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1. Introduction    

Induction motors are the most common means of converting electrical power to mechanical 
power in the industry. Induction machines were typically considered robust machines; 
however, this perception began to change toward the end of the last decade as low-cost motors 
became available on the market. Nowadays the most widely used induction motor in the 
industry is a machine which works at the limits of its mechanical and physical properties. A 
good diagnosis system is mandatory in order to ensure proper behavior in operation.  
The history of fault diagnosis and protection is as outdated as the machines themselves. 
Initially, manufacturers and users of electrical machines used to rely on simple protection 
against, for instance, overcurrent, overvoltage and earth faults to ensure safe and reliable 
operation of the motor. However as the tasks performed by these machines became more 
complex, improvements were also sought in the field of fault diagnosis. It has now become 
essential to diagnose faults at their very inception, as unscheduled machine downtime can 
upset deadlines and cause significant financial losses. 
The major faults of electrical machines can be broadly classified as follows:  
Electrical faults (Singh et al., 2003):  
1. Stator faults resulting in the opening or shorting of one or more stator windings; 
2. Abnormal connection of the stator windings; 
Mechanical faults: 
3. Broken rotor bars or rotor end-rings; 
4. Static and/or dynamic air-gap irregularities; 
5. Bent shaft (similar to dynamic eccentricity) which can result in frictions between the 

rotor and the stator, causing serious damage to the stator core and the windings; 
6. Bearing and gearbox failures. 
However, as is introduced in the basic bibliography by Devaney (Devaney et al., 2004), the 
effect of bearing faults is, in most cases, similar to eccentricities and has the same effects on 
the motor. 
The operation during faults generates at least one of the following symptoms: 
1. Unbalanced air-gap voltages and line currents 
2. Increased torque pulsations 
3. Decreased average torque 
4. Increase in losses and decrease in efficiency 
5. Excessive heating 
6. Appearance of vibrations 
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Many diagnostic methods have been developed so far for the purpose of detecting such 
fault-related signals. These methods come from different types and areas of science and 
technology, and can be summarized as follows (Jardine et al., 2006) (Meador, 2003): 
1. Electromagnetic field monitoring by means of search coils, and coils placed around 

motor shafts (axial flux-related detection). This is associated with the capacity for 
capturing the presence of magnetic fields around an IM. Field evaluation must provide 
information about motor-operation states. 

2. Temperature measurements: Temperature is a typical second-order effect of operation 
conditions. Induction motors typically have an operational temperature range, defined 
in the motor nameplate, which is associated with the tests performed. Any fault-
operation condition shows a temperature increment. By performing a temperature 
analysis the first approach to fault conditions can be made.  

3. Infrared recognition: This is used to evaluate the state of the material, especially for 
bearings. This cannot be performed in an online system.  

4. Radio frequency (RF) emissions monitoring: Radio frequency is a second-order effect of 
fault conditions which is currently used for gearbox diagnosis. 

5. Vibration monitoring: This is the typical method for fault diagnosis in industrial 
applications; it achieves good results for bearing analysis although it presents some 
deficiencies with electrical faults and rotor faults. 

6. Chemical analysis: This is used to analyze bearing grease; it is only used with big 
motors and not with the typical small ones. 

7. Acoustic noise measurement: This is a new trend in the field of gearbox failure (Tahori 
et al., 2007). 

8. Motor current signature analysis (MCSA), which is explained further below. 
9. Model-based artificial intelligence and neural-network-based techniques: These are new 

approaches which combine multi-modal data acquisition with advanced signal-
processing techniques. 

