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1. Introduction 

Applications of Artificial Neural Networks (ANNs) attract the attention of many scientists 

from all over the world. They have many advantages over traditional algorithmic methods. 

Some of these advantages are, but not limited to; ease of training and generalization, 

simplicity of their architecture, possibility of approximating nonlinear functions, 

insensitivity to the distortion of the network and inexact input data (Wlas et al., 2005). As for 

their applications to Induction Motors (IMs), several research articles have been published 

on system identification (Karanayil et al., 2003; Ma & Na, 2000; Toqeer & Bayindir, 2000; 

Sjöberg et al. 1995; Yabuta & Yamada, 1991), on control (Kulawski & Brys, 2000; Kung et al., 

1995; Henneberger & Otto, 1995), on breakdown detection (Raison, 2000), and on estimation 

of their state variables (Simoes & Bose, 1995; Orłowska-Kowalska & Kowalski, 1996).  

The strong identification capabilities of artificial neural networks can be extended and 

utilized to design simple yet good performance nonlinear controllers. This chapter 

contemplates this property of ANNs and illustrates the identification and control design 

processes in general and then for a given system as a case study.  

To demonstrate its capabilities and performance, induction motors which are highly 

nonlinear systems are considered here. The induction machine, especially the squirrel-cage 

induction motor, enjoys several inherent advantages like simplicity, ruggedness, efficiency 

and low cost, reliability and compactness that makes it the preferred choice of the industry 

(Vas, 1990; Mehrotra et al., 1996; Wishart & Harley, 1995; Merabet et al., 2006; Sharma, 2007). 

On the other hand, advances in power switching devices and digital signal processors have 

significantly matured voltage-source inverters (VSIs) with the associated pulse width 

modulation (PWM) techniques to drive these machines (Ebrahim at el., 2010). However, IMs 

comprise a theoretically challenging problem in control, since they are nonlinear 

multivariable time-varying systems, highly coupled, nonlinear dynamic plants, and in 

addition, many of their parameters vary with time and operating condition (Mehrotra et al., 

1996a; 1996b; Merabet et al., 2006).  
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2. System identification 

This chapter will carry out the system identification of an induction motor using the 
artificial neural network and precisely the Back Propagation Algorithm. The procedure used 
to identify the system is as described in Fig.1. 
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Fig. 1. System identification loop 

Now, the system identification problem would be as follows: We have observed inputs, u(t), 
and outputs,  y(t), from the plant under consideration (induction motor): 

 ( ) ( ) ( )1 , 2 , ,tu u u u t= ⎡ ⎤⎣ ⎦A  (1) 

 ( ) ( ) ( )1 , 2 , ,ty y y y t= ⎡ ⎤⎣ ⎦A  (2) 

where  tu  is the input signal to the plant (input to the frequency inverter) and ty  is the 

output signal (measured by the tacho-meter representing the motor’s speed). We are looking 

for a relationship between past 1 1,t tu y− −⎡ ⎤
⎣ ⎦  and future output, y(t): 

 ( ) ( )ˆ | ,y t g tθ ϕ θ= ⎡ ⎤⎣ ⎦  (3) 

where ŷ  denotes the model output which approximates the actual output ( )y t , g  is a 
nonlinear mapping that represents the model, ( )tϕ  is the regression vector given by 

 ( ) ( )1 1,t tt u yϕ ϕ − −=  (4) 
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and its components are referred to as regressors. Here, θ  is a finite dimensional parameter 
vector, which is the weights of the network in our case (Bavarian, 1988; Ljung & Sjöberg, 
1992; Sjöberg et al. 1995). 
The objective in model fitting is to construct a suitable identification model (Fig. 2) which 
when subjected to the same input ( )u t  to the plant, produces an output ( )ŷ t  which 
approximates ( )y t . However, in practice, it is not possible to obtain a perfect model. The 
solution then is to select θ in Eq. (3) so as to make the calculated values of ( )ˆ |y t θ  fit to the 
measured outputs ( )y t  as close as possible. The fit criterion will be based on the least 
square method given by 

 ( )min ,NV t
θ

θ ϕ⎡ ⎤⎣ ⎦  (5) 

where 

 ( ) ( ) ( ) 2

1

1
ˆ, |

N

N
t

V t y t y t
N

θ ϕ θ
=

⎡ ⎤ = ⎡ − ⎤⎣ ⎦ ⎣ ⎦∑  (6) 

Hence, the error ε  is given by 

 ( ) ( ) ( )ˆ |t y t y tε θ= −  (7) 

This is illustrated in Fig. 2. 
 

