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1. Introduction      

Recently, wind generation systems are attracting great attentions as clean and safe 
renewable power sources. Wind generation can be operated by constant speed and variable 
speed operations using power electronic converters. Variable speed generation is attractive 
because of its characteristic to achieve maximum efficiency at all wind velocities (Pena et al. 
2000; Senjyu et al. 2006; Sakamoto et al. 2006; Ramtharan et al. 2007; Fernandez et al. 2008), 
the improvement in energy production, and the reduction of the flicker problem. In the 
variable-speed generation system, the wind turbine can be operated at the maximum power 
operating point for various wind speeds by adjusting the shaft speed. These characteristics 
are advantages of variable-speed wind energy conversion systems (WECS). In order to 
achieve the maximum power control, some control schemes have been studied. 
A variable speed wind power generation system (WPGS) needs a power electronic converter 
and inverter, to convert variable-frequency, variable-voltage power into constant-frequency 
constant-voltage, to regulate the output power of the WPGS. Traditionally a gearbox is used 
to couple a low speed wind turbine rotor with a high speed generator in a WPGS. Great 
efforts have been placed on the use of a low speed direct-drive generator to eliminate the 
gearbox. Many of the generators of research interest and for practical use in wind generation 
are induction machines with wound-rotor or cage-type rotor (Simoes et al. 1997; Li et al. 
2005; Karrari et al. 2005; Wang & Chang 2004). Recently, the interest in PM synchronous 
generators is increasing. High-performance variable-speed generation including high 
efficiency and high controllability is expected by using a permanent magnet synchronous 
(PMSG) for a wind generation system. 
Previous research has focused on three types of maximum wind power extraction methods, 

namely tip speed ratio (TSR) control, power signal feedback (PSF) control and hill-climb 

searching (HCS) control. TSR control regulates the wind turbine rotor speed to maintain an 

optimal TSR. PSF control requires the knowledge of the wind turbine’s maximum power 

curve, and tracks this curve through its control mechanisms. Among previously developed 

wind turbine maximum power point tracking (MPPT) strategies, the TSR direction control 

method is limited by the difficulty in wind speed and turbine speed measurements 
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(Thiringer & Linders 1993; Chedid et al. 1999; Tanaka & Toumiya 1997; Morimoto et al. 2005; 

Koutroulis & Kalaitzakis 2006). Many MPPT strategies were then proposed to eliminate 

the measurements by making use of the wind turbine maximum power curve, but the 

knowledge of the turbine’s characteristics is required. HCS control has been proposed to 

continuously search for the peak output power of the wind turbine. In comparison, the 

HCS MPPT is popular due to its simplicity and independence of system characteristics. In 

this paper, a Wilcoxon radial basis function network (WRBFN)-based with HCS MPPT 

strategy is proposed for PMSG wind turbine generator (WTG). The proposed control 

structure, WRBFN with modified particle swarm optimization (MPSO) algorithm is forces 

the system to reach its equilibriums quickly where the turbine inertia effect is minimized. 

HCS can be fast and effective in spite of the variations in wind speeds and the presence of 

turbine inertia. 

Intelligent control approaches such as neural network and fuzzy system do not require 

mathematical models and have the ability to approximate nonlinear systems. Therefore, 

there were many researchers using intelligent control approaches to represent complex 

plants and construct advanced controllers. Moreover, the locally tuned and overlapped 

receptive field is a well-known structure that has been studied in regions of cerebral cortex, 

visual cortex, and so on (Jang & Sun 1997). Based on the biological receptive fields, the 

RBFN that employs local receptive fields to perform function mappings was proposed in 

(Jang & Sun 1993). Furthermore, the RBFN has a similar feature to the fuzzy system. First, 

the output value is calculated using the weighted sum method. Second, the number of 

nodes in the hidden layer of the RBFN is the same as the number of if-then rules in the fuzzy 

system. Finally, the receptive field functions of the RBFN are similar to the membership 

functions of the premise part in the fuzzy system. Therefore, the RBFN is very useful to be 

applied to control the dynamic systems (Seshagiri & Khail 2000).  