Motor current signature analysis (MCSA) is one of the most widely used techniques for fault 
detection analysis in induction machines. It is based on the Fast Fourier transform (FFT), 
which is currently considered the standard. 
Finally, other pieces of work introduce all the motor faults (Benbouzid et al., 2000) (Thomson 
et al., 2003) at the same time, typifying the different harmonic effects of every fault.  
The classic MCSA method works well under constant load torque and with high-power 
motors, but difficulties emerge when it is applied to pulsating load torques, in applications 
such as mills, freight elevators and reciprocating compressors. On the other hand, the results 
of the common signal processing method (typically FFT, Fast Fourier transform) should 
vary according to the application, especially during transient states. In the cases described 
above, the FFT algorithm is likely to cause errors due to the averaging of spectral 
amplitudes during sampling time. 
The need to find other signal processing techniques for non-stationary signals becomes, 
therefore essential. Time-frequency transforms such as the short time Fourier transform or 
the wavelet analysis (Ukil et al., 2006) (Valsan et al., 2008) have been successfully used with 
electrical systems in order to evaluate faults during transient states. The detection of 
induction motor faults using the wavelet transform has also been introduced (Kar et al., 
2006), especially in the case of noise or vibration signals. Interesting approaches have been 
presented recently (Calis et al., 2007) (Bacha et al., 2008) which introduce the analysis and 
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monitoring of fluctuations of motor current zero-crossing instants and the use of artificial 
intelligence solutions such as neural networks. A recent publication (Niu et al., 2008) 
presents an interesting approach of DWT applied to the evaluation of different statistic 
feature extraction techniques. In this paper different statistic methodologies are applied over 
wavelet decomposition details showing interesting results for specific details. However the 
feature extraction has been done without taking the motor fault behavior into consideration. 
This chapter proposes a different approach that begins with a detailed analysis of motor 
current decomposition for the further application of DWT at specific faulty bands. An 
energy estimation of the analyzed bands is proposed to define fault factors. 
PSD (power spectral density) (Ayhan et al., 2003) describes the distribution of power along 
frequencies. A similar concept applied to the wavelet transform could be useful for 
diagnosing a motor under variable load torque. The energy estimation of specific details 
improves the diagnosis, as it introduces a specific fault factor. 
This chapter starts with a description of the theoretical approach of MCSA bases and signal 
processing techniques proposed, followed by a presentation of experimental results. The use 
of the wavelet transform improves fault detection, and the energy estimation provides the 
fault factor needed to implement an online monitoring system. Conclusions are presented in 
the last section. 

2. Basic theory 

2.1 Motor current signature analysis (MCSA) 
This method focuses its efforts on the spectral analysis of the stator current and has been 
successfully introduced for the detection of broken rotor bars (Deleroi, 1984), bearing 
damage and dynamic eccentricities (Devaney et al., 2004) caused by a variable air gap due to 
a bent shaft or a thermal bow. The procedure consists in evaluating the relative amplitudes 
of the different current harmonics which appear as a result of the fault.  
The frequencies related to the different faults in the induction machine, such as air-gap 
eccentricity, broken rotor bars (Figure 1), and the effect of bearing damage, are expressed by 
equations (1), (2) and (3), respectively (Tahori et al., 2007) 

 ecc 1

1 s
f f 1 m

p

⎡ ⎤⎛ ⎞−
= ±⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (1) 

 brb 1

1 s
f f m s

p

2

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟−

= ±⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2) 

 i ,o r

n bd
f f 1 cos

2 pd
β

⎡ ⎤
= ±⎢ ⎥

⎣ ⎦
 (3) 

where fi is the rotational speed frequency of the rotor, f1 is the frequency supply, m is the 
harmonic order, s is the slip and p is the number of poles. In the bearing fault equation, bd, 
pd and cos β correspond to the constructive bearing parameters (Figure 2). 
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Fig. 1. Stator current spectrum for an induction motor with broken bars. Base frequency of 
50 Hz 

 

 
Fig. 2. Bearing parameters 
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2.2 Stator current composition 
Fault detection in induction machines cannot be considered individually. In order to obtain 
a successful fault detection system harmonic distribution, it must be considered in a holistic 
way. The holistic analysis of all the current spectra makes it possible to develop a successful 
system. By looking at different components of MCSA, the approach to current spectra can be 
defined as follows: 

Considering eccentricities first sideband components are about s
1

f
f

2
=  and s

2 s

f
f f

2
= +  and 

the upper-sideband components about s
3 s

f
f 2 f

2
= ⋅ +  and s

4 s

f
f 3 f

2
= ⋅ +  (Singh et al., 2003). 

