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1. Introduction  

Since the discovery of the compactly supported conjugate quadrature filter (CQF) based 

discrete wavelet transform (DWT) (Smith & Barnwell, 1986; Daubechies, 1988), a variety of 

data and image processing tools have been developed. It is well known that real-valued 

CQFs have nonlinear phase, which may cause image blurring or spatial dislocations in 

multi-resolution analysis.  In many applications the CQFs have been replaced by the 

biorthogonal discrete wavelet transform (BDWT), where the low-pass scaling and high-pass 

wavelet filters are symmetric and linear phase. In VLSI hardware the BDWT is usually 

realized via the ladder network-type filter (Sweldens, 1988). Efficient lifting wavelet 

transform algorithms implemented by integer arithmetic using only register shifts and 

summations have been developed for VLSI applications (Olkkonen et al. 2005).   

In multi-scale analysis the drawback of the BDWT is the sensitivity of the transform 

coefficients to a small fractional shift [0,1]τ ∈  in the signal, which disturbs the statistical 

comparison across different scales. There exist many approaches to construct the shift 

invariant wavelet filter bank.  Kingsbury (2001) proposed the use of two parallel filter banks 

having even and odd number of coefficients. Selesnick (2002) has described the nearly shift 

invariant CQF bank, where the two parallel filters are a half sample time shifted versions of 

each other. Gopinath (2003) generalized the idea by introducing the M parallel CQFs, which 

have a fractional phase shift with each other. Both Selesnick and Gopinath have constructed 

the parallel CQF bank with the aid of the all-pass Thiran filters, which suffers from 

nonlinear phase distortion effects (Fernandes, 2003). 

In this book chapter we introduce a linear phase and shift invariant BDWT bank consisting 

of M fractionally delayed wavelets. The idea is based on the B-spline interpolation and 

decimation procedure, which is used to construct the fractional delay (FD) filters (Olkkonen 

& Olkkonen, 2007).  The FD B-spline filter produces delays τ =N/M (N, M∈N , N= 0,…,M-

1). We consider the implementation of the shift invariant FD wavelets, especially for the 

VLSI environment. The usefulness of the method was tested in wavelet analysis of the EEG 

signal waveforms. 
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2. Theoretical considerations  

2.1 Two-channel BDWT filter bank 

The two-channel BDWT analysis filters are of the general form (Olkkonen et al. 2005)  
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where 0( )H z  is the Nth order low-pass scaling filter polynomial having the Kth order zero 

at ω π= . ( )P z  is polynomial in 1z− . 1( )H z  is the corresponding Mth order high-pass 

wavelet filter having Kth order zero at 0ω = . ( )Q z  is polynomial in 1z− . For a two-channel 

perfect reconstruction filter bank, the well known perfect reconstruction (PR) condition is 
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where 0( )G z  and 1( )G z  are the low-pass and high-pass reconstruction filters defined as 
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A typical set of the scaling and wavelet filter coefficients is given in (Olkkonen et al. 2005). 
In this work we apply the following essential result concerning on the PR condition (2). 

Lemma 1: If 0( )H z and 1( )H z  are the scaling and wavelet filters, the following modified 

analysis and synthesis filters obey the PR condition  
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where P(z) is any polynomial in 1z− and 1( )P z−  its inverse. Proof: The result can be proved 

by direct insertion of (4) into (2). 