2. Analysis of wind generation system 

2.1 Wind turbine characteristics and modeling 

In order to capture the maximal wind energy, it is necessary to install the power electronic 
devices between the WTG and the grid where the frequency is constant. The input of a wind 
turbine is the wind and the output is the mechanical power turning the generator rotor (Li et 
al. 2005; Karrari et al. 2005; Wang & Chang 2004). For a variable speed wind turbine, the 
output mechanical power available from a wind turbine could be expressed as 

 31
( , )

2
m pP AC Vωρ λ β=  (1) 

where ρ  and A are air density and the area swept by blades, respectively. Vω  is the wind 

velocity ( /m s ), and pC  is called the power coefficient, and is given as a nonlinear function 

of the tip speed ratio (TSR) λ  defined by 

 rr

Vω

ωλ =  (2) 

where r is wind turbine blade tip radius, and rω  is the turbine speed. pC  is the function of 

the λ  and the blade pitch angle β , general defined as follows:  
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By using (3), the typical PC  versus λ  curve is shown in Fig. 1. In a wind turbine, there is an 

optimum value of TSR optλ  that leads to maximum power coefficient maxpC . When TSR in 

(2) is adjusted to its optimum value 6.9optλ =  with the power coefficient reaching 

max 0.4412pC = , the control objective of the maximum power extraction is achieved. 
 

 

Fig. 1. Typical PC  versus λ  curve 

2.2 PMSG 

The wind generator is a three-phase PMSG, where the mechanical torque ( mT ) and electrical 

torque ( eT ) can be expressed as 

 m
m

r

P
T

ω
=  (4) 

 
2e e

e
e r

P P
T

Pω ω
= =  (5) 

In general, the mechanical dynamic equation of a PMSG is given by 

 ( / 2)r
m e

d
J T P T

dt

ω
= −  (6) 

where eω  and P are electrical angular frequency, and the number of poles. J is the inertia 

moment of WTG.  
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2.3 Wind turbine emulation 

The emulation of the wind turbine is implemented by a dc motor drive with torque control. 
In the prototype, a 1.5kW, 1980rpm dc motor was used. A computer program reads the 
wind input file obtained with various test conditions, and calculates the wind turbine torque 
by taking into account wind velocity, turbine rotational speed, and the wind turbine power 
coefficient curve. The control algorithms for turbine emulation are implemented in a control 
board dSPACE DS1102. This board is a commercial system designed for rapid prototyping 
of real control algorithms; it is based on the Texas Instruments TMS320C32 floating-point 
DSP. The DS1102 board is hosted by a personal computer.  
 

 

Fig. 2. PMSG WT generation system 

3. HCS control method 

3.1 System configuration 

Fig. 2 presents the block diagram of the WT generation system in our research, where a 

PMSG is driven by a WT to feed the extracted power from wind resources to the grid 

through a single-phase inverter. A variable speed WPGS needs a power electronic converter 

and inverter, to convert variable-frequency, variable-voltage AC power from a generator to 

DC and then into constant-frequency constant-voltage power. In the dc-link of the inverter, 

a blocking diode BD  is used to improve the power delivering capability as well as to 

guarantee that the dc-link voltage transfers to the output voltage. An inverter controller is 

designed to deal with two aspects, the MPPT control for power maximization and the the 

current control for output PWM to inverter. The dc-link voltage and current, dcV  and dcI  

are sampled to provide the power ( dc dc dcP V I= ⋅ ) input to the controller, and dcV  reference 

signal *
dcV  is updated in real time using an HCS method so as to lead the system to its 

optimal operation point. On the other hand, a WRBFN controller is designed to force dcV  to 

follow *
dcV  by adjusting the load current reference for the inverter current controller.  
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3.2 Optimal DC-link voltage ( dcV ) search 

From the PC - λ  characteristics, the turbine mechanical power mP  can be shown as a 

function of dcV , and an optimal dcV  exists for the maximum mP  output, provided that a 