Considering broken rotor bars, first sideband components are about ( )1 sf f 1 2s= −  and 

( )2 sf f 1 2s= +  and fifth sideband components are about ( )3 sf f 4 5s= −  and ( )4 sf f 5 6s= −  

(Tahori et al., 2007). fs is the main frequency supply. 
Three-phase currents under a fault condition can generally be expressed as follows: 

 ( ) ( )
N

R R s Rn n Rn
n 0

i t 2 I cos 2 f t 2 I cos 2 f tπ π φ
=

= + −∑  (4) 

 ( ) ( ) ( )
N

S S s Sn n Sn
n 0

2 2i t 2 I cos 2 f t 2 I cos 2 f t3 3
π ππ π φ

=
= − + − −∑  (5) 

 ( ) ( ) ( )
N

T T s Tn n Tn
n 0

4 4i t 2 I cos 2 f t 2 I cos 2 f t3 3
π ππ π φ

=
= − + − −∑  (6) 

where IR = IS = IT = I are the RMS values of the fundamental component of the line current, 
IRn, ISn, ITnare the RMS values of the fault components and φRn, φSn, φTn are the angular 
displacements of the fault components. 

The space vector si
→

 referred to the stator reference frame is obtained by applying the 

transformation of the symmetrical components: 

 [ ] [ ] [ ]1 1 2 2 n ns
2 2j j j 2 f t j 2 f t j 2 f tj2 f t3 3

R R S T 1 2 n

2
i i i e i e 3 I e I e I e ... I e

3

π π π φ π φ π φπ→ − − − −⎡ ⎤ ⎡ ⎤= + + = + + +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 (7) 

A way of understanding the Fourier analysis is to consider it a mathematical transform to 
convert our view of the signal from time-based to frequency-based. This involves splitting 
the signal into its constituent harmonics, providing a fault detection system. 
Yet, the Fourier analysis implies a serious drawback for our purposes: in the process of 
transformation to the frequency domain, the time information is lost. When examining the 
Fourier transform of a signal, it is impossible to know the precise instant when a particular 
event took place. 
If signal properties do not change over time —that is, if we are examining a stationary 
signal— this is not a problem. However, most interesting signals contain a great deal of non-
stationary or transitory characteristics: drift, trends, abrupt changes, and first and last 
occurrences of events. In this case, such characteristics are often the most important part of 
the signal, and the Fourier analysis is not suitable for their detection. Therefore, we need to 
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apply another signal processing technique, such as the Wavelet transform, that can reveal 
aspects that a simple Fourier analysis misses. 

2.3 Continuous wavelet transform (CWT) 
The Fourier analysis consists in breaking up a signal into sine waves with different 
frequencies. Similarly, a wavelet analysis is the breaking-up of a signal into shifted and 
scaled versions of the function called the ‘mother wavelet’. 
The continuous wavelet transform is the sum over time of the signal multiplied by scaled 
and shifted versions of the wavelet. This process produces wavelet coefficients that are a 
function of scale and position. 

The integral wavelet transform of a function ( ) 2f t L∈  with respect to an analyzing wavelet 

φ  is defined as 

 ( ) ( ) ( )b ,aW f b ,a f t t dtφ φ
∞

−∞
= ∫  (8) 

where 

 ( )b ,a

t b1
t a 0

aa
φ φ

−
= >  (9) 

Parameters b and a are called translation and dilation parameters respectively. The 

normalization factor a  is included so that b ,aφ φ=  

The expression for the inverse wavelet transform is 

 ( ) ( ) ( )b ,a2

1 1
f t db W f b ,a t da

C a
φ

φ
φ

∞ ∞

−∞ −∞
⎡ ⎤= ⎣ ⎦∫ ∫  (10) 

Where Cφ is a constant that depends on the choice of wavelet and is given by 

 
( )

2
ˆ

C dφ

φ ω
ω

ω
= < ∞∫  (11) 

The coefficients constitute the results of a regression of the original signal performed on the 
wavelets. A plot can be generated with the x-axis representing position along the signal 
(time), the y-axis representing scale, and the color at the x-y point representing the 
magnitude of wavelet coefficient C. These coefficient plots are generated with graphical 
tools. 

