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1. Introduction 

On-line monitoring of manufacturing process is extremely important in modern 
manufacturing for plant safety, maximization of the production and consistency of the 
product quality (Song et al., 2003).  The development of diagnostic systems for the industrial 
applications has started in early 1970s. The recent developments in the microelectronics 
have increased their intelligence and let them found many industrial applications in last two 
decades (Mendonca et al., 2009; Shi & Sepehri, 2004). The intelligent data analysis 
techniques are one of the most important components of the fault diagnosis methods (Uppal 
et al, 2002; Uppal & Patton, 2002).  In this study, the faults of a pneumatic system will be 
monitored by using the artificial neural networks (ANN). 
When the speed control and magnitude of the applied force is not critical, pneumatic 
systems are the first choice. They are cheap, easy to maintain, safe, clean, and components 
are commercially available. They have even been used for precise control of industrial 
systems (Nazir & Shaoping, 2009; Ning & Bone, 2005). Unfortunately, their nonlinear 
properties and some limitations at their damping, stiffness and bandwidth characteristics 
avoid their widespread applications (Belforte et al., 2004; Tsai & Huang, 2008, Bone & Ning, 
2007; Taghizadeh et al., 2009; Takosoglu et al., 2009).   
The interest for the development of diagnostic methods for pneumatic and hydraulic 
systems has increased in the last decade (Nakutis & Kaškonas, 2008). Researchers 
concentrated on the detection of the faults of the components. The condition of the 
pneumatic and hydraulic cylinders (Wang et al., 2004), and digitally controlled valves 
(Karpenko et al., 2003) were the main focus of the studies.  Some of the other considered 
faults were leakage of the seals (Nakutis & Kaškonas, 2005, 2007; Yang, 2006; Sepasi & 
Sassani, 2010), friction increase (Wang et al., 2004; Nogami et al., 1995) and other 
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malfunctions (Bouamama et al., 2005). The monitored signals can be divided into two 
groups according to their frequencies.  Acoustic emission is an excellent example of high 
frequency monitoring signal (Yang, 2006; Chena et al., 2007).  The frequency of the pressure, 
flow, and timing signals are low (Sepasi & Sassani, 2010; Nogami et al., 1995; Bouamama et 
al., 2005; Nakutis & Kaškonas, 2005, 2008; Wang et al., 2004; Karpenko et al., 2003; Li & Kao, 
2005; McGhee et al., 1997). The gathered signals are encoded to obtain their most descriptive 
features.  The encoded signals were classified by using various classification techniques 
such as ANNs (Karpenko et al., 2003; Nakutis & Kaškonas, 2003; Sepasi & Sassani, 2010; 
Nogami et al., 1995; McGhee et al., 1997), fuzzy method (Mendonca et al., 2009; Uppal & 
Patton, 2002), neuro fuzzy method (Shi & Sepehri, 2004; Uppal & Patton, 2002), statistical 
technique (Song et al., 2003),  bond graphs (Bouamama et al., 2005), genetic programming 
(Wang et al., 2004; Yang, 2006), and expert/intelligent systems (Chen & Mo, 2004). 
It is not difficult to develop programs for classification of the sensory signals of pneumatic 
systems.  However, these programs should be carefully modified when the characteristics of 
the signals change. Many researchers have worked on the development of ANNs.  
Generally, most of the ANNs are ready to take the advantage of future parallel hardware.  
By considering these facts ANNs will be used for the classification in this study. 
Mainly, there are two types of ANNs: supervised and unsupervised.  The supervised ANNs 
require an initial training.  Unsupervised ones may start to monitor the signals without any 
training.  Among the supervised ANNs, the feed-forward ANNs (FFNN) have been widely 
used.  The Back-propagation (BP) algorithm is the most popular one for estimation of the 
weights and were used in many applications (Bryson & Ho, 1969,  Rumelhart et al., 1976, 
Huang  et al., 2007; Lu  et al., 2000; Tansel et al., 2009; Aykut et al., 2010; Tansel & Demetgul 
& Sierakowski, 2009; Demetgul et al., 2009).  Quasi-Newton approaches such as Levenberg-
Marquardt was developed to increase the speed of the estimation and is available in the 
MATLAB ANN Toolbox (Beale et al., 2010).  Fuzzy ARTMAP method (Carpenter et al., 1991, 
Carpenter et al., 1992) allowed the use of the Adaptive Resonance Theory (ART) for the 
supervised learning (Grossberg, S., 1987). Among the unsupervised ANNs Adaptive 
Resonance Theory 2 (ART2) (Grossberg, S., 1987, Carpenter& Grossberg, 1987, 
Rajakarunakaran et al., 2008, Lee et al., 2003, Belforte et al., 2004) has been successfully used 
for classification in many applications. This approach was improved further by the 
development of fuzzy ART (Carpenter et al., 1991a, Carpenter et al., 1991b).  In this study 
the data was classified by using the BP, fuzzy ARTMAP, ART2 and fuzzy ART. 
In the following section the theoretical background of the ANNs will be presented very 
briefly.  The experimental setup, results and the conclusion will follow it. 