PMSG is employed in the generation system. Fig. 3 shows a group of mP - dcV  curves and the 

corresponding maximum power curve formed with various optimal operating points, 

where wind speeds 1 2 3 4u u u u< < < . In order to extract maximum power from wind, the 

optimal dcV  is searched in real time using the HCS method. With HCS, if the previous 

increment of *
dcV  is followed by an increase of mP , then the search of *

dcV  continues in the 

same direction; otherwise, the search reverses its direction. An example can be seen in Fig. 3, 

where the wind change from 3 4 2u u u→ →  with the search of dcV  from 

A B C D E→ → → → . The increment of mP  is approximated by that of dcP , and the search 

is executed at dynamic equilibrium operation points where dcP  is approximately equal to 

mP  and the effect of turbine inertia J  can be minimized. In dynamic states, *
dcV  will be held 

and the WRBFN will adjust the load current in real time to drive the system to its 

equilibrium point as soon as possible. Fig. 3 illustrates the searching process ( )ABCDE  for 

the maximum power points when the wind speed varies. 
 

 

Fig. 3. Principle of HCS control method. 

4. The proposed intelligent MPPT control algorithm 

4.1 Wilcoxon radial basis function network  

The linear Wilcoxon regressor is quite robust against outliers (Hogg et al. 2005), which 

motivates the design of wilcoxon neural networks. A three-layer neural network shown in 

Fig. 4 is adopted to implement the proposed WRBFN. The WRBFN with MPSO controller is 

used, and the control law dI  is generated from the WRBFN The WRBFN input is (1)
1x  and 

(1)
2x  of the first layer, where (1) *

1 dc dcx V V e= − =  and (1)
2x e= $  in this study. In the proposed 

WRBFN, the units in the input, hidden, and output layers are two, nine and one, 

respectively. The signal propagation and the basic function in each layer can be found (Lin 

& George Lee 1996).  
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Fig. 4. Architecture of the WRBFN 

Layer 1 : input layer 

The nodes at this layer are used to directly transmit the numerical inputs to the next layer. 
That is, for the ith node of layer 1, the net input and output are defined by 

 ( )
(1) (1)

(1) (1) (1) (1)

( )

( ) ( ) ( )       1,2

i i

i i i i

net x N

y N f net N net N i

=

= = =
 (7) 

Layer 2 : hidden layer 

At this layer, every node performs a Gaussian basis function. The Gaussian basis function, a 
particular example of radial basic functions, is used here as a membership function. Then 

 

( ) ( )

(2) (1) 2

1

(2) (2) (2) (2)

( ) ( ) /

( ) ( ) exp ( )        1,...,9

n

ij ijj i
i

j j j j

net N x c v

y N f net N net N j

=
= − −

= = =

∑
 (8) 

where 1 2

T

j j j ijc c c c⎡ ⎤= ⎣ ⎦A  and ijv  denote respectively, the mean and the standard 

deviation (STD) of the Gaussian basis function.  

Layer 3 : output layer 

The single node k in this layer is denoted by Σ, which computes the overall output as the 
summation of all incoming signals by 

 

(3) (2)

1

(3) (3) (3) (3)

( ),

( ) ( ( )) ( )

m

jk jk
j

dk k k k

net w y N

y N f net N net N I

−
=

= = =

∑
 (9) 
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where the connection weight jkw  is the connective weight between the hidden node, and 

the output layer k. 

4.2 The network training and learning process 

Once the WRBFN has been initialized, a supervised learning law is used to train this system. 

The basis of this algorithm is gradient descent. The derivation is the same as that of the back-

propagation algorithm. It is employed to adjust the parameters jkw , ijc , ijv  of the WRBFN by 

using the training patterns. By recursive application of the chain rule, the error term for each 

layer is first calculated. The adaptation of weights to the corresponding layer is then given. The 

purpose of supervised learning is to minimize the error function E expressed as  

 ( )2
* 21 1

2 2
dc dc LE V V e= − =  (10) 

where *
dcV  and dcV  represent the dc-link voltage reference and actual dc-link voltage 

feedback of the generator.  

