint 5

6 n/a n/a n/a Service Endpoint 6

Table 1. Examples of routing rules 

Once the message reaches the NMR, the routing algorithm checks conditions of routing 

rules in the routing table (see Table 1). If the message matches a routing rule, that rule is 

fired and the Service Endpoint from the routing rule substitutes the intended destination 

Service Name. Routing rules are split into groups with different priorities that are analyzed 

in a particular order. In every message, header parameters such as Correlation ID, intended 

Service Name and Exchange ID, are matched to routing rules. If the message matches 

several rules, one of them is selected on a round-robin basis to provide load balancing. 

5. Case study 

In order to verify the presented concept of SOA application composition and execution, the 

Enterprise Service Bus (ESB) as an integration platform has been extended by adaptability 

mechanisms. The prototype design follows the architecture of Adaptive ESB presented in 

the previous section. Adaptability mechanisms are implemented using Aspect Oriented 

Programming (AOP) (Kiczales et al., 1997), where new features can be enabled and disabled 

without modifying original ESB container source code. 

The prototype implementation of adaptive ESB is exploited in a scenario which 

demonstrates how the proposed concept of quality control can be applied to a situation 

where clients should receive variable QoS depending on some constraints. The provided 

composite service execution model is used to generate a possible set of service instances that 

can be invoked during execution. Subset selection bases on a fitness function defined in 

Section 3.3, which determines user preferences by associating weights with the available 

composite service metrics. Possible solutions are then ordered according to the values of the 

calculated metrics and the adaptation policy selects a particular set of service instances 

based on high-level goals, i.e. the cost of execution and the overall client budget. 

5.1 Composite service 

Let us assume that one would like to create a GeoWeather service that provides weather 

information for a given location. Location data will be provided as a zip code, GPS location, 

IP address of computer user or country name. Another assumption is that accuracy would 

be sufficient if limited only to cities. 

Widely-available weather services do not provide weather information for GPS coordinates. 

Instead, they provide weather information for a given readable address; thus all possible 

input formats have to be converted to addresses and then polled for weather information. 
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Fig. 7. EAI model of complex service used in the case study 

To deploy this application into ESB, it has to be described in terms of EAI patterns. Invoking 
services in a sequence might be performed with the use of RoutingSlip integration patterns, 
while modifying the message content can be done using the ContentEnricher pattern. An 
EAI-based model of the presented composite service is depicted in Fig.7. 
Let us assume that the client operates an Internet website that provides information for 
amateur pilots and that he wants to include very accurate weather forecasts for airports on 
the main website. The client is interested in a service which returns weather information for 
given geographical coordinates. The provider notices that this website receives 8,200 visits 
per week (on average) and, given the QoS selected by the client, it costs 54,000 credits. As 
the website become more popular, the number of invocations may significantly increase. 
The client therefore decides to buy a service with variable QoS and with the maximum 
budget of 55,000 credits. Detailed statistics of user invocations are presented in Fig. 8. Two 
different profiles can be distinguished. The first one reflects typical interest in the website, 
while the second one occurs when there is increased interest in the website. The increased 
numbers of page visits before the end of the week can be attributed to a national flying 
contest. 
 

 

Fig. 8. Number of visitors per hour 

5.2 Importance of metrics 

For this type of service, it is better (from the customer’s point of view) to achieve very 

accurate data slower than to rapidly access inaccurate information. The author therefore 
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decides to apply the fitness function presented in Section 3, which expresses the degree of 

overlap between the functionality of the composite service and the user’s preferences. This 

means that each metric has to be normalized and its value has to be in the [0; 1] range where 

1 means that this metric has the best possible value. 

Three metrics are defined for this scenario: availability, execution time and data quality. 

Availability is defined as the percentage of successful invocations. Execution time metric is 

normalized linearly (for response time equal to 0ms the value of the metric is 1, while for 

response time above 1000ms the corresponding value is 0). The data quality metric equals 0 

if data is accurate to within 100km, and 1 if it is accurate to within 10km. 

Weights for each metric in the fitness function are calculated using the mentioned earlier 
AHP method. The customer determines the relative importance of each metric:  

• availability is three times as important as execution time; 

• availability is five times less important than data quality; 

• execution time is five times less important than data quality. 
Following calculations, the fitness function used in this case can be given as: 

0 20 0 097 0 702fitness , * availability , * execution_time , * data _ quality= + +  

5.3 Composite service execution model 

In order to react to changes in the execution environment, a composite service execution 

model and an adaptation policy have to be defined. The model of the analysed service and 

its projection onto instances found in the ESB is depicted in Fig. 9. This model can be 

derived by simply transforming the EAI-based model shown in Fig. 7. The service is only a 

subset of a larger, complex service; hence the model contains only these services that are 

used in the invocations.  