2.4 Discrete wavelet transform (DWT) 
The discrete version of the wavelet transform, DWT, consists in sampling the scaling and 
shifted parameters, but neither the signal nor the transform. This leads to high-frequency 
resolution at low frequencies and high-time resolution for higher frequencies, with the same 
time and frequency resolution for all frequencies. 
A discrete signal x[n] can be decomposed as (Mallat, 1998):  
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 [ ] [ ] [ ]
0 0

o

J 1

j ,k j ,k j ,k j ,k
k j j k

x n a n d nφ ϕ
−

=
= +∑ ∑∑  (12) 

where  

[ ]nφ         is the scaling function, 

[ ]
0

0

0

j
j2

j ,k n 2 (2 n k)φ φ= − ,                 is the scaling function at a scale of ojs 2=  shifted by k, 

[ ]nϕ  ,    is the mother wavelet, 

[ ] ( )
j

j2
j ,k n 2 2 n kϕ ϕ= − ,                is the mother wavelet at a scale of js 2=  shifted by k, 

0j ,ka  ,    is the approximation coefficients at a scale of ojs 2=   

j ,kd  ,    is the detail coefficients at a scale of ojs 2=  

and JN 2= , where N is the number of x[n] samples. 
The scaling function can be defined as an aggregation of wavelets at scales larger than 1. A 
discrete signal can be constructed by using a sum of J-j0 details and an approximation to 1 of 

a signal at a scale of ojs 2= . 
A quick way to obtain the forward DWT coefficients is to use the filter bank structure shown 
in Figure 3. The approximation coefficients at a lower level are transferred through a high-
pass (h[n]) and a low-pass filter (g[n]), followed by a downsampling by two to compute 
both the detail (from the high-pass filter) and the approximation (from the low-pass filter) 
coefficients at a higher level. The two filters are linked to each other and they are known as 
quadrature mirror filters. High-pass and low-pass filters are derived from the mother 
wavelet and the scaling function, considered respectively in (Mallat, 1998) and (Mallat, 
1989).  
 

g[n] 

h[n] 

2

x[n
2

g[n]

h[n]

2

2

g[n]

h[n]

2

2

Level 1 detail coefficients 

Level 2 detail coefficients 

Level 3 detail coefficients 

Level 1 detail coefficients 

 
Fig. 3. Wavelet tree decomposition for three levels of detail 

The various frequency range coverings for the details and the final approximation for a 
three-level decomposition are shown in Figure 4. These are directly related to the bands 
where the analysis will be performed. 
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Fig. 4. Frequency ranges for details and final approximation 

Figure 5 represents in a graphical manner the time-frequency window, which has better 
resolution on the time domain for high frequencies, and better frequency resolution for low 
frequencies, which means fewer resources for processing.  
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Fig. 5. Time-Frequency window for the wavelet transform 

The shape of the frequency response for these filters depends on the type and the order of 
the mother wavelet used in the analysis. In order to avoid overlapping between two 
adjacent frequency bands, a high-order mother wavelet has to be used that results in a high-
order frequency filter. 
In order to separate the different frequency bands there is an obvious trade-off between the 
order of the mother wavelet and the computational cost. Thus, intensive study is needed in 
order to adapt the order of the mother wavelet to the requirements. 
Taking a common wavelet family such as the Daubechies mother wavelet, the mother 
wavelet time shape shows an evolution if we just change the Daubechies order as is shown 
in Figure 6. Yet, this does not provide clear information for our purpose.  
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Fig. 6. Daubechies mother wavelet time evolution for order increase 

Figure 7 shows the frequency response for low-pass and high-pass filters, which determines 
the detail and approximation decomposition for different orders. For low orders the power 
of one harmonic near the cut frequency could be split into two different details. This could 
give a false impression of the the time evolution of the analyzed signal's frequency 
component. By increasing the Daubechies order it is possible to idealize the filters and, 
hence, to obtain better frequency decomposition.  
 