2. Theoretical background of the tested ANNs 

In this section the ANNs will be very briefly reviewed since detailed information is available 
at the listed references.   

2.1 Supervised ANN 

In this study, two supervised ANNs were used. FFNN became popular with the widespread 
use of the BP (Bryson & Ho, 1969, Rumelhart et al., 1976) algorithm. The FFNN have 
multiple layers. Generally, single hidden layer is used. The user determines the number of 
the hidden neurons of this layer by trial and error.  The number of the neurons of the input 
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and output layers depends on the application.  The BP estimates the weights of the neurons 
by updating them after the forward and backward propagation of error.  The learning rate 
and the momentum are two important parameters of the BP for training the network 
successfully (Chen & Mo, 2004; McGhee et al., 1997). Levenberg-Marquardt algorithm (Beale 
et al., 2010) generally estimates the parameters of the FFNNs. It finds the best weights by 
minimizing the function. It works effectively for many applications. Levenberg-Marquardt 
algorithm available at the MATLAB toolbox was used in this study (Beale et al., 2010). 
Fuzzy ARTMAP (Carpenter et al., 1991, Carpenter et al., 1992 ) use the fuzzy logic and ART 
ANNs. It evaluates the similarity by considering the fuzzy subsethood and ART category 
choice. The vigilance is used to determine the size of the “category boxes” or sensitivity of 
the ANN.  One of the very important advantages of the ARTMAP with or without the fuzzy 
component over the FFNNs is the use of the vigilance based on our experience. Aaron 
Garrett’s (Garrett, 2003) code was used for the training and testing of the fuzzy ARTMAP 
method. 

2.2 Unsupervised ANN 

ART2 type ANN evaluates the characteristics of the inputs and assign them a category 
(Carpenter & Grossberg, 1987; Lee et al., 2003, Yang et al., 2004, Na et al., 2008).  If the signal 
looks like one of the previously presented signals, it will be classified in the same category.  On 
the other hand, if the signal is different than the previously presented ones a new category is 
assigned for it. The sensitivity of ART2 depends to the vigilance. At the low vigilances, it has 
higher tolerance. When the vigilance approaches to one it will be more selective. 
Fuzzy ART use fuzzy set theory in the ART1 type ANN structure.  With the help of the MIN 
operator of the fuzzy set theory the classification of the binary and analog input patterns is 
possible. The vigilance parameter adjust the selectivity of the ANN. In this study Aaron 
Garrett (Garrett, 2003) implementation of the fuzzy ART was used. 