+

-

PlantPlant
P

M

( )ty

( )tŷ

( )tε

( )tu

 

Fig. 2. Forward plant modelling 

3. Artificial Neural Networks 

Strong non-linearities and model uncertainty still pose a major problem for control 
engineering. Adaptive control techniques can provide solutions in some situations however 
in the presence of strongly non-linear behaviour of the system traditional adaptive control 
algorithms do not yield satisfactory performance. Their inherent limitations lie in the 
linearization based approach. A linear model being a good approximation of the non-linear 
plant for a given operation point cannot catch up with a fast change of the state of the plant 
and poor performance is observed until new local linear approximation is built. 
Artificial neural networks offer the advantage of performance improvement through 
learning using parallel and distributed processing. These networks are implemented using 
massive connections among processing units with variable strengths, and they are attractive 
for applications in system identification and control. 
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3.1 The network architecture 
Figure 3 shows a typical two-layer artificial neural network. It consists of two layers of 
simple processing units (termed neurons).  
The outputs computed by unit j of the hidden-layer and unit k of the output-layer are given 
by: 

 ( )              1,  2,  ...,  j h jx f H j h= =  (8) 

 ( )             1,  2,  ...,  k o ky f I k m= =  (9)  

respectively, where hf  and of  are the bounded and differentiable activation functions. 
Thus, the output unit k  will result in the following:  

 k kj ji i
j i

y f w f v u
⎡ ⎤⎛ ⎞

= ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑  (10) 

where ky  here is the vector representing the network output.  
It has been formally shown (Lippman, 1987; Fukuda & Shibata, 1992) that Artificial Neural 
Networks with at least one hidden layer with a sufficient number of neurons are able to 
approximate a wide class continuous non-linear functions to within an arbitrarily small 
error margin. 
 

Hidden
layer
j

Input
layer
i

Output
layer
k

v ji wkj

∑ ∑

Hidden unit’s neuron Output unit’s neuron

Biase Biase

iu ky

jx ky

 

Fig. 3. A two layer artificial neural network 

3.2 The training agorithm 

In developing a training algorithm for this network, we want a method that specifies how to 
reduce the total system error for all patterns through an adjustment of the weights. This 
chapter uses the Back-Propagation training algorithm which is an iterative gradient algorithm 
designed to minimize the mean square error between the actual output of a feed-forward 
network and the desired output (Lippman, 1987; Weber et al., 1991; Fukuda & Shibata, 1992).  
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The back-propagation training is carried out as follows: the hidden layer weights are 

adjusted using the errors from the subsequent layer. Thus, the errors computed at the 

output layer are used to adjust the weights between the last hidden layer and the output 

layer.  Likewise, an error value computed from the last hidden layer output is used to adjust 

the weights in the next to the last hidden layer and so on until the weight connections to the 

first hidden layer are adjusted.  In this way, errors are propagated backwards layer by layer 

with corrections being made to the corresponding layer weights in an iterative manner.  The 

process is repeated a number of times for each pattern in the training set until the criterion 

minimization is reached. This is illustrated in Fig. 4. Therefore, we first calculate the 

predicted error at each time step s (we refer to s here to introduce the discrete time factor). 

