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1. Introduction

One frequent way of collecting experimental data by scientists and engineers is as sequences
of values at regularly spaced intervals in time. These sequences are called time-series. The
fundamental problem with the data in the form of time-series is how to process them in order
to extract meaningful and correct information, i.e., the possible signals embedded in them.
If a time-series is stationary one can think that it can have harmonic components that can
be detected by means of Fourier analysis, i.e., Fourier transforms (FT). However, in recent
times, it became evident that many time-series are not stationary in the sense that their mean
properties change in time. The waves of infinite support that form the harmonic components
are not adequate in the latter case in which one needs waves localized not only in frequency
but in time as well. They have been called wavelets and allow a time-scale decomposition of a
signal. Significant progress in understanding the wavelet processing of non-stationary signals
has been achieved over the last two decades. However, to get the dynamics that produces a
non-stationary signal it is crucial that in the corresponding time-series a correct separation
of the fluctuations from the average behavior, or trend, is performed. Therefore, people had
to invent novel statistical methods of detrending the data that should be combined with the
wavelet analysis. A bunch of such techniques have been developed lately for the important
class of non-stationary time series that display multi-scaling behavior of the multi-fractal
type. Our goal in this chapter is to present our experience with the wavelet processing,
based mainly on the discrete wavelet transform (DWT), of non-stationary fractal time-series
of elementary cellular automata and the non-stationary chaotic time-series produced by a
three-state non-linear electronic circuit.

2. The wavelet transform

Let L2(R) denote the space of all square integrable functions on R. In signal processing
parlance, it is the space of functions with finite energy. Let ψ(t) ∈ L2(R) be a fixed function.
The function ψ(t) is said to be a wavelet if and only if its FT ψ̂(ω) satisfies

Cψ =
∫ ∞

0

|ψ̂(ω)|2

|ω|
dω < ∞. (1)

The relation (1) is called the admissibility condition (Daubechies, 1992; Mallat, 1999; Strang,
1996; Qian, 2002), which implies that the wavelet must have a zero average

∫ ∞

−∞
ψ(t)dt = ψ̂(0) = 0, (2)
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and therefore it must be oscillatory. In other words, ψ must be a sort of wave (Daubechies,
1992; Mallat, 1999).
Let us now define the dilated–translated wavelets ψa,b as the following functions

ψa,b(t) =
1√
a

ψ

(

t− b

a

)

, (3)

where b ∈ R is a translation parameter, whereas a ∈ R
+ (a �= 0) is a dilation or scale

parameter. The factor a−1/2 is a normalization constant such that the energy, i.e., the value
provided through the square integrability of ψa,b, is the same for all scales a. One notices that
the scale parameter a in (3) rules the dilations of the independent variable (t− b). In the same
way, the factor a−1/2 rules the dilation in the values taken by ψ, see the y-axis in Fig. 1. With (3),
one is able to decompose a square integrable function x(t) in terms of these dilated–translated
wavelets.
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Fig. 1. The Haar wavelet function for several values of the scale parameter a and translation
parameter b. If a < 1, the wavelet function is contracted, and if a > 1, the wavelet is
expanded.

The continuous wavelet transform (CWT) of x(t) ∈ L2(R) is defined as

Wx(a, b) = �x, ψa,b� =
∫ ∞

−∞
x(t)ψ̄a,b(t)dt

=
1√
a

∫ ∞

−∞
x(t)ψ̄

(

t− b

a

)

dt, (4)

where � , � is the scalar product in L2(R) defined as � f , g� :=
∫

f (t)ḡ(t)dt, and the symbol “¯”
denotes complex conjugation. The CWT (4) measures the variation of x in a neighborhood of
the point b, whose size is proportional to a.

