
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

20

Model Driven Adaptive Quality Control in
Service Oriented Architectures

Tomasz Szydło and Krzysztof Zieliński
AGH University of Science and Technology

Poland

1. Introduction

Service-Oriented Architecture (SOA) enables the development of applications that are built
by combining loosely coupled and interoperable services (Erl, 2004). In SOA, the centre of
gravity shifts from development to integration. An application in SOA is composed from a
set of services that are connected together in the integration platform. Such an application is
described as an abstract composition which can be executed in containers (e.g. the
Enterprise Service Bus), responsible for mapping abstract services to concrete service
instances during execution. The mapping process can be performed by a user or planner
prior to execution or during runtime. It should take into account Quality of Service aspects,
enabling quality control to become an integral part of SOA application execution.
Automation of quality control can explore the concept of adaptive or autonomic systems
(Ganek & Corbi, 2003). An adaptive software system enables software to modify its
structure and behaviour in response to changes in its execution environment (McKinley et
al., 2004). Adaptation can be differentiated into static or dynamic, depending on when it
takes place. Static adaptation assumes that adaptive behaviour is hardwired or configured
before the application starts. Dynamic adaptation processes enable extensions or
replacement of system components during execution without stopping and restarting the
system. Thus, this category of adaptation is particularly suitable for SOA applications.
Autonomic systems (Kephart & Chess, 2003) represent a more mature step in the evolution
of dynamic adaptive systems. In such systems the operator does not influence the system
directly, but only defines general policies which specify system behaviour. The system is
able to collect new knowledge and use it in the adaptation process. In the case of SOA
applications, this means that integrated components may be dynamically managed by
business rules and policies, taking into account experience gathered from former application
runs.
In spite of the differences between adaptive and autonomic systems, their general design
follows the same MAPE (Monitor, Analyze, Plan, and Execute) (IBM, 2006) paradigm. This
very well known paradigm has not yet been widely adopted by the SOA application
execution environment, creating an interesting space for research. Its practical exploitation
requires suitable mechanisms implementing the MAPE control process to be embedded into
execution containers for SOA services. The analysis and planning steps for SOA applications
require a definition of metrics and their calculation on the basis of monitoring data. The
values of these metrics could be used for the SOA application execution model construction,

www.intechopen.com

 Applications and Experiences of Quality Control

382

which may subsequently be utilized in the planning step. The model represents knowledge
about the SOA application execution history and service interdependency. Its construction is
somewhat optional, as a planning strategy might exploit only online monitoring parameters
which refer to simple services.
This chapter presents the model-driven adaptive SOA application execution environment as
a more mature version of adaptive systems. Such an execution environment is a promising
approach to managing complexity, leveraging software models which we refer to as
models@run.time (Blair et al., 2009). Such a model is defined as a causally connected
self-representation of the associated system that emphasizes the structure, behaviour or
goals of the system from a problem space perspective. Runtime models provide
“abstractions of runtime phenomena” and support reasoning. They may used for dynamic
state monitoring and control of systems during execution or to dynamically observe the
runtime behaviour in order to understand a specific behavioural phenomenon.
The chapter focuses on the construction of SOA application execution models and
mechanisms supporting the MAPE process which allow it to be used for quality control at
runtime. The proposed approach takes into account the fact that service delivery is
intimately connected to Quality of Service and Quality of Experience requirements,
expressed through contracts between service providers and end users. It is also essential
that SOA applications – frequently composed at runtime – offer new theoretical and
practical possibilities for QoS/QoE management. These aspects are very important for
research on next-generation SOA (Erl, 2010) technologies, dealing with management,
governance and support for composite services through lightweight orchestration.
The structure of the proposed chapter is as follows. First, the requirements of QoS/QoE
control in SOA systems are presented. A clear distinction between QoS and QoE is
introduced. The taxonomy of QoS metrics for SOA systems is also presented. When
referring to QoS we note that this term is used to describe quality from the point of view of
providers as well as clients. Paradoxically, system users might be satisfied with high QoE
even if the system itself does not implement all the functionality paid for by the clients. On
the other hand, fulfilment of all required quality aspects does not automatically result in
user satisfaction if QoE remains low. The importance of QoE has strong temporal
characteristics as it is frequently analyzed in brief intervals, whereas QoS is usually
averaged over a longer period of time. It should also be noted that clients may disagree with
the provider as to the overall quality of the system. Since major differences between these
assessments are commonplace, they should also be taken into account when considering
quality control in SOA systems.
Following this discussion, model-driven adaptive quality control of SOA applications is
presented. A statistical model of SOA application execution which could be used for this
purpose is introduced and its runtime updates are considered. An adaptation process based
on a fitness function is formulated. The computation of this function relies on the proposed
statistical model of SOA application execution. This part of the chapter is based on ongoing
research by the authors (Szydlo & Zielinski,2008; Szydlo,2010). The following part of the
chapter considers adaptability mechanisms for SOA systems. They exploit the fact that each
SOA application is composed of a set of services linked to one another via the integration
platform – ESB. Such an application can be described as an abstract composition and then
executed in an ESB container responsible for mapping abstract services onto specific
instances in the course of service processing. The mapping process can be performed by the
user or planner prior to execution or it can take place at runtime. Such an approach allows