Layer 3 : update weight jkw  

At this layer, the error term to be propagated is given by 

 
(3)

(3) (3) (4)
k

k

k k k

yE E

net y net
δ

⎡ ⎤∂∂ ∂
= − = −⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
 (11) 

Then the weight jkw  is adjusted by the amount 

 
(3) (3)

(2)

(3) (3)
k k

jk k j
jk jkk k

y netE E
w y

w wy net
δ

⎛ ⎞⎡ ⎤∂ ∂∂ ∂
⎜ ⎟Δ = − = − =⎢ ⎥⎜ ⎟∂ ∂∂ ∂⎢ ⎥⎣ ⎦⎝ ⎠

 (12) 

We have  

 ( ) ( )1 ( )jk jk w jkw N w N w Nη+ = + Δ  (13) 

where wη  is the learning rate for adjusting the parameter jkw .  

Layer 2 : update ijc  and ijv  

The multiplication operation is done in this layer. The adaptive rule for ijc  is 

 
( )(1)(2)(3)

(2)

(3) (2)

2 ijijk
ij k jk j

ij ij ijjk

x cynetE E
c w y

c c vnet y
δ

⎡ ⎤ −∂∂∂ ∂⎢ ⎥Δ = − = − =
∂ ∂⎢ ⎥∂ ∂⎣ ⎦

 (14) 

and the adaptive rule for ijv  is 

 
( )
( )

2(1)(2)(3)

(3) (2) 2

2 ijijk
ij k jk

ij ijjk ij

x cynetE E
v w

v vnet y v
δ

⎡ ⎤ −∂∂∂ ∂⎢ ⎥Δ = − = − =
∂ ∂⎢ ⎥∂ ∂⎣ ⎦

 (15) 
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We have 

 
( ) ( )
( ) ( )

1

1

ij ij m ij

ij ij ij

c k c k c

v k v k vσ

η

η

+ = + Δ

+ = + Δ
 (16) 

where mη  and ση  are the learning rates for adjusting the parameters ijc  and ijv , 

respectively. The exact calculation of the jacobian of the system, which is contained in 

(3)
k

E
y

∂
∂

, cannot be determined due to the uncertainty of the PMSG dynamic. To overcome 

this problem and to increase the on-line learning ability of the connective weights, the delta 
adaptation law (Lin & George Lee 1996)  is implemented as follows to solve the difficulty 

k L Le eδ ≡ + $  

The learning rates wη , mη , ση  are adjusted by MPSO as stated below. 

5. WRBFN learning rates adjustment using MPSO 

PSO is a population-based optimization method first proposed by Kennedy and Eberhart. 
PSO technique finds the optimal solution using a population of particles. Each particle 
represents a candidate solution to the problem. PSO is basically developed through 
simulation of bird flocking in two-dimensional space (Esmin et al. 2005).  

Step 1: Define basic conditions 

In the first step of MPSO, one should determine the parameters that need to be optimized 
and give them minimum and maximum ranges. The number of groups, population size of 
each group, and initial radius of each gbest are also assumed in this step. 

Step 2: Initialize random swarm location and velocity 

To begin, initial location ( )d
iR N and velocities ( )d

iv N of all particles are generated randomly 

in whole search space. Moreover, the population size is set to 15P =  and the dimension of 

the particle is set to 3d =  in this study. The generation particles are 1 2 3[ , , ]d
i i i iR R R R= , where 

1 2 3, ,i i iR R R  are the RBFN learning rates, respectively. The initial pbest of a particle is set by its 

current position. Then, gbest of a group is selected among the pbests in the group. 

The random generation of ( )d
iR N  initial value ranged as  

min max~ [ , ]d d d
iR U η η  

where min max,η η  are the lower and upper bound of the learning rates.  

Step 3:Update velocity 

In the classical PSO algorithm, the velocity of a particle was determined according to the 
relative location from pbest and gbest. 