4 Discrete Wavelet Transforms - Theory and Applications
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a, b
(t)

If we are interested to reconstruct x from its wavelet transform (4), we make use of the the
reconstruction formula, also called resolution of the identity (Daubechies, 1992; Mallat, 1999)

x(t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
Wx(a, b)ψa,b(t)

dadb

a2
, (5)

where it is now clear why we imposed (1).
However, a huge amount of data are represented by a finite number of values, so it is
important to consider a discrete version of the CWT (4). Generally, the orthogonal(discrete)
wavelets are employed because this method associates the wavelets to orthonormal bases
of L2(R). In this case, the wavelet transform is performed only on a discrete grid of the
parameters of dilation and translation, i.e., a and b take only integral values. Within this
framework, an arbitrary signal x(t) of finite energy can be written using an orthonormal
wavelet basis:

x(t) = ∑
m

∑
n
dmn ψm

n (t), (6)

where the coefficients of the expansion are given by

dmn =
∫ ∞

−∞
x(t)ψm

n (t)dt . (7)

The orthonormal basis functions are all dilations and translations of a function referred as the
analyzing wavelet ψ(t), and they can be expressed in the form

ψm
n (t) = 2m/2ψ(2mt− n), (8)

with m and n denoting the dilation and translation indices, respectively. The contribution of
the signal at a particular wavelet level m is given by

dm(t) = ∑
n
dmn ψm

n (t), (9)

which provides information on the time behavior of the signal within different scale bands.
Additionally, it provides knowledge of their contribution to the total signal energy.
In this context, Mallat (1999) developed a computationally efficient method to calculate (6) and
(7). This method is known as multiresolution analysis (MRA). The MRA approach provides
a general method for constructing orthogonal wavelet basis and leads to the implementation
of the fast wavelet transform (FWT). This algorithm connects, in an elegant way, wavelets
and filter banks. A multiresolution signal decomposition of a signal X is based on successive
decomposition into a series of approximations and details, which become increasingly coarse.
Associated with the wavelet function ψ(t) is a corresponding scaling function, ϕ(t), and
scaling coefficients, amn (Mallat, 1999). The scaling and wavelet coefficients at scale m can be
computed from the scaling coefficients at the next finer scale m + 1 using

amn = ∑
l

h[l − 2n]am+1
l , (10)

dmn = ∑
l

g[l − 2n]am+1
l , (11)

where h[n] and g[n] are typically called lowpass and highpass filters in the associated filter
bank. Equations (10) and (11) represent the fast wavelet transform (FWT) for computing (7). In

5Discrete Wavelet Analyses for Time Series
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fact, the signals amn and dmn are the convolutions of am+1
n with the filters h[n] and g[n] followed

by a downsampling of factor 2 (Mallat, 1999).
Conversely, a reconstruction of the original scaling coefficients am+1

n can be made from

am+1
n = ∑

l

(h[2l − n]aml + g[2l − n]dml ) , (12)

a combination of the scaling and wavelet coefficients at a coarse scale. Equation (12) represents
the inverse of FWT for computing (6), and it corresponds to the synthesis filter bank. This part
can be viewed as the discrete convolutions between the upsampled signal aml and the filters
h[n] and g[n], that is, following an “upsampling” of factor 2 one calculates the convolutions
between the upsampled signal and the filters h[n] and g[n]. The number of levels in the
multiresolution algorithm depends on the length of the signal. A signal with 2k values can
be decomposed into k + 1 levels. To initialize the FWT, one considers a discrete time signal
X = {x[1], x[2], . . . , x[N]} of length N = 2M. The first application of (10) and (11), beginning
with am+1

n = x[n], defines the first level of the FWT of X. The process goes on, always adopting
the “m + 1” scaling coefficients to calculate the “m” scaling and wavelet coefficients. Iterating
(10) and (11) M times, the transformed signal consists of M sets of wavelet coefficients at

scales m = 1, . . . , M, and a signal set of scaling coefficients at scale M. There are exactly 2(k−m)

wavelet coefficients dmn at each scale m, and 2(k−M) scaling coefficients aMn . The maximum
number of iterations Mmax is k. This property of the MRA is generally the key factor to identify
crucial information in the respective frequency bands. A three-level decomposition process of
the FWT is shown in Fig. 2.

Fig. 2. The structure of a three-level fast wavelet transform.