 

START STOPS1
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Weather

Global

START STOP

LocationA

LocationB

WeatherA

WeatherB

WeatherC

Projection

S6

Weather

USA

WeatherU
 

Fig. 9. Projection of the model of complex service execution at Level1 onto composite services 

There are six possible combinations of service instances that might be executed. The model, 

along with the expected values of metrics for projected composite services, is updated at 

runtime and used by the adaptation policy. 
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Composite 
service 

Service 
Location 
instance 

Service 
Weather 
instance 

Cost 
[unit/100]

Availability 
[%] 

Data 
quality [%]

Execution 
time [ms] 

fitness 
factor 

C1 LocationA WeatherA 650 0.81 0.95 200 0.737 

C2 LocationA WeatherB 600 0.81 0.90 300 0.657 

C3 LocationA WeatherC 350 0.72 0.70 500 0.535 

C4 LocationB WeatherA 550 0.89 0.80 300 0.623 

C5 LocationB WeatherB 500 0.89 0.80 400 0.614 

C6 LocationB WeatherC 250 0.79 0.70 600 0.526 

Table 2. Fitness factors of composite services for the variable QoS test case 

Table 2 contains expected metric values for the composite services that might be invoked 
and the evaluated fitness factor for each composition. 

5.4 Adaptation strategy 

In the presented test case, a simple accounting system has been implemented which 

constantly monitors user invocations and updates the associated accounts. The same 

module calculates the expected number of invocations until the end of the accounting 

period. The number of invocations per week is calculated as a sliding window from the last 

7 days. It is then used to calculate the expected number of invocations for the remaining 

days until the end of the accounting period. Given the number of credits left and the 

expected numbers of invocations until the end of accounting period, the module calculates 

the maximum price for subsequent invocations. This module is expressed as a fact and 

inserted into the working memory of the policy engine. 

5.5 Results 

Detailed statistics of user invocations are presented in Fig. 10. Increased numbers of page 

visits before the end of the week can be attributed to a national flying contest. The total 

number of invocations is not the expected 8,400 but approximately 10,200 as depicted in Fig. 

10B. During the week, the system tries to estimate the total number of invocations during 

the accounting period – this fact is reflected in the figure. Because the actual number of 

invocations is greater than expected, system has to switch to a different set of instances to 

bring the total sum below the assumed 55,000 credits. Coloured areas in Fig. 10 show which 

composite service is used by the system to provide the service. One can notice that on the 

4th day the system has decided to switch the composite service to the less expensive C2 with 

fitness factor 0.657 instead of C1 with 0.737 and then to C4 with 0.623. As the expected 

number of invocations during the whole accounting period increases, the maximum number 

of credits that might be spent on each invocation keeps decreasing. This leads to further 

adjustments (on day 5) where the composite service is switched to C5, C3 and finally C6. 

During the last 2 days, the number of invocations is noticeably smaller, so the system 

returns to its initial state i.e. to composite service C1 with the best fitness value. Without an 

adaptation policy as depicted in Fig. 10A, the client would have to pay 64,000 credits in the 

described case; however the adaptation policy ensures that the cost is kept below the 

assumed limit of 55,000 credits. Execution time of provided service is depicted in Fig.10C, 

data quality in Fig. 10D and availability in Fig. 10E. 
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Fig. 10. Test case scenario with variable QoS 
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6. Summary 

SOA applications which are loosely coupled and composed from self-contained, 
autonomous services with well-defined contracts are particularly well suited for adaptive 
control of QoS. Their execution environments (such as ESB) could be effectively equipped 
with mechanisms which allow implementation of MAPE paradigms.  
A crucial element of the adaptation loop is a decision subsystem which enforces application 
adaptation actions, maintaining QoS/QoE guarantees under changing operational 
conditions and constrains. This rather complex process may be practically performed with 
SOA application execution model support. The presented study shows that a statistical 
model could be used for this purpose. 
Statistical models, which can be identified at runtime, represent knowledge and experience 
derived from the SOA application execution history. This knowledge may be transparently 
used by the execution environment to control QoS according to a selected policy. The 
proposed approach leads to a new, important category of adaptive SOA systems which may 
satisfy consumer requirements under changing QoS conditions without involving a human 
operator. 

7. References 

Ali Arsanjani, Liang-Jie Zhang, Michael Ellis, Abdul Allam, and Kishore Channabasavaiah. 
S3: A Service-Oriented Reference Architecture. IT Professional, 9(3):10–17, 2007. 

Gordon Blair, Nelly Bencomo, and Robert B. France. Models@ run.time. Computer, 42:22–27, 
2009. 

G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and B. Srivastava. Adaptation in Web Service 
Composition and Execution. In Web Services, 2006. ICWS ’06. International 
Conference on, pages 549–557, Sept. 2006. 

Glen Dobson and Alfonso Sanchez-Macian. Towards Unified QoS/SLA Ontologies. In SCW 
’06: Proceedings of the IEEE Services ComputingWorkshops (SCW’06), pages 169–174, 
Washington, DC, USA, 2006. IEEE Computer Society 

Thomas Erl. SOA Principles of Service Design (The Prentice Hall Service-Oriented 
Computing Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River, NJ, 
USA, 2007. 