www.intechopen.com

Model Driven Adaptive Quality Control in Service Oriented Architectures

383

instances to be replaced during execution if QoS/QoE requirements are to be fulfilled. This,
in turn, leads to practical implementation of QoS-driven composition as a foundation of the
investigated runtime adaptability concept. Sensors and effectors for adaptation activity are
described and location of their installation within the ESB architecture is explained. The
usability of the proposed approach is illustrated by a case study. The chapter ends with
conclusions.

2. Quality management in SOA systems

Quality management is a crucial element as it ensures that systems meet their requirements
with respect to specific performance metrics. Dealing with QoS is a sign that technology is
progressing beyond initial experimentation to a production deployment stage – as in the
case of service orientation. In order to manage quality, a set of metrics has to be defined.
Clients and providers are bound by SLAs which define the terms and conditions of service
quality that the provider must deliver to customers. A key aspect of SLA is QoS information
which consists of several criteria such as execution duration, availability, execution time,
and many others. SLA also comprises financial information such as the price for using a
service, and the way in which penalties are calculated. To define quality requirements, a
common understanding of offered quality between users and providers is necessary
(Dobson & Sanchez-Macian, 2006).
It is important for both consumer and provider to understand metric semantics
(Ludwig, 2003). Clear definitions must be associated with particular parameters (e.g.
response time as average value or the maximum response time over the last ten minutes).
Similarly, the point of measurement is important. Metric values gathered on the client side
are often different than those gathered within the service container or the service itself.

Client
Provided

QoS

Observed

QoE

Provider

Fig. 1. Perceiving quality

Analysis of existing frameworks in terms of QoS shows that this term is used
interchangeably for describing quality from the provider as well as from the client point of
view. Authors have therefore decided to use term Quality of Experience (QoE) for Quality of
Service observed at the client endpoint. This idea is presented in Fig. 1. Paradoxically,
system users might be satisfied with system behaviour that exhibits high QoE even if the
system does not implement all the functionality for which the clients actually paid. On the
other hand, the system may fulfil all the required quality aspects, but users might still not be
satisfied given low QoE. The importance of QoE has a temporal character as well, as it is
observed over a finite interval, whereas QoS is more of an average statistic. Client may
disagree with the system provider as to the quality of the system. In fact, it is very common
for both assessments to differ fundamentally.
The definition and evaluation of metrics is essential for model-driven adaptive quality
control of SOA applications as they could be composed at runtime with services offered by
many providers. It is also a fundamental element of the MAPE process and the execution
model. This is why the metrics classification used for in the context of SOA applications
should be considered in more detail.

www.intechopen.com

 Applications and Experiences of Quality Control

384

Fig. 2. Taxonomy of SOA metrics

We refer the reader to the taxonomy presented in Fig. 2 which distinguishes the following

categories:

• Internal and External Metrics Internal metrics addresses solely those aspects of a

system which are available exclusively for system architects. They might provide

detailed information on source code, or the number of used software modules. External

metrics are available for system users and provide information about system reliability,

efficiency or response time. Evaluation of external metrics is more difficult than of

internal ones, as such metrics often have subjective meaning. Additionally, metrics

calculated at early stages of product development may not reflect the values of final

versions;

• Static and Dynamic Metrics Static metrics describe invariable parameters. These might

include parameters derived from software documentation or semantic description, or

metrics describing source code. Examples of such metrics include configuration and

security aspects of software (Hershey et al., 2007). Dynamic metrics are evaluated

during runtime. Sample metrics of this kind include execution time and network

throughput;

• Basic and Complex Metrics Basic metrics are directly gathered from system

monitoring. They might provide simple information about system behaviour, e.g. the

time necessary to deliver a message. Complex metrics are combinations of basic ones.

For example, response time might be defined as the time needed to deliver a message to

a service plus the time needed to process this message.