In a broad sense, with this approach, the low-pass coefficients capture the trend and the
high-pass coefficients keep track of the fluctuations in the data. The scaling and wavelet
functions are naturally endowed with an appropriate window size, which manifests in the
scale index or level, and hence they can capture the local averages and differences, in a
window of one’s choice.
When someone is interested to measure the local or global regularity of a signal, some
degree of regularity is useful in the wavelet basis for the representation to be well behaved
(Daubechies, 1992; Mallat, 1999). To achieve this, a wavelet function should have n vanishing
moments. A wavelet is said to have n vanishing moments if and only if it satisfies∫ ∞

−∞
tkψ(t)dt = 0 for k = 0, 1, . . . , n − 1 and

∫ ∞

−∞
tkψ(t)dt �= 0 for k = n. This means that
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a wavelet with n vanishing moments is orthogonal to all polynomials up to order n− 1. Thus,
the DWT of x(t) performed with a wavelet ψ(t) with n vanishing moments is nothing else
but a “smoothed version” of the n−th derivative of x(t) on various scales. This important
property helps detrending the data.
In addition, another important property is that the total energy of the signal may be expressed
as follows

N

∑
n=1

|x[n]|2 =
N

∑
n=1

|aMn |2 +
M

∑
m=1

N

∑
n=1

|dmn |
2. (13)

This can be identified as Parseval’s relation in terms of wavelets, where the signal
energy can be calculated in terms of the different resolution levels of the corresponding
wavelet-transformed signal. A more detailed treatment of this subject can be found in (Mallat,
1999).

3. Multifractal analysis of cellular automata time series

3.1 Cellular automata

An elementary cellular automaton(ECA) can be considered as a discrete dynamical that evolve
at discrete time steps. An ECA is a cellular automata consisting of a chain of N lattice sites with
each site is denoted by an index i. Associated with each site i is a dynamical variable xi which
can take only k discrete values. Most of the studies have been done with k = 2, where xi = 0 or
1. Therefore there are 2N different states for these automata. One can see that the time, space,
and states of this system take only discrete values. The ECA considered evolves according to
the local rule

xt+1
n = [xtn−1 + xtn+1]mod 2 , (14)

which corresponds to the rule 90. Table 1 is the lookup table of this ECA rule, where it
is specified the evolution from the neighborhood configuration (first row) to the next state
(second row), that is, the next state of i−th cell depends on the present states of its left and
right neighbors.

Neighborhood 111 110 101 100 011 010 001 000

Rule result 0 1 0 1 1 0 1 0

Table 1. Elementary rule 90. The second row shows the future state of the cell if it and its
neighbors are in the arrangement shown above in the first row.

In fact, a rule is numbered by the unsigned decimal equivalent of the binary expression in
the second row. When the same rule is applied to update cells of ECA, such ECA are called
uniform ECA; otherwise the ECA are called non-uniform or hybrids. It is important to observe
that the evolution rules of ECA are determined by two main factors, the rule and the initial
conditions.

3.2 WMF-DFA algorithm

To reveal the MF properties (Halsey et al., 1986) of ECA, we follow a variant of the MF-DFA
with the discrete wavelet method proposed in (Manimaran et al., 2005). This algorithm will
separate the trends from fluctuations, in the ECA time series, using the fact that the low-pass
version resembles the original data in an “averaged” manner in different resolutions. Instead
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of a polynomial fit, we consider the different versions of the low-pass coefficients to calculate
the “local” trend. This method involves the following steps.
Let x(tk) be a time series type of data, where tk = k∆t and k = 1, 2, . . . , N.

1. Determine the profile Y(k) = ∑
k
i=1(x(ti)− �x�) of the time series, which is the cumulative

sum of the series from which the series mean value is subtracted.

2. Compute the fast wavelet transform (FWT), i.e., the multilevel wavelet decomposition of
the profile. For each level m, we get the fluctuations of the Y(k) by subtracting the “local”
trend of the Y data, i.e., ∆Y(k;m) = Y(k) − Ỹ(k;m), where Ỹ(k;m) is the reconstructed
profile after removal of successive details coefficients at each level m. These fluctuations at
level m are subdivided into windows, i.e., into Ms = int(N/s) non-overlapping segments
of length s. This division is performed starting from both the beginning and the end of
the fluctuations series (i.e., one has 2Ms segments). Next, one calculates the local variances
associated to each window ν

F2(ν, s;m) = var [∆Y((ν − 1)s + j;m)] , j = 1, ..., s , ν = 1, ..., 2Ms , Ms = int(N/s) . (15)

3. Calculate a q−th order fluctuation function defined as

Fq(s;m) =

{

1

2Ms

2Ms

∑
ν=1

|F2(ν, s;m)|q/2

}1/q

(16)

where q ∈ Z with q �= 0. Because of the diverging exponent when q → 0 we employed

in this limit a logarithmic averaging F0(s;m) = exp

{

1

2Ms

2Ms

∑
ν=1

ln |F2(ν, s;m)|

}

as in

(Kantelhardt et al., 2002; Telesca et al., 2004).