During each iteration, every particle in the swarm is updated using (17) and (18). Two 

pseudorandom sequences 1 ~ (0,1)r U  and 2 ~ (0,1)r U  are used to produce the stochastic 

nature of the algorithm. For dimensions d, let  d
iR , d

iPbest ,and d
iv  be the current position, 

current personal best position. The velocity update step is 
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 1 1

2 2

( 1) ( ) ( ( ))

( ( ))

d d d d
i i i i

d d
i

v N wv N c r Pbest R N

c r Gbest R N

+ = + ⋅ ⋅ −

+ ⋅ ⋅ −
 (17) 

 

Step 4: Update position 

The new velocity is then added to the current position of the particle to obtain its next 
position 

 ( 1) ( ) ( 1)d d d
i i iR N R N v N+ = + +  1, ,i P= …  (18) 

Step 5: Update pbests 

If the current position of a particle is located within the analysis space and does not intrude 
territory of other gbests, the objective function of the particle is evaluated. If the current 
fitness is better than the old pbest value, pbest is replaced by the current position. The fitness 
value of each particle is calculated by  

 
*

1

0.1 ( )dc dc

FIT
abs V V

=
+ −

 (19) 

 

Step 6: Update gbests 

In the conventional PSO, gbest is replaced by the best pbest among the particles. However, 
when such a strategy is applied to multimodal function optimization, some gbests of 
different groups can be overlapped. To maintain fast convergence rate of PSO, gbest of the 

group could be selected among the 1 2[ , , ]d d d d
i pPbest Pbest Pbest Pbest= …  having high fitness 

value. 

Step 7: Repeat and check convergence 

Steps 3-6 are repeated until all particles are gathered around the gbest of each group, or a 

maximum iteration number is encountered. The final d
iGbest  is the optimal learning rate 

( , , )w m ση η η of RBFN.  
The inertia weight w in (17) is used to control the convergence behavior of the PSO. Small w 
results in rapid convergence usually on a suboptimal position, while a large value may 
cause divergence. In this paper, the inertia weight w is set according to the equation that 

 max min
max

max

w w
w w iter

iter

−
= − ⋅  (20) 

where maxiter  is maximum number of iterations, and iter is the current iteration number. 

6. Experimental results 

The WRBFN with MPSO performance is compared with two baseline controllers: the fuzzy 

(Chen et al. 2000) and the proportional-integral (PI) controller. The WRBFN with MPSO, 

fuzzy and PI methods were tested through experimental. The obtained performance with 

the different controllers are shown in Fig. 5 to Fig. 7, and summarized in Table 1. Various 
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cases were conducted, the wind profile is simulation with a 5msec sampling time the wind 

profile is assumed a volatile sinusoidal wave. The conventional PI type controller is widely 

used in the industry due to its simple control structure, ease of design and inexpensive cost. 

The average power of PI is compared with that of WRBFN with MPSO algorithm and 

Fuzzy-Based algorithm.  

The WTG system used for the experimental has the following parameters: 

1. Wind turbine parameters: 

750mP W= ; 3.75A  ; 3000 /minr ; 31.25 /kg mρ = ; 0.5r m= ; 3 21.32 10 secJ Nm−= ×  

2. Generator parameters:  

1.47R = Ω ; 5.33d qL L mH= = ; 4.8mdL mH= ; 46.75fdI A= ; 0.6732 /tK Nm A=  

6.1 PI algorithm for Vdc control  

The WRBFN with MPSO algorithm replaced by PI algorithm is shown in Fig. 2. Fig. 5 

illustrates the experimental result for PI control. The average power is 205W for the same 

period. It can be found that TSR is always round  6.9 and pC  is 0.4412. The verification of 

maximum power tracking control is shown in Fig. 5(a). The dc-link voltage tracking 

response is shown in Fig. 5(b). Fig. 5(c) and 5(d) shows power coefficient pC  and TSR λ . 

6.2 Fuzzy-based algorithm for Vdc control  

The WRBFN with MPSO algorithm replace by Fuzzy-Based algorithm as shown in Fig. 2. A 

fuzzy logic control (FLC) algorithm is characterized by “IF-THEN” rules. The algorithm is 

suitable for wind turbine control with complex nonlinear models and parameters variation. 

The input variables of Fuzzy-Based MPPT are dc-link power tracking error and the 

difference of dc-link power tracking error.  