A number of authors have tried to organize metrics for SOA (Rud et al, 2007) (Hershey &

Runyon, 2007); however, in practice, most such schemas are variations of availability,

execution time and throughput.

The presented metrics could refer to simple or composite services which constitute an SOA

application. Typically, computing composite service metrics requires additional information

e.g. on how the execution of one service may impact the execution of another service

(Menasce, 2004). The problem becomes even more complicated if services are invoked in

parallel. Such additional information may be provided by the execution model which

typically describes existing interdependencies. This problem is further elaborated in

Section 3 where the SOA application execution model is presented.

www.intechopen.com

Model Driven Adaptive Quality Control in Service Oriented Architectures

385

3. Model driven adaptive quality control in SOA systems

Runtime adaptability requires detailed information on how the system behaves and how
certain services influence others. This information is necessary for proper formulation and
implementation of adaptation strategies. The use of models for SOA adaptability seems to
be a promising approach (Blair et al., 2009). Models represent knowledge about the working
system and hide unnecessary information, providing only facts related to the problem on
hand. An execution model may be constructed on the basis of monitoring data collected
while observing service QoS/QoE and execution infrastructure load. Updating models at
runtime enables the system to respond to changes in the execution environment. The model
may then be used to modify composition of the application in order to achieve high-level
system management goals. Such modifications address service selection, binding protocol
and interaction policy choices.

Deployable service

description

Architecture specific

service composition

Execution and Monitoring

QoS

QoE

Adaptation policy

Model of service

execution

analysis
Modifications to

deployed service

Abstract planAbstract plan

Fig. 3. Model-driven adaptation

The concept of model-driven adaptation is presented in Fig. 3. The service provider
composes an application in a selected technology and provides an adaptation policy to the
system along with a composite service execution model. The architecture-specific service
composition layer continuously modifies the deployed service according to the provided
adaptation policy. The abstract plan which acts as input for architecture-specific service
composition might be hidden and used only by the programmer during application
development. The knowledge of how the system behaves is represented by the service
execution model. For this purpose, statistical models can be used. The use of such models
for adaptive quality control requires mechanisms for model identification, updates and
exploitation in the adaptation process.

3.1 Statistical models of composite service execution

Composite service execution is a collection of activities applied during each service
invocation. In other words, each invocation is a particular flow in a graph of possible
activities represented as a model M. By observing the composite service activity at a given
point in time, these flows can be described by statistical data associated with edges of a
graph. Thus, the model is composed of a graph and static information which can be
provided by the system designer or identified automatically based on system activity
monitoring. Once used for adaptation, the model can be updated at runtime, reflecting the
current behaviour of the system.

www.intechopen.com

 Applications and Experiences of Quality Control

386

S1

S2

S3

S4

S5
Start Stop

p1

p2

p3

p4

p5

p6

Fig. 4. Sample model of complex service execution at Level1

A formal composite service execution model is represented as a Directed Acyclic Graph
(DAG) M = (V;E) and includes two special nodes: Start and Stop. At Level1, nodes in this
model represent abstract services – specified by description of their functionality, e.g. WSDL
files, while at Level2 particular Service instances (specific services) are considered. A sample

model of complex service execution at Level1 is shown in Fig. 4. Edge (s1; s2) ∈ E means that
service s1 communicates with service s2 with probability p(s1; s2). For each vertex sj the
probabilities on edges originating in a given node add up to 1 provided that successors are
not invoked in parallel:

() 1
j k

j k
s SUCC(s)

p s ,s
∈

=∑

Once the model is defined and statistical information is collected, it can be used for
adaptation purposes. From the service provider’s perspective, statistical information can be
very valuable because it enables identification of the busiest services and bottlenecks, as
well as optimization of resource allocation.

3.2 Model updates at run-time

Updating statistical models at runtime strongly depends on the implementation technology
of integration middleware. SOA leverages loose coupling of services, which might be
connected by additional infrastructural elements, e.g. Enterprise Application Integration
(EAI) patterns (Hohpe & Woolf, 2003).
The composite service execution model at Level1 contains abstract services, whereas in the
execution environment each abstract service might be represented by several instances, used
interchangeably. Hereinafter, the number of messages sent between abstract services s1 and
s2 is understood as a sum of messages sent between all instances of these abstract services.