To determine if the analyzed time series have a fractal scaling behavior, the fluctuation
function Fq(s; m) should reveal a power law scaling

Fq(s;m) ∼ sh(q), (17)

where h(q) is called the generalized Hurst exponent (Telesca et al., 2004) since it can depend
on q, while the original Hurst exponent is h(2). If h is constant for all q then the time
series is monofractal, otherwise it has a MF behavior. In the latter case, one can calculate
various other MF scaling exponents, such as τ(q) = qh(q) − 1 and f (α) (Halsey et al.,
1986). A linear behavior of τ(q) indicates monofractality whereas the non-linear behavior
indicates a multifractal signal. A fundamental result in the multifractal formalism states that
the singularity spectrum f (α) is the Legendre transform of τ(q), i.e.,

α = τ
�(q), and f (α) = qα − τ(q).

The singularity spectrum f (α) is a non-negative convex function that is supported on the
closed interval [αmin, αmax]. In fact, the strength of the multifractality is roughly measured
with the width ∆α = αmax − αmin of the parabolic singularity spectrum f (α) on the α axis,
where the boundary values of the support, αmin for q > 0 and αmax for q < 0, correspond to
the strongest and weakest singularity, respectively.

8 Discrete Wavelet Transforms - Theory and Applications
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3.3 Application of WMF-DFA

To illustrate the efficiency of the wavelet multifractal procedure, we first carry out the analysis
of the binomial multifractal model (Feder, 1998; Kantelhardt et al., 2002).
For the multifractal time series generated through the binomial multifractal model , a series
of N = 2nmax numbers xk, with k = 1, . . . , N, is defined by

xk = an(k−1)(1 − a)nmax−n(k−1). (18)

where 0.5 < a < 1 is a parameter and n(k) is the number of digits equal to 1 in the binary
representation of the index k. The scaling exponent h(q) and τ(q) can be calculated exactly in
this model. These exponents have the closed form

h(q) =
1

q
−

ln[aq + (1 − a)q]

q ln 2
, τ(q) = −

ln[aq + (1 − a)q]

ln 2
. (19)

In Table 2 and Fig. 3, we present the comparison of the multifractal quantity h for a = 2/3
between the values for the theoretical case (hT(q)), with the numerical results obtained
through wavelet analysis (hW(q)). Notice that the numerical values have a slight downward
translation. Adding a vertical offset (∆ = hT(1) − hW (1)) to hW(q), we can notice that both
values theoretically and numerically are very close.

q hT(q) hW (q) hW(q) + ∆

-10 1.4851 1.4601 1.4851
-9 1.4742 1.4498 1.4749
-8 1.4607 1.4373 1.4623
-7 1.4437 1.4217 1.4467
-6 1.4220 1.4018 1.4269
-5 1.3938 1.3761 1.4012
-4 1.3568 1.3422 1.3673
-3 1.3083 1.2971 1.3221
-2 1.2459 1.2376 1.2627
-1 1.1699 1.1626 1.1876
0 0.0000 1.0742 1.0992
1 1.0000 0.9809 1.0059
2 0.9240 0.8961 0.9212
3 0.8617 0.8286 0.8537
4 0.8131 0.7780 0.8031
5 0.7761 0.7401 0.7652
6 0.7479 0.7112 0.7362
7 0.7262 0.6887 0.7137
8 0.7093 0.6711 0.6961
9 0.6958 0.6570 0.6821

10 0.6848 0.6457 0.6707

Table 2. The values of the generalized Hurst exponent h for the binomial multifractal model
with a = 2/3, which were computed analytically and with the wavelet approach.