2.2 Fractional delay B-spline filter 

The ideal FD operator has the z-transform  

                                                             ( , )D z z ττ −=    (5) 

where [0,1]τ ∈ . In (Olkkonen & Olkkonen, 2007) we have described the FD filter design 

procedure based on the B-spline interpolation and decimation procedure for the 

construction of the fractional delays /N Mτ = ( , , 0,1,..., 1)N M N M∈ = −N . The FD filter 

has the following representation 

                                            1( , , ) ( ) ( ) ( )N
p p

M
D N M z z z z F zβ β− −

↓
⎡ ⎤= ⎣ ⎦   (6) 
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where ( )p zβ  is the discrete B-spline filter (Appendix I). Decimation by M  is denoted by 

M↓ , and the polynomial ( )F z  is of the form 
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For convenience we use the following polyphase decomposition 
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By inserting (8) into (6) we have 

                                                           1( , , ) ( ) ( )p ND N M z z P zβ −=   (9) 

Table I gives the polyphase components ( )NP z  for 4M =  and 0,1,...,N M= . It appears 

generally that 0( ) ( )pP z zβ=  and 1( ) ( ).M pP z z zβ−=  Hence, (0, , ) 1D M z =  and 
1( , , )D M M z z−= . The implementation of the inverse discrete B-spline filter 1( )p zβ −  in (9) is 

described in Appendix I. Fig. 1 shows the magnitude and phase spectra of the FD B-spline 

filter (9) for 4M = and 1,2 and 3N = . 

2.3 FD BDWT bank 

As a direct application of Lemma 1, the fractionally delayed BDWT consists of the analysis 

and synthesis filters ( 0,1,2,..., 1N M= − ) 
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The FD B-spline filter (9) suits readily for the implementation of the FD BDWT bank (10). 

For example, if we construct the four parallel filter banks, we select 4M = and 

0,1,2 and 3N = . For M=4 the wavelet filter 1(0,4, )H z  equals the original 1( )H z , which is 

FIR. However, the filters 1(1,4, )H z ,  1(2,4, )H z  and 1(3,4, )H z are IIR-type.  In the following 

we present a novel modification of the FD BDWT filter bank (10), where all FD wavelet 

filters are FIR-type. 

 

Table I. Polyphase components ( )NP z  for 4M =  and 0,1,...,N M= ( 4p = ). 

www.intechopen.com



 Discrete Wavelet Transforms - Theory and Applications 

 

172 

 

Fig. 1. The FD B-spline ( 4p = ) filter for 4M =  and 1,2 and 3N = . 

2.4 FIR FD wavelet filters 

In VLSI and microprocessor environment the FIR filters are preferable due to the 

straightforward implementation by direct convolution. In tree structured multi-scale 

analysis the nondelayed scaling coefficients are fed to the following scale and only the 

wavelet coefficients are fractionally delayed. Next we describe a modification of the FD 

BDWT bank (10), where all the FD wavelet filters are FIR. The idea is based on the fact that 

only the relative time shift of the wavelet coefficients is essential for shift invariance. Hence, 

due to Lemma 1 we may replace the original scaling and wavelet filters by  

                                                      

1
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which obey the PR condition. Since the discrete B-spline filter ( )p zβ contains no zeroes at 

1z = − , the regulatory degree (the number of zeros at 1z = − ) of the scaling filter is not 

affected. The corresponding fractionally delayed wavelet filters are 

                                         1 1( , , ) ( ) ( ) 1,2,..., 1NH N M z P z H z N M= − = −   (12) 

Now, for 0,1,..., 1N M= − all the wavelet filters are FIR-type and they are the fractionally 

delayed versions of each other. The polyphase components ( )NP z−  in (12) have high-pass 

filter characteristics. Hence, the frequency response of the modified wavelet filters is only 
slightly altered. Fig. 2 shows the impulse responses of the BDWT wavelet filter (Olkkonen et 
al. 2005) and the corresponding fractionally delayed wavelet filters for M = 4 and N = 0, 1,2 
and 2. The energy (absolute value) of the impulse response is a smooth function, which 
warrants the shift invariance. The corresponding impulse responses of the fractionally 
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delayed Daubechies 7/9 wavelet filters (Unser & Blu, 2003) are given in Fig. 3 and the 
fractionally delayed Legall 3/5 wavelet filters (Unser & Blu, 2003) in Fig. 4. 
 