Instance1

(Bean-SU)

ServiceBC

(HTTP-BC)

Instance2

(Bean-SU)

START STOP

p1
S1

S2
p2

1.0

1.0

a) b)

Fig. 5. Model synchronization a) complex service execution model; b) EAI model

When a model contains all the services involved in message passing, calculating the
probabilities for model edges becomes straightforward – they reflect the number of

www.intechopen.com

Model Driven Adaptive Quality Control in Service Oriented Architectures

387

messages sent between services divided by the total sum of messages originating at a
source node. Nevertheless, the complex service execution model may not contain all the
services deployed in ESB, as shown in Fig. 5 where the EAI content router is excluded from
the model. This is justified by the fact that such an element plays a strictly technical role
and does not influence the functionality of the composite service. It has also been
optimistically assumed that the number of messages sent between services s1 and s2 is the
minimum number of messages sent between services that are on the shortest path between
s1 and s2.

3.3 Adaptation process

The proposed execution model can be used for computation of expected values of selected
metrics if some service instances take part in execution. The adaptation process may analyze
all the possible combinations of service instance invocation flows that might occur in the
execution process and select one for execution, based on metric values.
When decisions are made locally, i.e. without analysis of how a particular service instance
may affect the overall application, the results often lead to unsatisfactory solutions. The
concept of statistical models presented in this chapter enables estimating global behaviour
of systems when a certain invocation flow of instances is selected for execution.
Referring to the example in Fig. 4, let us assume that for services s1,…, s5, instances i1,…,i5
are selected. Thus, the presented model now is at Level2. Let us now consider the execution
time metric. Let tk be the execution time of service ik. If TimeC is the predicted total execution
time for subsequent invocations of a composite service, then for the presented model and
selected instances, it can be given as:

()
()

()

1 1 2 2 2 4 4 4 5 5

1 1 3 3 3 4 4 4 5 5

1 1 3 3 3 5 5

1 3 6

2 4 6

2 5

RTT RTT RTT
C i i ,i i i ,i i i ,i i

RTT RTT RTT
i i ,i i i ,i i i ,i i

RTT RTT
i i ,i i i ,i i

Time p p p t t t t t t t

p p p t t t t t t t

p p t t t t t

= + + + + + +

+ + + + + + +

+ + + + +

The composite service model at Level1 may generate several models C at Level2 because for
each abstract service several instances may be available. Given a set of metrics Q, for each

service C a QoSC vector can be calculated. For each i-th metric QoSiC ∈ [0;1] is the value of
that metric based on historical invocations of a complex service and information stored in
the composite service execution model.
There might be several ways to select the most suitable solution. For example, let us define a
fitness function that determines how well a selected set of services matches user
expectations. The weights of each metric express its importance in the overall fitness
indicator:

() i
C i C

i

fitness QoS w QoS= ×∑

Providing exact weights for each metric is a multidimensional decision problem. Despite its

inherent complexity, it can be approached through decomposition. The Analytic Hierarchy

Process (Forman & Selly, 2001) is a technique based on mathematics and human psychology

for prioritizing elements of a decision problem. For each pair of metrics the user specifies

which one is preferred, in the form of a fraction between 1/9 and 9/1. The result of AHP is a

www.intechopen.com

 Applications and Experiences of Quality Control

388

vector of weights wi for each metric i. From the number of possible solutions, one chooses

the solution with the highest fitness factor and modifies the execution container in order to

use the selected service instances. A different approach assumes the use of QoE during

adaptation. For example, when the client pays for a particular level of quality, the system

may constantly switch between sets of service instances so that the client finally receives

what he paid for.

The presented concept of quality control requires suitable mechanisms which should extend
the SOA integration to support execution of service instances selected by the adaptation
policy. Contrary to other solutions (Vuković, 2006; Gubala et al., 2006; Chafle et al., 2006),
the proposed approach requires the service provider to compose applications in the selected
technology and then provide an adaptation policy along with a model of composite service
execution. The adaptation system monitors the deployed composite services and modifies
their operating parameters in accordance with the provided adaptation policy. All these
stages of adaptation are described in detail in next section, referring to the MAPE paradigm.

4. Adaptability mechanisms for SOA systems

The MAPE paradigm consists of four sets of functionality: monitor, analyze, plan and
execute. Analyzing and planning responses to changes in the execution infrastructure can be
affected by model-driven adaptation described in the previous section. Other sets of
functionality are strictly related to the managed resource. Monitor functions collect details
from the managed resource and correlate them into symptoms that can be analyzed. The
execute functions provide mechanisms for performing necessary changes to the system.
Currently, the Enterprise Service Bus (ESB) looms large as a promising approach for
deployment of SOA applications. Most of the ESB implementations are compliant with Java
Business Integration (JBI), developed under the Java Community Process (JCP) and
specified as Java Specification Request (JSR) 208, as an approach to implementing SOA. ESB
provides mechanisms for message normalization, routing between selected components and
location transparency, making it possible to access services by name without prior
knowledge of their exact location. This is why ESB is the suitable place for mechanisms
required by the adaptation process.