In a similar way, we analyze the time series of the so-called row sum ECA signals, i.e., the sum
of ones in sequences of rows, employing the db-4 wavelet function, another wavelet function
that belongs to the Daubechies family (Daubechies, 1992; Mallat, 1999). We have found that
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Fig. 3. The generalized Hurst exponent h for the binomial multifractal model with a = 2/3.
The theoretical values of h(q) with the WMF-DFA calculations are shown for comparison.

a better matching of the results given by the WMF-DFA method with those of other methods
is provided with this wavelet function. Figure 4 illustrates the results for the rule 90, when
the first row is all 0s with a 1 in the center, i.e., the impulsive initial condition. The fact that
the generalized Hurst exponent is not a constant horizontal line is indicative of a multifractal
behavior in this ECA time series. In addition, if the τ index is not of a single slope, it can be
considered as another clear feature of multifractality.
For the impulsive initial condition in ECA rule 90 the most “frequent” singularity for the
analyzed time series occurs at α = 0.568, and ∆α = 1.0132(0.9998) when the WMF-DFA
(MF-DFA) are employed. Reference (Murguía et al., 2009) presents the results for different
initial center pulses for rules 90, 105, and 150, where the width ∆α of rule 90 is shifted to the
right with respect to those of 105 and 150. In addition, the strongest singularity, αmin, of all
these time series corresponds to the rule 90 and the weakest singularity, αmax, to the rule 150.
With the aim of computing the pseudo-random sequences of N bits, in Reference (Mejía
& Urías, 2001) an algorithm based on the backward evolution of the CA rule 90 has
been proposed. A modification of the generator producing pseudo-random sequences has
been recently considered in (Murguía et al., 2010). The latter proposal is implemented and
studied in terms of the sequence matrix HN , which was used to generate recursively the
pseudo-random sequences.
This matrix has dimensions (2N + 1) × (2N + 1). Since the evolution of the sequence matrix
HN is based on the evolution of the ECA rule 90, the structure of the patterns of bits of the
latter must be directly reflected in the structure of the entries of HN .
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Fig. 4. (a) Time series of the row signal of the cellular automata rule 90. Only the first 28

points are shown of the whole set of 214 data points. Profile Y of the row signal. (d)
Generalized Hurst exponent h(q). (e) The τ exponent, τ(q) = qh(q)− 1. (f) The singularity

spectrum f (α) = q
dτ(q)
dq − τ(q). The calculations of the multifractal quantities h, τ, and f (α)

are performed both with the MF-DFA and the wavelet-based WMF-DFA.
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Here, in the same spirit as in Ref. (Murguía et al., 2009), we also analyze the sum of ones in
the sequences of the rows of the matrix HN with the db-4 wavelet function. The results for the
row sums of H2047 are illustrated in Fig. 5, through which we confirm the multifractality of
this time series. The width ∆αH2047

= 1.12− 0.145 = 0.975, and the most “frequent” singularity
occurs at αmfH2047

= 0.638. Although the profile is different, the results are similar with those

obtained for the rule 90 with a slight shifting, see Fig. 4. A more complete analysis of this
matrix is carried out in (Murguía et al., 2010).

4. Chaotic time series

In this section, we study the dynamics of experimental time series generated by an electronic
chaotic circuit. The wavelet analysis of these experimental chaotic time series gives us useful
information of such system through the energy concentration at specific wavelet levels.
It is known that the wavelet variance provides a very efficient measure of the structure
contained within a time series because of the ability of wavelet transforms to allot small
wavelet coefficients to the smoother parts of a signal in contrast with the sharp, non-stationary
behavior which gives rise to local maxima (see, for example, Chapter 8 in the book of Percival
and Walden (Percival & Walden, 2000)).

4.1 Chaotic electronic circuit

The electronic circuit of Fig. 6 (a) has been employed to study chaos synchronization (Rulkov,
1996; Rulkov & Sushchik, 1997). This circuit, despite its simplicity, exhibits complex chaotic
dynamics and it has received wide coverage in different areas of mathematics, physics,
engineering and others (Campos-Cantón et al., 2008; Rulkov, 1996; Rulkov & Sushchik, 1997).
It consists of a linear feedback and a nonlinear converter, which is the block labeled N. The
linear feedback is composed of a low-pass filter RC� and a resonator circuit rLC.
The dynamics of this chaotic circuit is very well modeled by the following set of differential
equations:

ẋ = y,

ẏ = z− x− δy,

ż = γ [k f (x)− z] − σy,

(20)

where x(t) and z(t) are the voltages across the capacitors, C and C�, respectively, and y(t) =

J(t)(L/C)1/2 is the current through the inductor L. The unit of time is given by τ = 1/
√
LC.