  
Fig. 7. Low- and high-pass filter frequency response corresponding to details 

Figure 8 shows an example of this drawback. A test signal has been built with two harmonic 
components, one at 100 Hz and the other one at 45 Hz, and the signal has been sampled at 
1000 Hz. The wavelet analysis is performed with a Daubechies db3 mother wavelet. 
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Harmonic content due to the 100 Hz superimposed frequency appears on details 2 and 3; 
when it should only appear on detail 3, corresponding to the analysis band between 125 and 
62.5 Hz. A high-order Daubechies mother wavelet is needed to prevent this drawback, 
which is due to the db3 associated filter not being ideal enough to filter the 100 Hz harmonic 
content on detail 2. 
 

 
Fig. 8. Test decomposition signal with an overlapping effect 

2.5 Power detail density (PDD) 
In a classical Fourier analysis, the power of a signal can be obtained by integrating the 
power spectral density (PSD), which is the square of the Fourier transform’s absolute value. 
The power carried by a defined spectral band can be obtained by integrating the PSD along 
this band. 
A similar derivation can be obtained for a wavelet transform. The power detail density 
(PDD) can be described as the squares of the coefficients for one particular detail. The power 
energy carried by this detail can be obtained by integrating its PDD. 
Discrete wavelet transforms show variations in the harmonic amplitude and location, and 
are the most suitable transform to be applied to non-stationary signals. The power detail 
density function resulting from a wavelet transform has proven to be one of the best suited 
methods for motor fault analysis under variable load, which presents the stator current as a 
non-stationary signal.  
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The average power for a signal ( )x t  is: 

 ( ) ( )2 21 1
P lim x t dt lim x t dt

2 2

τ
τττ ττ τ

∞

− −∞→∞ →∞

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
∫ ∫  (13) 

Applying Parseval’s theorem, this could be expressed as: 

 ( )
( )

( )
2

2 x1 1 1 1
P lim x d lim d S d

2 2 2 2 2

τ τ
τττ τ

ω
ω ω ω ω ω

π τ π τ π
∞ ∞

− −∞ −∞→∞ →∞

⎡ ⎤⎡ ⎤
⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫ ∫  (14) 

Where: 

 ( )
( ) 2

x
S lim

2

τ

τ

ω
ω

τ→∞

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 (15) 

( )S ω  is the spectral density of the signal ( )x t , and represents the distribution or the 
density of power as a function of ω . 
The energy of a discrete signal can be calculated by averaging the square of all the signal 
components inside the unity window, following equation 12: 

 ( ) ( )( )
T

2
R

0

1
Power i t t dt

T
φ= ∗∫  (16) 

3. Experimental results 

3.1 Experimental setup 
A three-phase, 1.1 kW, 380 V and 2.6 A, 50 Hz, 1410 rpm, four-pole induction motor was 
used in this study. Firstly, its healthy performance was analyzed and, afterwards, a sixth of 
the rotor bars was damaged as is shown in Figure 8. 
The motor nameplate is shown as follows: 
 

Induction motor Value 

Rated power 
1.1kW. :Y 400/ D 230V 

2.6/4.5A 

Number of poles 4 

Nominal speed 1410 rev/min 

Cos ϕ 0.81 

Table I. Specifications for an induction motor 

The current has been measured by an A622 Tektronix 100 Ampere AC/DC current probe. 
The current ranges are 0/100 mV/A, and the typical DC accuracy is ±3% ± 50 mA at 100 
mV/A (50 mA to a 10 A peak). The frequency range extends from DC to 100 kHz (-3 dB). 
The test rig and the data processing are displayed in Figure 9.  
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Wavelet Details 

Load Torque 

Control 

 
Fig. 9. Experimental setup 

Load control has been implemented by using a PMSM and an inverter where variable load 
torque was introduced. The variable load torque follows an implemented increasing ramp 
as a torque control reference. Figure 10 depicts the evolution of the acquired currents. 
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Fig. 10. Current supply to the motor 