Adaptability Mechanisms

Architectural
Decisions

Effectors

Decision enforcement
point

Sensors

Execution conditions
identification

SOA
Integration Layer

Fig. 6. Extending the integration layer with adaptability mechanisms

www.intechopen.com

Model Driven Adaptive Quality Control in Service Oriented Architectures

389

Fig.6 depicts a processing cycle based on the MAPE paradigm and corresponding to a

standard control/adaptation loop. The Architectural Decision block continuously monitors

the system and handles events whenever an action needs to be taken. It monitors the

environment using sensors, analyses what is found and then plans and executes specific

actions through effectors operations. Sensors monitor current system state while effectors have

the ability to change the state or configuration in order to perform adaptation.

Sensors

An adaptive system acts in accordance to various goals, requiring several sorts of

information gathered from ESB. In most cases, this information will be disjunctive, so one

would expect to deploy specialized types of sensors rather than generic ones. It has been

found that the interceptor design pattern (Schmidt et al., 2000) fulfils requirements for

dynamic installation and reinstallation of sensors. This leads to the conclusion that sensors

can be implemented as interceptors and installed whenever necessary.

The most appropriate location of sensors is the place where inter-service/inter-component

message transmission takes place. JBI specification defines elements which participate in

sending and passing messages. A message is created in a service, passes through a

specialized Service Engine (SE) or Binding Component (BC) and is then sent (through a

Delivery Channel – DC) to a Normalized Message Router (NMR), which reroutes it to a

particular destination through the same components. Injecting interceptors into services or

SEs requires knowledge of various types of services and engines. Thus, a better place to

inject message exchange interceptors is the DC through which every SE is connected to

NMR.

The amount of monitoring information gathered from ESB would be overwhelming. A more

suitable approach is to correlate or aggregate events and send notifications only if complex

events take place. For this purpose, the stream of simple events from ESB could be

processed by a Complex Event Processor (CEP) (Luckham, 2002) which, in due time, would

notify the Architectural Decision block.

Effectors

Implementing an adaptation policy requires action, i.e. a set of operations which modify the

execution of an application. These operations are performed by effectors which have to be

implemented and installed in the execution environment. It has been found that modifying

message routes between service instances is crucial for implementation of the proposed

SOA application adaptation concept.

Rerouting messages to other instances is justified only when these instances share the same

interface and provide identical functionality. This process could be performed effectively by

installing suitable effectors in ESB. Current implementations of ESBs that are compliant with

the JBI specification share some common attributes used during message processing. Each

invocation of a complex service is described by its CID (Correlation ID) and is constant for

one invocation, even when passed among services. A particular message sent between

services is described by EID (Exchange ID). Generally speaking, the invocation of a complex

service is described by CID and consists of several message exchanges described by EID

which complies with the execution model proposed in Section 3. Extending NMR with

effectors implementing a selected routing algorithm, capable of modifying message routing,

would yield an adaptable ESB.

www.intechopen.com

 Applications and Experiences of Quality Control

390

Priority CID
Intentional

Service Name
EID

Destination
Service Endpoint

1 n/a n/a + Service Endpoint 1

2 + + n/a Service Endpoint 2

3 n/a + n/a Service Endpoint 3

4 + n/a n/a Service Endpoint 4

5 n/a n/a n/a Service Endpoint 5

6 n/a n/a n/a Service Endpoint 6

Table 1. Examples of routing rules

Once the message reaches the NMR, the routing algorithm checks conditions of routing

rules in the routing table (see Table 1). If the message matches a routing rule, that rule is

fired and the Service Endpoint from the routing rule substitutes the intended destination

Service Name. Routing rules are split into groups with different priorities that are analyzed

in a particular order. In every message, header parameters such as Correlation ID, intended

Service Name and Exchange ID, are matched to routing rules. If the message matches

several rules, one of them is selected on a round-robin basis to provide load balancing.

5. Case study

In order to verify the presented concept of SOA application composition and execution, the

Enterprise Service Bus (ESB) as an integration platform has been extended by adaptability

mechanisms. The prototype design follows the architecture of Adaptive ESB presented in

the previous section. Adaptability mechanisms are implemented using Aspect Oriented

Programming (AOP) (Kiczales et al., 1997), where new features can be enabled and disabled

without modifying original ESB container source code.