Then, an equivalent error is calculated for each neuron in the network. For example the 

equivalent error δk of the neuron k in the output layer is given by (taking into account that 

the derivative of the output layer’s activation function is unity because it is a linear 

activation function): 

 ( ) ( ) ( ) ( )ˆ
k k k ks s y s y sδ ε= = −  (11) 

The equivalent error δj of neuron j in the hidden layer is given by: 

 ( )
( )( )
( ) ( )j

j k kj
kj

df H s
s s w

dH s
δ δ= ∑  (12) 

Weights connecting the hidden and output layers are adjusted according to: 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

1

1

kj kj kj

kj k j kj

w s w s w s

w s s x s w sαδ β

= − + Δ

Δ = + Δ −
 (13) 

where: α  and β  are the learning rate and the momentum parameters respectively. 
Weights connecting the input and hidden layer are adjusted according to: 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

1

1

ji ji ji

ji j i ji

v s v s v s

v s s u s v sαδ β

= − + Δ

Δ = + Δ −
 (14) 

 

ydu

vji wkj

ki j

δδ∑

Desired
Output

Network
Output

 

Fig. 4. Back-propagation algorithm 

In summary, the training algorithm is as follow: the output layer error is calculated first 

using Eq. (11) and then backpropagated through the network using Eq. (12) to calculate the 
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equivalent errors of the hidden neurons. The network weights are then adjusted using 

Eq. (13) and Eq. (14). 

3.3 Model validation 

In order to check if the identified model agrees with the real process behavior, model 

validation is necessary. This is imperative as to taken into account the limitations of any 

identification method and its final goal of model application. This includes a check to 

determine if the priori assumptions of the identification method used are true and to 

compare the input-output behaviour of the model and the plant (Ljung & Guo, 1997).  

To validate the model, a new input will be applied to the model under validation tests. The 

new outputs will be compared with the real time outputs and validation statistics is 

calculated. These statistics will decide whether the model is valid or not. 

To carry out the validation task, we use the following statistics for the model residuals: 

The maximal absolute value of the residuals 

 ( )1maxN t NM tε ε≤ ≤=  (15) 

Mean, Variance and Mean Square of the residuals 

 ( )
1

1 N

N
t

m t
N

ε ε
=

= ∑  (16) 

 ( )
2

1

1 N

N N
t

V t m
N

ε εε
=

⎡ ⎤= −⎣ ⎦∑  (17) 

 ( ) ( )22

1

1 N

N N N
t

S t m V
N

ε ε εε
=

= = +∑  (18) 

In particular we stress that the model errors must be separated from any disturbances that 

can occur in the modelling. As this can correlates the model residuals and the past inputs. 

This plays a crucial role. Thus, it is very useful to consider two sources of model residuals or 

model errors ε . The first error originates from the input ( )u t  while the other one originates 

from the identified model itself. If these two sources of error are additive and the one that 

originates from the input is linear, we can write  

 ( ) ( ) ( ) ( )t q u t v tε = Δ +  (19) 

Equation (19) is referred to as the separation of the model residuals and the disturbances. 

Here, v(t) would not change, if we changed the input u(t). To check the part of the residuals 

that might originate from the input, the following statistics are frequently used: 

If past inputs are ( ) ( ) ( ) ( ), 1 , , 1
T

t u t u t u t Mφ = ⎡ − − + ⎤⎣ ⎦A  and ( ) ( )
1

1 N
T

N
t

R t t
N

φ φ
=

= ∑ , then the 

scalar measure of the correlation between past inputs ( )tφ  and the residuals ( )tε  is given by: 

 1M T
N u N ur R rε εξ −=  (20) 
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where ( ) ( )0 , , 1
T

u u ur r r Mε ε ε= ⎡ − ⎤⎣ ⎦A   

with ( ) ( ) ( )
1

1 N

u
t

r t u t
N

ε τ ε τ
=

= −∑ . 

The obtained model should pass the validation tests of a given data set. Then we can say 
that our model is unfalsified. Here, we shall examine our model when the validation test is 
based on some of the statistics given previously in Eqs. (15-20). 