3.2 Signal acquisition requirements 
When carrying out experimental analyses one of the key elements to obtain good results is 
to choose appropriate acquisition parameters: sampling frequency and number of samples. 
There are three different constraints: analysis signal bandwidth, frequency resolution for the 
FFT analysis and wavelet decomposition spectral bands. 
For an IM, the most significant information about the stator current signal is focused around 
the 0-400 Hz band (Devaney et al., 2004), (Benbouzid et al., 2000) & (Thomson et al., 2003). The 
application of Nyquist’s theorem results in a minimum sampling frequency (fs) of 800 Hz. 
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Furthermore, in case of an FFT analysis, it is necessary to get the right resolution. As for the 
inverter supply, several harmonics could be mixed up in case low resolution of the band 
side was chosen. The minimum resolution needed in order to obtain good results is 0.5 Hz. 
Equation (17) defines the number of samples to achieve the correct resolution required. 

              s
s

f
N

R
=   (17) 

Ns  is the number of samples needed and R is the resolution. 
On the other hand, wavelet analysis will show different frequency bands, centered at different 
frequencies. Frequency bands will depend on the sampling frequency, and will decrease as 
shown in Figure 4. The band covered by the wavelet decomposition will start with  

,4 2
sf f⎡ ⎤

⎢ ⎥⎣ ⎦
and will then decrease as of 1

2 . The band suitable for analysis is about 40 Hz 

(Tahori et al., 2007), needs to be covered by one detail, and depends on the sampling 
frequency. 
Finally, a sample frequency fs = 6 kHz was chosen and 50,000 samples were obtained. The 
full analysis band ranges from 0 to 3 kHz with a resolution of 0.12 Hz for the FFT analysis. 
The frequency bands of the wavelet decomposition are shown in Table II.  
 

Decomposition details Frequency bands (Hz) 

Detail at level 1 3000-1500 
Detail at level 2 1500-750 
Detail at level 3 750-375 
Detail at level 4 375-187.5 
Detail at level 5 187.5-92.75 
Detail at level 6 92.75-46.37 
Detail at level 7 46.37-23.18 

Table II. Wavelet decomposition frequency bands for our test 

3.3 Experimental results 
This section presents the experimental results. To clearly demonstrate the effectiveness of 
the method, different test have been performed. Firstly, tests were done in order to verify 
the state of the faulty motor at nominal torque on stationary state. These allow us to check 
MCSA harmonics resulting from the fault condition and their amplitude. The results show 
us that the performance of the DWT is far superior to the FFT. Finally, PSD calculations over 
the wavelet details are used to define a fault factor. 
After an FFT analysis, the current spectra for a faulty motor operating under constant and 
nominal load torque and a frequency supply of 50 Hz show a mark with an amplitude of 
0.15 A (Figure 1) caused by a fault in the motor’s rotor bars. 
Equation (2) determines the frequency where the fault harmonics are located. The 
frequency of the fault harmonic depends on the slip, and the slip, in turn, depends on the 
load torque. This means that a variable load torque condition results in a time-dependent 
slip value, which causes variations in the spectrum. The measured speed values have a 
slip between 5 and 10%. Frequency locations for the fault harmonic are depicted in 
equations (18) and (19). 
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 ( )fault s sf f 1 2 50(1 2 0.05) 45Hz= − = − ⋅ =  (18) 

 ( )fault s sf f 1 2 50(1 2 0.1) 40Hz= − = − ⋅ =  (19) 

Figure 11 corresponds to experimental harmonic distribution for a faulty motor working 
under variable load torque. An FFT analysis shows the spread of the power of a fault 
harmonic along the spectrum and the decrease of its amplitude. The wavelet analysis shows 
the temporary changes in the fault frequency band, and achieves great results under these 
particular conditions. 
  