The prototype implementation of adaptive ESB is exploited in a scenario which

demonstrates how the proposed concept of quality control can be applied to a situation

where clients should receive variable QoS depending on some constraints. The provided

composite service execution model is used to generate a possible set of service instances that

can be invoked during execution. Subset selection bases on a fitness function defined in

Section 3.3, which determines user preferences by associating weights with the available

composite service metrics. Possible solutions are then ordered according to the values of the

calculated metrics and the adaptation policy selects a particular set of service instances

based on high-level goals, i.e. the cost of execution and the overall client budget.

5.1 Composite service

Let us assume that one would like to create a GeoWeather service that provides weather

information for a given location. Location data will be provided as a zip code, GPS location,

IP address of computer user or country name. Another assumption is that accuracy would

be sufficient if limited only to cities.

Widely-available weather services do not provide weather information for GPS coordinates.

Instead, they provide weather information for a given readable address; thus all possible

input formats have to be converted to addresses and then polled for weather information.

www.intechopen.com

Model Driven Adaptive Quality Control in Service Oriented Architectures

391

Enterprise Service Bus

Location Service

(Bean-SU)

HTTP Client

POX

Request

Country2Capital

Service

(Bean-SU)

ServiceBC

(HTTP-BC)

IPEnricher

(Bean-SU)

ZipEnricher

(Bean-SU)

Weather Service

Global

(Bean-SU)

Weather Service

USA

(Bean-SU)

Fig. 7. EAI model of complex service used in the case study

To deploy this application into ESB, it has to be described in terms of EAI patterns. Invoking
services in a sequence might be performed with the use of RoutingSlip integration patterns,
while modifying the message content can be done using the ContentEnricher pattern. An
EAI-based model of the presented composite service is depicted in Fig.7.
Let us assume that the client operates an Internet website that provides information for
amateur pilots and that he wants to include very accurate weather forecasts for airports on
the main website. The client is interested in a service which returns weather information for
given geographical coordinates. The provider notices that this website receives 8,200 visits
per week (on average) and, given the QoS selected by the client, it costs 54,000 credits. As
the website become more popular, the number of invocations may significantly increase.
The client therefore decides to buy a service with variable QoS and with the maximum
budget of 55,000 credits. Detailed statistics of user invocations are presented in Fig. 8. Two
different profiles can be distinguished. The first one reflects typical interest in the website,
while the second one occurs when there is increased interest in the website. The increased
numbers of page visits before the end of the week can be attributed to a national flying
contest.

Fig. 8. Number of visitors per hour

5.2 Importance of metrics

For this type of service, it is better (from the customer’s point of view) to achieve very

accurate data slower than to rapidly access inaccurate information. The author therefore

www.intechopen.com

 Applications and Experiences of Quality Control

392

decides to apply the fitness function presented in Section 3, which expresses the degree of

overlap between the functionality of the composite service and the user’s preferences. This

means that each metric has to be normalized and its value has to be in the [0; 1] range where

1 means that this metric has the best possible value.

Three metrics are defined for this scenario: availability, execution time and data quality.

Availability is defined as the percentage of successful invocations. Execution time metric is

normalized linearly (for response time equal to 0ms the value of the metric is 1, while for

response time above 1000ms the corresponding value is 0). The data quality metric equals 0

if data is accurate to within 100km, and 1 if it is accurate to within 10km.

Weights for each metric in the fitness function are calculated using the mentioned earlier
AHP method. The customer determines the relative importance of each metric:

• availability is three times as important as execution time;

• availability is five times less important than data quality;

• execution time is five times less important than data quality.
Following calculations, the fitness function used in this case can be given as:

0 20 0 097 0 702fitness , * availability , * execution_time , * data _ quality= + +

5.3 Composite service execution model

In order to react to changes in the execution environment, a composite service execution

model and an adaptation policy have to be defined. The model of the analysed service and

its projection onto instances found in the ESB is depicted in Fig. 9. This model can be

derived by simply transforming the EAI-based model shown in Fig. 7. The service is only a

subset of a larger, complex service; hence the model contains only these services that are

used in the invocations.