3. Experimental setup and performed experiments: 

The diagram of the experimental setup is presented in Fig.1.  The pneumatic system created 
motions along the X and Y axes.  The operation of the system was managed by an SPC 200 
two axis servopneumatic controller. Each axes could be operated in the coordinated or 
autonomous mode. Controller was also responsible from the digital I/O including the 
communications with the other devices. A pressure transducer was used to measure the 
supply pressure of the system. 5/3-way proportional valves controlled the flow of the 
pressurized air into the proper chambers of the cylinders. 
A proportional valve (Festo MPYE-5 1/8 LF-010B) controlled the displacement of pneumatic 
cylinder in the x direction.  The valve was connected to the both chambers of the pneumatic 
rodless cylinder (Festo DGPL-25-450-PPV-A-B-KF-GK-SV). The stroke length and the 
diameter of the cylinder were 450 mm and 25 mm respectively. A linear potentiometer 
(Festo MLO-POT-450-TLF) was attached to the side on the actuator to measure the piston 
position.  The valve had the neutral spool position under 5 V control voltage.   
Another pneumatic rodless cylinder (Festo DGPIL-25-225-PPV-B-KF-AIF-GK-SV-AV) created 
the motion in the Y direction. The stroke length and the diameter of the cylinder were 225 mm 
and 25 mm respectively. A contactless absolute magnetostrictive linear displacement sensor 
was used to measure the strokes of the piston. A gripper was attached to the cylinder. 
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1. Air compressor 
2. Service Unit 
3. SPC 200 Controller 
4. Analog Pressure Transducers 
5. Gripper 
6. Y axis 
7. Linear Potentiometer for x axis 
8. X axis 
9. NI Compact FieldPoint System 
10. Power Supply 

Fig. 1. Servo-pneumatic positioning system of the Festo Didactic.  The components of the 
system are the following: 

Experimental data was collected by using the National Instrument (NI) compact FieldPoint 
measurement system with control modules. The LabVIEW program environment controlled 
the measurement system.  The values of four analog parameters were monitored.  Three of 
these parameters were the pressure readings of the cylinders creating the motion in the x 
and y directions and the overall system.  The Fourth analog input was the readings from the 
linear potentiometer. The gripper action was monitored from the digital signals coming 
from data acquisition card.  The diagram of the components of the servo-pneumatic system 
is shown in Figure 2.  
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Fig. 2. The servo-pneumatic system components for X axis. (1. Measuring system, 2. Axis 
interface, 3. Smart positioning controller SPC 200, 4. Proportional directional control valve, 
5. Service unit, 6. Rodless cylinder) ((festodidactic.com, 2010) 

The servo-pneumatic system simulated the operation of food preparation. Jars were put 
individually on a conveyor belt by the packaging system. A handling device with servo-
pneumatic NC axis transferred these jars to a pallet. The precise motion of the NC axis is 
essential for completion of the task (Festo Didactic, 2010).  
The user interface of the LabVIEW program is presented in Fig. 3. The display shows the 
pressures of the overall system and two cylinders creating the motions along the X and Y 
axes. Also the displacement of one of the cylinder and gripper action (pick and place) is 
demonstrated.  
In this study, the pneumatic system was operated at the normal and 4 different faulty 
conditions. The experimental cases are listed in Table 1. There were 15 experimental cases.  
The data was collected at the same condition 3 times when the system was operated in the 
normal and 4 faulty modes. 
 

Operational condition                                                   Experiment #         Recalled as 
 
Normal operation of the Servo Pneumatic System                 1                   Normal 
x axis error positioning              2                   Fault 1 
y axis error positioning                                                          3                   Fault 2 
Pick  faults for gripper                                           4                   Fault 3 
Place faults for gripper              5                   Fault 4  

Table 1. Operating conditions 
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Fig. 3. Data collection visual front panel of LabVIEW 

The signals of the gripper pick (Fig.4) and place (Fig.5) sensors, the pressure sensors of the 
cylinders in the x (Fig.6) and y (Fig.7) directions, the voltage output of the linear 
potentiometer of the x axis (Fig.8) are presented in the corresponding figures. 
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Fig. 4. Gripper Pick  
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Fig. 5. Gripper Place Sensor 
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Fig. 6. X Axis Pressure  
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Fig. 7. Y Axis Pressure Sensor 
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Fig. 8. X Axis linear potentiometer signal 

4. Proposed encoding method 

The sensors provided long data segments during the operation of the system. To represent 
the characteristics of the system the sensory signals were encoded by selecting their most 
descriptive futures and presented to the ANNs. 

www.intechopen.com



Conditioning Monitoring and Fault Diagnosis for a  
Servo-Pneumatic System with Artificial Neural Network Algorithms 

 

449 

Two gripper sensor signals were monitored one for pick (Fig.4) and one for place (Fig.5).  
Their outputs were either 0 V or 1V. The gripper pick and place signals were encoded by 
identifying the time when the value raised to 1V and when it fell down to 0V. The signals of 
the pressure of x axis (Fig.6), pressure of y axis (Fig.7) and main pressure were encoded by 
calculating their averages. For the linear potentiometer (Fig.8) the times when the signal fell 
below 7V and when it went over 7V were identified and used during the classification. 