Fig. 6 shows that 217W (an increase of 5.36% compared with that of PI control) is obtained 

by the Fuzzy-Based algorithm during the 50 sec. It can be found that λ  and pC  are close 

to the optimal values of 6.9 and 0.4412, respectively. The wind speed profiles of  turbine 

power mP  and dc-link power dcP  are also shown in Fig. 6(a). The dc-link voltage tracking 

response is shown in Fig. 6(b). Fig. 6(c) and 6(d) are shows that power coefficient pC  

and TSR λ . 

6.3 WRBFN with MPSO algorithm for Vdc Control 

WRBFN with MPSO algorithm control is considered and the experimental result is shown 

in Fig. 7. The verification of maximum power tracking control is shown in Fig. 7(a), where 

the wind speed profiles of  turbine power mP  and dc-link power dcP  are also shown. The 

dc-link voltage tracking response is shown in Fig. 7(b). Fig. 7(c) shows power coefficient 

pC  which is close to its maximum value during the whole wind speed profile, same for 

λ  of Fig. 7(d). The efficiency of the maximum power extraction can be clearly observed 

as the power coefficient is fixed at  the optimum value 0.4412pC =  and 6.9λ = . The 

average power is 224W. Compared with that from the PI control method, it increases 

by 9.27%. 
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(d) 

 

Fig. 5. Experimental results of the wind speed profile : (a)The maximum power tracking 
control signal. (b)The dc-link voltage tracking response. (c)Power coefficient Cp. (d)Tip-speed 

ratio λ . 
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Fig. 6. Experimental results of the wind speed profile : (a)The maximum power tracking 
control signal. (b)The dc-link voltage tracking response. (c)Power coefficient Cp. (d)Tip-

speed ratio λ . 
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(d) 

 

Fig. 7. Experimental results of the wind speed profile : (a)The maximum power tracking 
control signal. (b)The dc-link voltage tracking response. (c)Power coefficient Cp. (d)Tip-

speed ratio λ . 
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Control 
Characteristic

Controller 
Type 

Average 
Power (Pdc) 

(W) 

Increasing 
power 

percentage 
(%) 

Max. error of  
power 

coefficient (Cp) 
(%) 

Max. error of 
DC-link 

power (%) 

Max. error 
of  DC-link 
voltage (%) 

WRBFN with MPSO 
algorithm method 

224 9.27 1.79 0.32 0.074 

Fuzzy-Based 
algorithm method 

216 5.36 9.95 1.4 0.9 

PI method 205 ---- 18.4 2.58 2.25 

Table 1. Performance for various control methods 

From the performance comparison for various methods above experimental results, we can 
see that MPPT is important for either high or low wind speeds, as shown in Table 1. Table 1 
shows the average power, maximum error of power coefficient, maximum error of dc-link 
power and percentage of power increase from each control method. On the other hand, the 
maximum error of the power coefficient is around 23% in [9], and the maximum power 
deviation is about 7% in [14]. The proposed method in comparison with other methods 
[9,14] has better performance. 

7. Conclusion 

This paper focuses on the development of maximum wind power extraction algorithms for 
inverter-based variable speed WPGS. The HCS method is proposed in this paper for 
maximum power searching with various turbine inertia. Without a need for measurements 
of wind speed and turbine rotor speed, HCS is simple to implement. When exciting the 
system with a real wind profile, the system is able to track maximum power using generated 
power as input. The proposed system has been implemented, with a commercial PMSG and 
a dc drive to emulate the wind turbine behavior. The process is running in a dSPACE board 
that includes a TMS320C32 floating-point DSP. Experimental results show the appropriate 
behavior of the system.  
Three MPPT control algorithms are proposed in this paper, without any wind speed sensor. 
It is found that the PI method can operate near the optimal Cp. However, the PI-type 
controller may not provide perfect control performance if the controlled plant is highly 
nonlinear or the desired trajectory is varied with higher frequency. The proposed output 
maximization control of WRBFN can maintain the system stability and reach the desired 
performance even with parameter uncertainties. 
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