START STOPS1

S2

Location

Weather

Global

START STOP

LocationA

LocationB

WeatherA

WeatherB

WeatherC

Projection

S6

Weather

USA

WeatherU

Fig. 9. Projection of the model of complex service execution at Level1 onto composite services

There are six possible combinations of service instances that might be executed. The model,

along with the expected values of metrics for projected composite services, is updated at

runtime and used by the adaptation policy.

www.intechopen.com

Model Driven Adaptive Quality Control in Service Oriented Architectures

393

Composite
service

Service
Location
instance

Service
Weather
instance

Cost
[unit/100]

Availability
[%]

Data
quality [%]

Execution
time [ms]

fitness
factor

C1 LocationA WeatherA 650 0.81 0.95 200 0.737

C2 LocationA WeatherB 600 0.81 0.90 300 0.657

C3 LocationA WeatherC 350 0.72 0.70 500 0.535

C4 LocationB WeatherA 550 0.89 0.80 300 0.623

C5 LocationB WeatherB 500 0.89 0.80 400 0.614

C6 LocationB WeatherC 250 0.79 0.70 600 0.526

Table 2. Fitness factors of composite services for the variable QoS test case

Table 2 contains expected metric values for the composite services that might be invoked
and the evaluated fitness factor for each composition.

5.4 Adaptation strategy

In the presented test case, a simple accounting system has been implemented which

constantly monitors user invocations and updates the associated accounts. The same

module calculates the expected number of invocations until the end of the accounting

period. The number of invocations per week is calculated as a sliding window from the last

7 days. It is then used to calculate the expected number of invocations for the remaining

days until the end of the accounting period. Given the number of credits left and the

expected numbers of invocations until the end of accounting period, the module calculates

the maximum price for subsequent invocations. This module is expressed as a fact and

inserted into the working memory of the policy engine.

5.5 Results

Detailed statistics of user invocations are presented in Fig. 10. Increased numbers of page

visits before the end of the week can be attributed to a national flying contest. The total

number of invocations is not the expected 8,400 but approximately 10,200 as depicted in Fig.

10B. During the week, the system tries to estimate the total number of invocations during

the accounting period – this fact is reflected in the figure. Because the actual number of

invocations is greater than expected, system has to switch to a different set of instances to

bring the total sum below the assumed 55,000 credits. Coloured areas in Fig. 10 show which

composite service is used by the system to provide the service. One can notice that on the

4th day the system has decided to switch the composite service to the less expensive C2 with

fitness factor 0.657 instead of C1 with 0.737 and then to C4 with 0.623. As the expected

number of invocations during the whole accounting period increases, the maximum number

of credits that might be spent on each invocation keeps decreasing. This leads to further

adjustments (on day 5) where the composite service is switched to C5, C3 and finally C6.

During the last 2 days, the number of invocations is noticeably smaller, so the system

returns to its initial state i.e. to composite service C1 with the best fitness value. Without an

adaptation policy as depicted in Fig. 10A, the client would have to pay 64,000 credits in the

described case; however the adaptation policy ensures that the cost is kept below the

assumed limit of 55,000 credits. Execution time of provided service is depicted in Fig.10C,

data quality in Fig. 10D and availability in Fig. 10E.

www.intechopen.com

 Applications and Experiences of Quality Control

394

Fig. 10. Test case scenario with variable QoS

www.intechopen.com

Model Driven Adaptive Quality Control in Service Oriented Architectures

395

6. Summary

SOA applications which are loosely coupled and composed from self-contained,
autonomous services with well-defined contracts are particularly well suited for adaptive
control of QoS. Their execution environments (such as ESB) could be effectively equipped
with mechanisms which allow implementation of MAPE paradigms.
A crucial element of the adaptation loop is a decision subsystem which enforces application
adaptation actions, maintaining QoS/QoE guarantees under changing operational
conditions and constrains. This rather complex process may be practically performed with
SOA application execution model support. The presented study shows that a statistical
model could be used for this purpose.
Statistical models, which can be identified at runtime, represent knowledge and experience
derived from the SOA application execution history. This knowledge may be transparently
used by the execution environment to control QoS according to a selected policy. The
proposed approach leads to a new, important category of adaptive SOA systems which may
satisfy consumer requirements under changing QoS conditions without involving a human
operator.

7. References

Ali Arsanjani, Liang-Jie Zhang, Michael Ellis, Abdul Allam, and Kishore Channabasavaiah.
S3: A Service-Oriented Reference Architecture. IT Professional, 9(3):10–17, 2007.

Gordon Blair, Nelly Bencomo, and Robert B. France. Models@ run.time. Computer, 42:22–27,
2009.

G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and B. Srivastava. Adaptation in Web Service
Composition and Execution. In Web Services, 2006. ICWS ’06. International
Conference on, pages 549–557, Sept. 2006.