The parameters γ, δ, and σ have the following dependence on the physical values of the

circuit elements: γ =
√
LC/RC�, δ = r

√
C/L and σ = C/C�. The main characteristic of the

nonlinear converter N in Fig. 6 is to transform the input voltage x(t) into an output voltage
with nonlinear dependence F(x) = k f (x) on the input. The parameter k corresponds to the
gain of the converter at x = 0. The detailed circuit structure of N is shown in Fig. 6 (b).
It is worth mentioning that depending on the component values of the linear feedback and the
parameter k, the behavior of the chaotic circuit can be in regimes of either periodic or chaotic
oscillations. Due to the characteristics of the inductor in the linear feedback, it turns out to
be hard to scale to arbitrary frequencies and analyze it because of its frequency-dependent
resistive losses. Therefore, the parameter k has been considered to analyze this chaotic circuit,
since it appeared to be a very useful bifurcation parameter in both the numerical and
experimental cases (Campos-Cantón et al., 2008). Two different attractors, projected on the
plane (x, y), generated by this electronic circuit, are shown in Fig. 7. These attractors have
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Fig. 6. (a) The circuit diagram of a nonlinear chaotic oscillator. The component values
employed are C� = 100.2 nF, C = 200.1 nF, L = 63.8 mH, r = 138.9 Ω, and R = 1018 Ω. (b)
Schematic diagram of the nonlinear converter N. The electronic component values are
R1 = 2.7 kΩ, R2 = R4 = 7.5 kΩ, R3 = 50 Ω, R5 = 177 kΩ, R6 = 20 kΩ. The diodes D1 and
D2 are 1N4148, the operational amplifiers A1 and A2 are both TL082, and the operational
amplifier A3 is LF356N.

a shape similar to a Rössler oscillator (Fig. 7(a)), and to a double scroll oscillator (Fig. 7(b)).
They can be easily obtained by just fixing the bifurcation parameter k to be equal to 0.4010,
and 0.3964, respectively.

4.2 Wavelet variance

In the wavelet approach the fractal character of a certain signal can be inferred from the
behavior of its power spectrum P(ω), which is the Fourier transform of the autocorrelation
function and in differential form P(ω)dω represents the contribution to the variance of the
part of the signal contained between frequencies ω and ω + dω. Indeed, it is known that for
self-similar random processes the spectral behavior of the power spectrum is given by

P(ω) ∼| ω |−β, (21)

where β is the spectral parameter of the signal. In addition, the variance of the wavelet
coefficients var {dmn } is related to the level m through a power law of the type (Wornell &
Oppenheim, 1992)
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Fig. 7. Attractors of the electronic chaotic circuit projected on the plane x− y obtained
experimentally for two different values of the bifurcation parameter k: (a) 0.4010, and (b)
0.3964.

var {dmn } ≈ (2m)−β. (22)

This wavelet variance has been used to find dominant levels associated with the signal, for
example, in the study of numerical and experimental chaotic time series (Campos-Cantón et
al., 2008; Murguía & Campos-Cantón, 2006; Staszewski & Worden, 1999). In order to estimate
β we used a least squares fit of the linear model

log2(var{dmn }) = βm + (K + vm), (23)