Let us first assume that the model validation criterion be a positive constant 0μ >  for the 
maximal absolute value of the residuals NMε  stated in Eq. (15) 

 ( ) ( ),   is not validated iff  Ng t Mεϕ θ θ μ⎡ ⎤ ≤⎣ ⎦  (21) 

The problem of determining which models satisfy the inequality of Eq. (21) is the same 

problem that deals with set membership identification (Ninness & Goodwin, 1994). 

Typically this set is quite complicated and it is customary to outerbound it either by an 

ellipsoid or a hypercube. Therefore, it is agreed that a reasonable candidate model for the 

true dynamics should make the sample correlation between residuals ( ) ( ) ( )ˆ, |t y t y tε θ θ= −  

and past inputs ( ) ( )1 , ,u t u t m− −A  small within certain criterion. One possible validation 

criterion is to require this correlation to be small in comparison with the Mean Square of the 

Model Residuals NSε  stated in Eq. (18). This is given by: 

 ( ) ( ) ( ),  is not validated iff M
N Ng t Sεϕ θ ξ θ γ θ⎡ ⎤ ≤⎣ ⎦  (22) 

where γ  is a subjective threshold that will be selected according to the application. 

4. The neurocontroller 

Conceptually, the most fundamental neural network based controllers are probably those 
using the inverse of the plant as the controller. The simplest concept is called direct inverse 
control, which is used in this chapter. Before considering the actual control system, an 
inverse model must be trained. There are tow ways of training the model; generalized 
training and the specialized training. This chapter uses the generalized training method. 
Figure 5 shows the off-line diagram of the inverse plant modelling. 
 

Plant
Plant

PC ( )ε t

( )y t( )"u t ( )u t( )r t

 

Fig. 5. Inverse plant modelling 

Given the input-output data set which will be referred to as NZ  over the period of time 
1 t N≤ ≤  

 ( ) ( ) ( ) ( ){ }1 , 1 ,..., ,NZ u y u N y N=  (23) 
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where u(t) is the input signal and ( )y t  is the output signal, the system identification task is 
basically to obtain the model ( )θ|ˆ ty  that represent our plant; 

 ( ) ( )ˆ | , Ny t g Zθ θ=  (24) 

where ŷ  denotes  the model output and g  is some non-linear function parameterized by θ  

which is the finite dimensional parameter vector, the weights of the network in our case 

(Ljung & Sjöberg 1992; Ljung, 1995; Sjöberg, 1995). 
The objective with inverse plant modelling is to formulate a controller, such that the overall 
controller-plant architecture has a unity transfer function, i.e., if the plant can be described 
as in Eq. (24), a network is trained as the inverse of the process: 

 ( ) ( )1ˆ | , Nu t g Zθ θ−=  (25)  

However, modelling errors perturb the transfer function away from unity. Therefore, 

( )1ˆ , Ng Zθ− will be used instead of ( )1 , Ng Zθ− . 
To obtain the inverse model in the generalized training method, a network is trained off-line 

to minimize the following criterion instead: 

 ( ) ( ) ( )( )2
1

1
ˆ, |

N
N

N
t

W Z u t u t
N

θ θ
=

= −∑  (26)  

In other words, our aim is to reduce the error ε  where: 

 ( ) ( ) ( )ˆ |t u t u tε θ= −  (27)  

Once we carry out that, the inverse model is subsequently applied as the controller for the 

system by inserting the desired output (the reference) instead of the system output. This is 

illustrated in Fig. 6. 

 

( )y t + 1

( )u t
Plant

DD

D

( )r t + 1

Inverse Model
Controller

 

Fig. 6. Direct inverse control 

5. Simulation and results 

The first step is to collect training data from the real plant, which is a three phase squirrel-
cage induction motor with the following ratings: 380V, 50Hz, 4-pole, 0.1kW, 1390rpm, and is 
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Y-connected. That was carried out by using a data acquisition card to interface the induction 
motor and the inverter and its inputs and outputs to the computer. A voltage signal is to be 
sent to the frequency inverter which changes the three phase lines frequency into a new 
signal with different frequency to drive the induction machine speed. That was the input 
signal. The output signal is taken from a tachometer connected directly to the rotor shaft 
and back to the interfacing data acquisition card as the speed signal. Figure 7 shows the 
overall experimental system setup. 
 