Glen Dobson and Alfonso Sanchez-Macian. Towards Unified QoS/SLA Ontologies. In SCW
’06: Proceedings of the IEEE Services ComputingWorkshops (SCW’06), pages 169–174,
Washington, DC, USA, 2006. IEEE Computer Society

Thomas Erl. SOA Principles of Service Design (The Prentice Hall Service-Oriented
Computing Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2007.

Thomas Erl. Modern SOA Infrastructure: Technology, Design, and Governance, Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2010

Ernest H. Forman and Mary Ann Selly. Decision By Objectives – How To Convince Others
That You Are Right. World Scientific Publishing Co. Pte. Ltd., Singapore u.a., 2001.

Alan G. Ganek and Thomas A. Corbi. The dawning of the autonomic computing era. IBM
Systems Journal, 42(1):5–18, 2003.

T. Gubala, D. Harezlak, M.T. Bubak, and M. Malawski. Constructing abstract workflows of
applications with workflow composition tool. , Cracow’06 Grid Workshop, Vol 2: K-
Wf Grid: the knowledgebased workflow system for Grid applications: October 15–
18, 2006 Cracow, Poland

Paul Hershey and Donald Runyon. SOA Monitoring for Enterprise Computing Systems. In
EDOC ’07: Proceedings of the 11th IEEE International Enterprise Distributed Object
Computing Conference, page 443, Washington, DC, USA, 2007. IEEE Computer
Society.

www.intechopen.com

 Applications and Experiences of Quality Control

396

Paul Hershey, Donald Runyon, and Yangwei Wang. Metrics for End-to-End Monitoring and
Management of Enterprise Systems. In Military Communications Conference, 2007.
MILCOM 2007. IEEE, pages 1–7, Oct. 2007.

Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

IBM Corporation, An Architectural Blueprint for Autonomic Computing, June 2006
Kiczales, Gregor; John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-

Marc Loingtier, and John Irwin (1997). "Aspect-Oriented Programming".
Proceedings of the European Conference on Object-Oriented Programming, vol.1241. pp.
220–242.

Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. Computer,
36(1):41–50, January 2003.

David Luckham. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Professional, May 2002.

Heiko Ludwig. Web services QoS: external SLAs and internal policies or: how do we deliver
what we promise? In Web Information Systems Engineering Workshops, 2003.
Proceedings. Fourth International Conference on, pages 115–120, 2003.

P. K. Mckinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing adaptive
software. Computer, 37(7):56–64, 2004.

Daniel A. Menasce. Composing Web Services: A QoS View. IEEE Internet Computing,
8(6):88–90, 2004.

Aad Van Moorsel. Metrics for the Internet Age: Quality of Experience and Quality of
Business. Technical report, 5th Performability Workshop, 2001.

Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Solberg.
Models@ run.time to support dynamic adaptation. Computer, 42:44–51, 2009.

Dmytro Rud, Andreas Schmietendorf, and Reiner Dumke. Resource metrics for service-
oriented infrastructures. In Daniel L¨ubke, editor, Proceedings of the Workshop on
Software Engineering Methods for Service-oriented Architecture 2007 (SEMSOA 2007),
Hannover, Germany, pages 90–98. Leibniz Universit¨at Hannover, FG Software
Engineering, May 2007.

D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent and Networked Objects. Wiley, 2000.

Tomasz Szydlo and Krzysztof Zielinski. Method of Adaptive Quality Control in Service
Oriented Architectures. In ICCS ’08: Proceedings of the 8th international conference on
Computational Science, Part I, pages 307–316, Berlin, Heidelberg, 2008. Springer-
Verlag.

Tomasz Szydlo, QoS driven Semantics Based SOA Applications
Composition and Execution, Ph.D. dissertation, AGH-UST Krakow, October 2010.

Maja Vuković, Context Aware Service Composition. Technical report, University of
Cambridge, 2006.

www.intechopen.com

Applications and Experiences of Quality Control

Edited by Prof. Ognyan Ivanov

ISBN 978-953-307-236-4

Hard cover, 704 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The rich palette of topics set out in this book provides a sufficiently broad overview of the developments in the

field of quality control. By providing detailed information on various aspects of quality control, this book can

serve as a basis for starting interdisciplinary cooperation, which has increasingly become an integral part of

scientific and applied research.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tomasz Szydło and Krzysztof Zieliński (2011). Model Driven Adaptive Quality Control in Service Oriented

Architectures, Applications and Experiences of Quality Control, Prof. Ognyan Ivanov (Ed.), ISBN: 978-953-307-

236-4, InTech, Available from: http://www.intechopen.com/books/applications-and-experiences-of-quality-

control/model-driven-adaptive-quality-control-in-service-oriented-architectures

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