Thomas Erl. Modern SOA Infrastructure: Technology, Design, and Governance, Prentice 
Hall PTR, Upper Saddle River, NJ, USA, 2010 

Ernest H. Forman and Mary Ann Selly. Decision By Objectives – How To Convince Others 
That You Are Right. World Scientific Publishing Co. Pte. Ltd., Singapore u.a., 2001. 

Alan G. Ganek and Thomas A. Corbi. The dawning of the autonomic computing era. IBM 
Systems Journal, 42(1):5–18, 2003. 

T. Gubala, D. Harezlak, M.T. Bubak, and M. Malawski. Constructing abstract workflows of 
applications with workflow composition tool. , Cracow’06 Grid Workshop, Vol 2: K-
Wf Grid: the knowledgebased workflow system for Grid applications: October 15–
18, 2006 Cracow, Poland 

Paul Hershey and Donald Runyon. SOA Monitoring for Enterprise Computing Systems. In 
EDOC ’07: Proceedings of the 11th IEEE International Enterprise Distributed Object 
Computing Conference, page 443, Washington, DC, USA, 2007. IEEE Computer 
Society. 

www.intechopen.com



 Applications and Experiences of Quality Control 

 

396 

Paul Hershey, Donald Runyon, and Yangwei Wang. Metrics for End-to-End Monitoring and 
Management of Enterprise Systems. In Military Communications Conference, 2007. 
MILCOM 2007. IEEE, pages 1–7, Oct. 2007. 

Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and 
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc., 
Boston, MA, USA, 2003. 

IBM Corporation, An Architectural Blueprint for Autonomic Computing, June 2006 
Kiczales, Gregor; John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-

Marc Loingtier, and John Irwin (1997). "Aspect-Oriented Programming". 
Proceedings of the European Conference on Object-Oriented Programming, vol.1241. pp. 
220–242. 

Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. Computer, 
36(1):41–50, January 2003. 

David Luckham. The Power of Events: An Introduction to Complex Event Processing in 
Distributed Enterprise Systems. Addison-Wesley Professional, May 2002. 

Heiko Ludwig. Web services QoS: external SLAs and internal policies or: how do we deliver 
what we promise? In Web Information Systems Engineering Workshops, 2003. 
Proceedings. Fourth International Conference on, pages 115–120, 2003. 

P. K. Mckinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing adaptive 
software. Computer, 37(7):56–64, 2004. 

Daniel A. Menasce. Composing Web Services: A QoS View. IEEE Internet Computing, 
8(6):88–90, 2004. 

Aad Van Moorsel. Metrics for the Internet Age: Quality of Experience and Quality of 
Business. Technical report, 5th Performability Workshop, 2001. 

Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Solberg. 
Models@ run.time to support dynamic adaptation. Computer, 42:44–51, 2009. 

Dmytro Rud, Andreas Schmietendorf, and Reiner Dumke. Resource metrics for service-
oriented infrastructures. In Daniel L¨ubke, editor, Proceedings of the Workshop on 
Software Engineering Methods for Service-oriented Architecture 2007 (SEMSOA 2007), 
Hannover, Germany, pages 90–98. Leibniz Universit¨at Hannover, FG Software 
Engineering, May 2007. 

D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Architecture, 
Volume 2: Patterns for Concurrent and Networked Objects. Wiley, 2000. 

Tomasz Szydlo and Krzysztof Zielinski. Method of Adaptive Quality Control in Service 
Oriented Architectures. In ICCS ’08: Proceedings of the 8th international conference on 
Computational Science, Part I, pages 307–316, Berlin, Heidelberg, 2008. Springer-
Verlag. 

Tomasz Szydlo, QoS driven Semantics Based SOA Applications  
Composition and Execution, Ph.D. dissertation,  AGH-UST Krakow, October 2010. 

Maja Vuković, Context Aware Service Composition. Technical report, University of 
Cambridge, 2006. 

www.intechopen.com



Applications and Experiences of Quality Control

Edited by Prof. Ognyan Ivanov

ISBN 978-953-307-236-4

Hard cover, 704 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The rich palette of topics set out in this book provides a sufficiently broad overview of the developments in the

field of quality control. By providing detailed information on various aspects of quality control, this book can

serve as a basis for starting interdisciplinary cooperation, which has increasingly become an integral part of

scientific and applied research.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tomasz Szydło and Krzysztof Zieliński (2011). Model Driven Adaptive Quality Control in Service Oriented

Architectures, Applications and Experiences of Quality Control, Prof. Ognyan Ivanov (Ed.), ISBN: 978-953-307-

236-4, InTech, Available from: http://www.intechopen.com/books/applications-and-experiences-of-quality-

control/model-driven-adaptive-quality-control-in-service-oriented-architectures



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