where K and vm are constants related to the linear fitting procedure. Equation (22) is
certainly suitable for studying discrete chaotic time series, because their variance plot has a
well-defined form as pointed out in (Murguía & Campos-Cantón, 2006; Staszewski & Worden,
1999). If the variance plot shows a maximum at a particular scale, or a bump over a group
of scales, which means a high energy concentration, it will often correspond to a coherent
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structure. In general, the gradient of a noisy time series turns out to be zero in the variance
plot, therefore it does not show any energy concentration at specific wavelet level. In certain
cases the gradient of some chaotic time series has a similar appearance with Gaussian noise
at lower scales, which implies that these chaotic time series do not present a fundamental
“carrier” frequency at any scale.
For our illustrative analysis and comparison with the experiments, we study the time series
of the x states of the attractors displayed in Fig. 7(a)-(b), because they are of very different
type and we want to emphasize the versatility of the wavelet approach. The acquisition of
the experimental data was carried out with a DAQ with a sampling frequency of 180 kHz, i.e.
we collected the experimental data for a total time of 182 ms for both signals. In the analysis
of these time series we employed the db-8 wavelet, a wavelet function that belongs to the
Daubechies family (Daubechies, 1992; Mallat, 1999).

• Case k = 0.4010.

The first time series to consider corresponds to the x state of the experimental attractor
of Fig. 7 (a). The first 12 ms of this time series are shown in Fig. 8 (a), whereas Fig. 8 (b)
shows a semi-logarithmic plot of the wavelet coefficient variance as a function of level m,
which is denominated as variance plot of the wavelet coefficients. One can notice that the
whole series is dominated by the 12th wavelet level, i.e., this wavelet level has the major
energy concentration, and it is plotted in isolation in Fig. 8 (c). The energy rate between the
reconstructed signal with respect to the original signal was (Ex12 /Ex) = 0.9565, which
means an energy close to 96% of the total one in this case. Since it does not properly
show the structure of the chaotic time series, we considered and added together the three
neighbor wavelet levels, m = 11 − 13, achieving an energy concentration of 99% of the
total one. In this case, the reconstruction of the signal at these wavelet levels is shown in
Fig. 8(d), where the structure of the original signal can be noticed. Both reconstructed time
series present a slight downward translation, because of the DC component of this chaotic
time series.

• Case k = 0.3964.

For this value of k, the behaviour of the chaotic electronic circuit is similar to that of a
double scroll oscillator with the shape of the attractor displayed in Fig. 7. The experimental
time series corresponding to the x state of this attractor is shown in Fig. 9 (a), while the
variance plot is given in Fig. 9 (b) where the gradient is close to zero, which means that
no significant energy concentration can be seen. We have found that when summing over
the wavelet levels m = 6 − 12 the energy concentration is close to 99% of the total one but
without any pronounced peak. Thus, this case does not present a fundamental “carrier”
frequency and therefore this attractor has a Gaussian noisy behavior. The reconstructed
time series with the mentioned wavelet levels is displayed in Fig. 9 (c).

5. Conclusion

The DWT is currently a standard tool to study time-series produced by all sorts of
non-stationary dynamical systems. In this chapter, we first reviewed the main properties of
DWT and the basic concepts related to the corresponding mathematical formalism. Next, we
presented the way the DWT characterizes the type of dynamics embedded in the time-series.
In general, the DWT reveals with high accuracy the dynamical features obeying power-like
scaling properties of the processed signals and has been already successfully incorporated in
the multifractal formalism. The interesting case of the time-series of the elementary cellular

 t(ms)

 x(V) (a)

 m

log | var ( d
 n
 m) | (b)

 t(ms)

 x
m=12

(V) (c)

 t(ms)

 x
m=11฀13

(V) (d)

16 Discrete Wavelet Transforms - Theory and Applications

www.intechopen.com



• Case

series present a slight downward translation, because of the DC component of this chaotic

• Case

 t(ms)

 x(V) (a)

 m

log | var ( d
 n
 m) | (b)

 t(ms)

 x
m=12

(V) (c)

 t(ms)

 x
m=11฀13

(V) (d)

Fig. 8. The case k = 0.4010: (a) experimental time series of the x state, (b) wavelet coefficient
variance, (c) time series of the 12th wavelet level, and (d) the time series of the sum from 11th
to the 13th wavelet levels.
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Fig. 9. The case k = 0.3964: (a) experimental time series of the x state, (b) wavelet coefficient
variance, (c) time series of the sum from 6th to the 12th wavelet levels.
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automata has been presented in the case of rule 90 and the concentration of energy by means of
the concept of wavelet variance for the chaotic time-series of a three-state non-linear electronic
circuit was also briefly discussed.
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