5. Results 

The expected results from the ANN classification are presented in Fig.9. Ideally, once the 
ANN experiences the normal and each faulty mode, someone may expect it to identify each 
one of them accurately. In our case this means, an unsupervised ANN create maximum 5 
categories and assign each one of them to the normal and 4 fault modes. Similarly, the 
output of the supervised ANNs are supposed to be an integer value between 1 and 5 
depending on the case. It is very difficult to classify the experimental data in 5 different 
categories unless the encoded cases have very different characteristics, repeatability is very 
high and noise is very low. In the worst case, we expect the ANN to assign at least two 
categories and locate the normal operation and faulty ones in separate categories. The 
output of the supervised ANN could be 0 and 1 in such cases. The ANN estimates in the 
ideal and accdptialbe worst case scenario are demonstrated in Fig.9. In the following 
sections, the performance of the supervised and the unsupervised ANNs are outlined. 
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Fig. 9. The output of the ANNs for classification of normal and 4 faulty modes. 
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5.2 Performance of the supervised ANNs:  

Performance of the feed-forward-network (FFN) was evaluated by using the Levenberg 
Marquardt algorithm.  The FFN had 9 inputs and 1 output.  The outputs of the cases were 1, 
2, 3, 4, 5 for Normal, Fault1, Fault2, Fault3 and Fault4 respectively.  For training only one 
sample of the normal and 4 faulty cases were used.  Since the FNN type ANNs do not have 
any parameters to adjust their sensitivity they have to be trained with very large number of 
cases which will teach the network expected response for each possible situation.  Since, one 
sample for each one of the normal and 4 faulty cases was too few for effective training, we 
generated semi experimental cases.  The semi-experimental cases were generated from these 
samples by changing the each input with ±1% steps up to ±10%.  We generated 100 semi-
experimental cases in addition to the original 5 cases with this approach.  The FNN had 8 
neurons at the hidden layer.  The FFN was trained with 105 cases. 
The FFN type ANN was trained by using the Levenberg-Marquardt algorithm of the Neural 
Network Toolbox of the MATLAB. The training was repeated several times.  The same semi-
experimental data generation procedure was used to generate 200 additional test cases from 
the 10 experimental cases which had 2 tests at each condition (1 normal and 4 faulty ones).  
The average estimation errors were 5.55e-15% for the training and 8.66% for the test cases.  
The actual and estimated values for the training and test cases are presented in Fig.10 and 
Fig.11 respectively. The ANN always estimated the training cases with better than 0.01% 
accuracy. The accuracy of the estimations of the test cases was different at each trail.  These 
results indicated that, without studying the characteristics of the sensory signals very  
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Fig. 10. The FFN type ANN estimations for the training cases. 
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Fig. 11. The FFN type ANN estimations for the test cases. 

carefully, the ANN may estimate the normal and faulty cases; however, for industrial 
applications the characteristics of the data may change in much larger range than ours and 
working with much larger experimental samples are advised. 
The same analysis was repeated by using the fuzzy ARTMAP.  The fuzzy ARTMAP adjusts 
the size of the “category boxes” according to the selected vigilance value. The ANN 
estimates the category of the given case as -1 if the fuzzy ARTMAP do not have proper 
training. So, we did not need to use the semi-experimental data.  The fuzzy ARTMAP was 
trained by using 5 cases (normal and 4 fault modes).  It was tested by using the 10 cases (2 
normal and 8 faulty cases (2 samples at each fault modes)).  The vigilance was changed from 
0.52 to 1 with the steps of 0.02.  The identical performance was observed for the training and 
test cases when the vigilance was selected between 0.52 and 0.83 (Fig.12). All the training 
cases were identified perfectly.  The normal and all the faulty ones were distinguished 
accurately. The fuzzy ARTMAP only confused two test cases belong to Fault 2 and 3.  The 
performance of the fuzzy ARTMAP started to deteriorate at the higher vigilances since the 
“category boxes” were too small and the ANN could not classify some of the test cases.  The 
number of the unclassified cases increased with the increasing vigilance. 
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Fig. 12. The performance of the fuzzy ARTMAP type ANN. 