 

 
 

Fig. 2. The FD impulse responses of the BDWT wavelet filter (M=4 and N=0,1,2 and 3). 
h1[n] = [1 -1 -8 -8 62 -62 8 8 1 -1]/128. The dashed line denotes the energy (absolute value) of 
the wavelet filter coefficients.  
 

 

 
 

Fig. 3. The FD impulse responses of the Daubechies 7/9 BDWT wavelet filters (M=4 and 
N=0,1,2 and 3). The energy of the wavelet filter coefficients is denoted by the dashed line. 
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Fig. 4. The FD impulse responses of the Legall 3/5 BDWT wavelet filters (M=4 and N=0,1,2 
and 3).The dashed line denotes the energy of the wavelet filter coefficients.  

3. Experimental                                                          

The usefulness of the FD B-spline method was tested for the EEG signal waveforms. For 

comparison the EEG signals were analysed using the well established Hilbert transform 

assisted complex wavelet transform (Olkkonen et al. 2006). The EEG recording method  is 

described in detail in our previous work (Olkkonen et al. 2006). The EEG signals were 

treated using the BDWT bank given in (Olkkonen et al. 2005). The FD wavelet coefficients 

were calculated via (12) using M=4 and N=0,1,2 and 3. Fig. 5A shows the nondelayed 

wavelet coefficients. Fig. 5B shows the energy (absolute value) of the wavelet coefficients 

and Fig. 5C the energy of the wavelet coefficients computed via the Hilbert transform 

method (Olkkonen et al. 2006).  

4. Discussion 

This book chapter presents an original idea for construction of the shift invariant BDWT 
bank. Based on the FD B-spline filter (9) we obtain the FD BDWT filter bank (12), which 
yields the wavelet sequences by the FIR filters. The integer valued polyphase components 
(Table I) enable efficient implementation in VLSI and microprocessor circuits. The present 
paper serves as a framework, since the FD B-spline filter implementation can be adapted in 
any of the existing BDWT bank, such as the lifting DWT (Olkkonen et al. 2005), Daubechies 
7/9 and Legall 3/5 wavelet filters (Unser &Blu, 2003).  

The present idea is highly impacted on the work of Selesnick (2002). He observed that if the 

impulse responses of the two scaling filters are related as 0[ ]h n  and 0[ 0.5]h n − , then the 

corresponding wavelets form a Hilbert transform pair. We may treat the two parallel 

wavelets as a complex sequence 

                                                          [ ] [ ] [ 0.5]cw n w n j w n= + −   (13) 
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Fig. 5. The FD BDWT analysis of the neuroelectric signal waveform recorded from the 
frontal cortex at a 300 Hz sampling rate. The nondelayed wavelet coefficients (A). The 
energy of the FD wavelet coefficients (M=4, N = 0,1,2 and 3) (B). The Hilbert transform 
assisted energy (envelope) of the wavelet coefficients (C). 

The energy (absolute value) of the complex wavelet corresponds to the envelope, which is a 
smooth function. Hence, the energy of the complex wavelet sequence is nearly shift 
invariant to fractional delays of the signal. 
Gopinath (2003) has studied the effect of the M parallel CQF wavelets on the shift 
invariance. According to the theoretical treatment the shift invariance improves most from 
the change M=1 to 2. For M=3,4,…. the shift invariance elevates, but only gradually. Hence, 
M = 4 is usually optimal for computation cost and data redundancy.  If we consider the case 
M=4 the corresponding hyper complex (hc) wavelet sequence is  

                               [ ] [ ] [ 0.25] [ 0.5] [ 0.75]hcw n w n i w n j w n k w n= + − + − + −   (14) 

where i, j and k are the unit vectors in the hc space. It is evident that the energy of the hc 
wavelet coefficients is more shift invariant to the fractional delay in the signal compared 
with the dual tree complex wavelets (13). According to our experience the values M > 4 do 
not produce any additional advantage to the treatment of the EEG data. 
The FD BDWT bank offers an effective tool for EEG data compression and denoising 
applications. Instead of considering the wavelet coefficients we may threshold the energy of 
the hc wavelet coefficients as 