 
Fig. 11. Spectrum under variable load conditions 

The harmonic amplitude found due to the fault (2.5 mA) is too low to use standard FFT. The 
wavelet transform will be used in order to find the correct amplitude.  
The CWT scalogram is shown in Figure 12. It clearly shows the fault evolution on the 
increased value from 30 to 50 coefficients 
 

 
Fig. 12. Coefficient scalogram for the continuous wavelet transform 

Figures 13 and 14 show the details of the wavelet decomposition for healthy and faulty 
motors when computing the transform with a Daubechies 23 mother wavelet. Daubechies 23 
ensures correct signal decomposition, isolating the fault harmonic content, which gives 
proper results for our diagnostic purposes.  
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Fig. 13. DWT decomposition of a healthy motor     
  

 
Fig. 14. DWT decomposition of a faulty motor 
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Detail levels of high frequency bands provide virtually no information about the original 
signal. Detail 6 corresponds to the frequency band of the main harmonic and detail 7 
corresponds to the frequency band where the fault harmonic is located in the test. 
Comparing Figure 13 to Figure 14, we can clearly see the increase of the coefficient values as 
a result of the fault condition on the depicted scalograms (cfs). Also, the increase of the 
signal content is clearly appreciated on details 4, 5 and 7. 
Promising results are also obtained using wavelet transforms and evaluating the proper 
signal evolution during acquisition time. Figure 14 shows the advantage of the use of 
wavelets under variable load torque. Comparing the FFT decomposition and the DWT 
proves how using the Fourier decomposition (Figure 11) will reveal low amplitude for the 
spectrum in the 40 Hz band, lower than 3 mA. However, analyzing the wavelet time-
amplitude decomposition (Figure 14) will show that the amplitude value follows the change 
of the amplitude in the fault harmonic over time, eventually achieving a value higher than 
0.15 A  when maximum torque is applied. The maximum torque value is the same that was 
applied to the constant torque test. The result of the analysis using the wavelet 
decomposition under a variable load torque matches the results obtained using an FFT 
analysis in the constant load torque test (Figure 1.) 
To perform the diagnosis, we also need to determine the fault factor, which is defined as the 
estimation of the energy content of any decomposed detail. Energy is estimated applying 
equation (16). 
Table III illustrates the energy increment for a fault condition of the approximation and 
detail decompositions at level 7. This energy has been calculated according to equation (12). 
 

Power [W] 
 D1 D2 D3 D5 D6 D7 

Healthy motor 
Phase A 0.00 0.00 0.11 9.9 929.2 35.75 

Motor with broken rotor bars 
Phase A 0.00 0.00 1.1 13 887.7 88.11 

Table III. Power spectral density (power detail density) 

Table III clearly illustrates the energy increment of the decompositions chosen. Both wavelet 
decompositions shown in Table III can be used to detect rotor faults in the motor at any 
point of operation. The fault condition can be clearly identified by analyzing the energy 
content of faulty harmonics (PSD). A clear efficiency decrease of about 6% is appreciated on 
the main supply harmonic and a clear increase due to the fault condition is appreciated on 
the fault frequency bands. In D7, which is placed over the main fault harmonic, there is an 
increase of 2.5 times the energy content. 
This technique combines the time and frequency analysis of wavelet decompositions, 
allowing for better fault factor estimation. Combining DWT and PSD allows for further 
development of expert algorithms to implement an autonomous fault diagnosis system for 
induction machines. 

4. Conclusions 

This chapter has introduced the problems of fault detection under a variable load torque. 
The classical computation of MCSA using the FFT introduces average errors in the 
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amplitude harmonic evaluation, hampering fault detection. To ensure proper results a time-
frequency analysis is required. 
As with time-frequency analysis, the proposed alternative is the discrete wavelet transform 
(DWT). DWT has different resolutions on time and frequency depending on the different 
frequency bands defined. The use of DWT ensures good time-frequency analysis. DWT has 
been used to analyze motors with eccentricity and broken rotor bars under fault conditions, 
achieving good results.  
Moving toward an autonomous diagnosis sensor, a fault condition parameter has been 
studied and the power spectral density has been used as a power detail density with 
wavelets, ensuring proper results. 
To sum up, we can say that: 
• Wavelet decomposition is the proper technique for isolating time components of non-

stationary signals, with low computational costs. 
• Analyzing the energy of some wavelet decompositions is the right way to detect rotor 

faults in industrial motor applications with non-constant load torque. 
• The evolution of wavelet coefficients gives good results in terms of fault detection. 
• Orthogonal properties of wavelet functions ensure the detection of major variations on 

small amplitude signals, which is the case of reduced fault condition operation.  
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