Frequency

Inverter

Interfacing Data

Aquisition Card

Tachometer

Induction

Motor

Computer

Motor

 

Fig. 7. The experimental work 

5.1 Results of system identification 

The input data set is designed to be a PRBS signal chosen randomly, both in amplitude and 
frequency, to fully excite the whole speed range which allows the network to recognize the 
overall system’s behaviour. In addition, the sampling time is made to be 40 times smaller 
than the settling time of the system to obtain more accurate model and avoid aliasing 
problems. The input-output data set is shown in Fig. 8. The data set will be divided into two 
sets; a network training set and a model validation set. 
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Fig. 8. The input-output  data set 
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Since the system is a single-input single-output nonlinear system, this work uses a second 
order NARX model. This means that the regressor vector is as follows: 

 ( ) ( ) ( ) ( ) ( )1 , 2 , 1 , 2t y t y t u t u tϕ = ⎡ − − − − ⎤⎣ ⎦  (28) 

The network structure is a two-layer hyperbolic tangent sigmoidal feed-forward 

architecture (one hidden layer with a tanh activation function and one output layer with a 

linear activation function). The weights for both hidden layer and output layers are initially 

randomized around the values of -0.5 and +0.5 before the training. This is useful so that the 

training would fall in a global minima rather than a local minima (Patterson, 1996). 

Too many hidden neurons can cause the over-fitting, while too few neurons cause the 

under-fitting (Patterson, 1996). Moreover, a big network (many neurons) causes the training 

process to become very slow. The training showed good results when a five hidden neurons 

is used and 3000 samples are used as a training set. During each back propagation iteration 

the Sum of Squared Errors (SSE) are computed and compared to an error criteria α , i.e. 

 ( ) ( ) 2

1

ˆ
N

i

SSE y t y t α
=

= ⎡ − ⎤ <⎣ ⎦∑  (29) 

 
The SSE decreased gradually during the training process until it is within the criteria 
threshold after approximately 370 iterations. To test whether the network can produce the 
same output as the plant or not, and considering the over-fitting problem, the output 

( )ˆ |y t θ  of the model will be compared with the plant output ( )y t  to calculate the residuals 

( ) ( ) ( )ˆ |t y t y tε θ= − . The results of applying both training and validation data sets are 
shown in Table 1. 
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Fig. 9. The Sum Squared Error during the training process 
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Residual Statistics Training data set Validation data set 

Mean Square NSε  42.869 10−⋅  42.936 10−⋅  

Maximal Absolute Value NMε  2.9692%  3.0286%  

Table 1. Residual Analysis 

From the table we can see that there are only small differences in the residual statistics 
between the training data set and the validation data set. Thus the inequality of Eq. (21) is 
satisfied. However, one should check the correlation M

Nξ  between the residuals ( ),tε θ  and 
past inputs ( ) ( )1 , ,u t u t m− −A  because the residual statistics are not enough to judge the 
quality of the network model. This is done by constructing the past input vector and then 
calculating the correlation function.  
The correlation results are shown in Fig. 9, where it can be seen that the auto-correlation of 

the residuals lies within the 99% confidence limits which gives a strong indication that the 

model is acceptable. Furthermore, we can see that the cross correlation between the past 

inputs and the residuals lies between the 99% confidence limits also.  
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Fig. 9. Correlation Analysis of the Validation Data Set 

5.2 Results of inverse training and control  

As mentioned earlier, it is clear that the plant is a single-input single-output (SISO) system. 

First the regressors are chosen based on inspiration from linear system identification. The 

model order was chosen as a second order which gave us good results. Clearly, the input 

vector to the network contains two past plant outputs and two past plant inputs. 