5.1 Performance of the unsupervised ANNs: 

Performance of the ART2 is shown in Table 2. It distinguished the normal and faulty cases.  
Among the faults, the Fault 3 was identified all the time by assigning a new category and 
always estimating it accurately.  The ART2 could not distinguish Fault 1, 2 and 4 from each 
other.  The best vigilance values were in the range of 0.9 and 0.9975.  When these vigilances 
were used ART2 distinguished the normal operation, faulty cases and Fault 3.  The same 
results are also presented with a 3D graph in Fig.13. 
The results of the Fuzzy ART program are presented in Fig.14.  The number of assigned 
categories varied between 2 and 15 for the vigilance values of 0.5 and 1.  When the 
vigilance was 0.5, the Fuzzy ART distinguished the normal and faulty operation but could 
not classify the faults.  Fuzzy ART started to distinguish Fault 4 when the vigilance was 
0.65. It started to distinguish Fault 3 and 4 for the vigilance value of 0.77.  When the 
vigilance reached to 0.96 it could distinguished 10 categories and classified all the cases 
accurately. Multiple categories were assigned to the normal and some of the faulty 
operation modes. 
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Vigilance values Condition 
of the 

system 

Experiment 
0.9 - 

0.9975 
0.998 0.9985 0.999 0.9995 

Test 1 1 1 1 1 1 
Test 2 1 2 2 2 2 

Normal 

Test 3 1 2 2 2 2 
Test 1 2 3 3 3 3 
Test 2 2 3 3 3 4 

Fault 1 

Test 3 2 3 3 3 4 
Test 1 2 3 3 3 4 
Test 2 2 3 3 3 4 

Fault 2 

Test 3 2 3 3 3 5 
Test 1 3 4 4 4 6 
Test 2 3 4 4 4 6 

Fault 3 

Test 3 3 4 4 4 6 
Test 1 2 3 3 3 5 
Test 2 2 3 3 3 5 

Fault 4 

Test 3 2 3 3 3 7 

Table 2. The estimated categories with the ART 2 algorithm 
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Fig. 13. The graphical presentation of the ART2 results in the Table 1. 
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Fig. 13. The estimations of the Fuzzy ART  

6. Conclusion 

A two axis servopneumatic system was prepared to duplicate their typical operation at the 
food industry. The system was operated at the normal and 4 faulty modes. The 
characteristics of the signals were reasonably repetitive in each case. Three pressure, one 
linear displacement and two digital signals from the gripper were monitored in the time 
domain. The signals were encoded to obtain their most descriptive futures. There were 15 
experimental cases. The data was collected at the same condition 3 times when the system 
was operated in the normal and 4 faulty modes. The encoded data had 9 parameters. The 
performances of two supervised and two unsupervised neural networks were studied.   
The 5 experimental cases were increased to 105 by generating semi experimental data. The 
parameters of the FFN was calculated by using the Levenberg-Marquardt algorithm. The 
average estimation errors were 5.55e-15% for the training and 8.66% for the test cases. The 
fuzzy ARTMAP was trained with 5 cases including one normal and 4 faulty modes. It 
estimated the 8 of the 10 test cases it never saw before perfectly.  It confused the two faulty 
cases among each other. 
The ART2 and fuzzy ART were used to evaluate the performance of these unsupervised 
ANNs on our data.  Both of them distinguished the normal and faulty cases by assigning 
different categories for them. They had hard time to distinguish the faulty modes from each 
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other. Since they did not need training, they are very convenient for industrial applications.  
However, it is unrealistic to expect them to assign different categories for the normal 
operation and each fault modes, and classify all the incoming cases accurately. 
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