                                                         [ ] [ ] 0hcif w n then w nε< =   (15) 
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 where ε  is a small number. Due to the smooth behaviour of the energy function, ε  can be 
made relatively high compared with the conventional wavelet denoising methods. In tree 
structured BDWT applications only the nondelayed scaling sequence is fed to the next scale. 
Usually the scaling sequence is not thresholded, but only the wavelet coefficients. The FD 
BDWT bank does not increase the memory requirement (redundancy) compared with the 
original nondelayed BDWT bank, since the reconstruction of the data can be performed by 
knowing only the nondelayed scaling and wavelet sequences.  The FD BDWT bank can be 
considered as a subsampling device, which improves the quality of the critically sampled 
wavelet sequence. As an example we consider the multi-scale analysis of the neuroelectric 
signal (Fig. 5). The energy of the signal in different scales can be estimated with the aid of 
the Hilbert transform (Olkkonen et al. 2006). Applying the result of this work the energy of 
the wavelet sequence [ ]hcw n  (14) approaches closely to the energy (envelope) of the signal. 
However, the delayed wavelet sequence is produced only by the polyphase filter 

( )NP z (N=1,2,…,M-1)(12), while the Hilbert transform requires the FFT based signal 
processing (Olkkonen et al. 2006). In the EEG signal recorded from the frontal cortex, the 
spindle waves have concentrated energy, which is clearly revealed both by the FD BDWT 
and the Hilbert transform analysis (Fig. 5). The energy content of the EEG signal yielded by 
the two different methods is remarkably similar.  
The essential difference compared with the half-sample shifted CQF filter bank (Selesnick, 
2002) is the linear phase of the BDWT bank and the FD B-spline filters adapted in this work. 
The shifted CQF filter bank is constructed with the aid of the all-pass Thiran filters and the 
scaling and wavelet coefficients suffer from nonlinear phase distortion effects (Fernandes, 
2003). The linear phase warrants that the wavelet sequences in different scales are accurately 
time related.  The FD wavelet coefficients enable the high resolution computation of the 
cross and autocorrelation and other statistical functions. 

Appendix I 

The discrete B-spline filter 

B-splines ( )p tβ  are defined as p -times convolution of a rectangular pulse 
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The Laplace transform of the B-spline comes from 
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and the inverse Laplace transform gives the time domain solution                                       
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The discrete B-spline [ ]p nβ equals to the continuous B-spline at integer values of time. 
Hence, the Laplace transform (17) and the z-transform of the discrete B-spline have inverse 
transforms which coincide at integer values in the time domain. Using the relation  
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 we obtain the z-transform of the discrete B-spline 
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We have 1
1( ) 1 /(1 )N z z−= − . By differentiating in respect to z we obtain a recursion 
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As an example we may obtain the discrete B-spline for p=4 as 1 2
4( ) (1 4 ) /6z z zβ − −= + + . 

The inverse discrete B-spline filter can be written as a cascade realization 
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where c is a constant and the roots 1ib ≤  and 1jb >  . The ( )iS z filters in (23) can be directly 

implemented. The ( )jR z filters in (23) can be implemented by the following recursive 

filtering procedure. First we replace z by z-1 
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where  ( )U z  and  ( )Y z  denote  z-transforms of the input [ ]u n  and output [ ]y n  signals 

( 0,1,2,..., )n N= . The 1( )U z−  and 1( )Y z−  are the z-transforms of the time reversed input 

[ ]u N n−  and output [ ]y N n− . The 1( )jR z−  filter is stable having a root 1
jb−  inside the unit 

circle. The following Matlab program rfilter.m demonstrates the computation procedure: 
  

function y=rfilter(u,b) 
u=u(end:-1:1); 
y=filter([0 -1/b],[1 -1/b],u); 
y=y(end:-1:1);  
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