 ( ) ( ) ( ) ( )1 , 2 , 1 , 2NZ y t y t u t u t= ⎡ − − − − ⎤⎣ ⎦  (30)  

The network structure is a two layer hyperbolic tangent sigmoidal feed-forward architecture 
(one hidden layer with a tanh activation function and one output layer with a linear 
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activation function). The network weights are initially randomised  around the values -0.5 
and +0.5 before the training. 

The back-propagation training showed good results when using a network structure with 

two layer feed forward architecture neuron and 3000 samples as a training set.  The network 

architecture contains one hidden layer with a hyperbolic tangent (tanh) activation function 

and one output layer with a linear activation function. The hidden layer consists of six 

hidden neurons while the output layer consists of one neuron. The results of the inverse 

plant model training algorithm is shown in Fig. 10 where α  is chosen as 1.  
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Fig. 11. Speed error due to a step reference signal 
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The final step after obtaining the inverse model is to implement the controller. The same 

setup of Fig. 7 is used to control the speed of the motor. First, to check the controller 

performance, a step input signal with the value of 1390rpm is fed to the system. The 

resulting response and error between the reference signal and the measured output speed  
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Fig. 12. Speed error due to a step reference signal 
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are illustrated in Figs. 11 and 12 respectively. It can be seen from Fig. 12 that the speed of the 
induction motor followed the reference signal with an acceptable steady state error equals to 
0.2878%. The results of Figs. 11 and 12 also show a maximum overshoot of less than 13%. 
To investigate the tracking capabilities of the system, different reference signals were fed to 

the controller and its performance is examined. The following real time tests will explore 

 

0 2 4 6 8 10 12 14 16
0

500

1000

1500

Time  [seconds]

S
p

e
e

d
 [
rp

m
]

S ine  Wave Reference  and S peed Response  of Direct Inve rse  Control Scheme .Speed Response to Sine-wave Reference Signal

S
p
e
e

d
 [
rp

m
]

Time [sec]  

Fig. 14. System response to a sine wave reference signal 
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Fig. 15. System response to a saw-tooth wave reference signal 
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the response to three different types of speed reference signals; square wave (Fig. 13), sine 

wave (Fig. 14), and saw-tooth wave (Fig. 15) reference signals. In addition, the steady state 

errors are recorded in Table 2. 

 
 

Reference Signal Min. Error Max. Error 

Square wave 0.31%−  0.56%+  

Sine wave 0.43%−  1.00%+  

Saw-tooth wave 0.65%−  0.29%+  

Table 2. Steady state errors analysis for different reference signal types 

 

The previous figures suggest that the direct inverse model control scheme can track changes 

in the reference signal while maintaining good performance. 

Next, to test the system under disturbances in the form of load torque conditions, a step 

reference signal representing 1390 rpm is fed to the system while a load torque step signal of 

2 N.m (which is the full load) is applied to the shaft during the period of 4 to 8 seconds. The 

results are shown in Fig. 16. It can be seen from the figure that the direct inverse controller 

could recover the disturbance caused by the applied load torque. The induction motor speed 

followed the reference signal in a short time. 

 

 

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

1400

1600

Time  [seconds]

S
p

e
e

d
 [
rp

m
]

S peed Response  when Applying a  Load S igna l Under Direct Inverse  Control S cheme.Speed Response under Applied Load Torque

S
p
e
e

d
 [
rp

m
]

Time [sec]  
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6. Conclusion 

In this chapter, the nonlinear black box modelling for an induction motor is carried out 

using the back propagation training algorithm. Half of the experimentally collected data 

was employed for ANN training and the other half was used for model validation. 

Applying the validation tests, the network model could pass the residual tests and the cross 

correlation tests resulting into a simple yet a highly accurate model of the induction motor. 

The same method was then used to model the inverse model of the system. The real time 

implementation for the direct inverse neural network based control scheme has been 

presented and its performance has been tested over different types of reference signals and 

applied load torque. The controller tracked the given reference speed signals and overcame 

the applied load torque disturbance demonstrating the strong capabilities of artificial neural 

networks in nonlinear control applications. 
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