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Artificial Neural Network – Possible  
Approach to Nonlinear System Control 

Jan Mareš, Petr Doležel and Pavel Hrnčiřík 
Institute of Chemical Technology, Prague 

&University of Pardubice, Pardubice 
Czech Republic 

1. Introduction  

Artificial Neural Networks (ANN) have traditionally enjoyed considerable attention in 
process control applications. Thus, the paper is focused on real system control design using 
neural networks. The point is to show whether neural networks bring better performances 
to nonlinear process control or not. 
Artificial Neural Network is nowadays a popular methodology with lots of practical and 

industrial applications. As introduction, some concrete examples of successful  application 

of ANN can be mentioned, e.g. mathematical modeling of bioprocesses [Montague et al., 

1994], [Teixeira et al., 2005], prediction models and control of boilers, furnaces and turbines 

[Lichota et al., 2010] or industrial ANN control of calcinations processes, or iron ore process 

[Dwarapudi, et al., 2007]. 

Specifically in our paper, the aim is to explain and describe usage of neural network in the 

case of nonlinear reactor furnace control. 

2. Controlled system 

Real system (controlled plant) is a reactor furnace, which is significantly nonlinear system. 

Furnace is an equipment of the research laboratory of the Department of Physical Chemistry 

at the University of Pardubice, Czech Republic.  

Reactor furnace is used for research of oxidation and reduction qualities of catalyzers under 

different temperatures by controlled heating of the reactor (where the chemical substance is 

placed). The temperature profile of the reactor is strictly defined. It is linear increasing up to 

800 °C, then keeping the constant value of 800 °C till the end of the experiment. The difference 

between the setpoint and controlled variable (furnace temperature) has to be less than 10 °C.  

The basic premise is so strict, that it is not possible to use standard control techniques as PID 
controller. Thus, an artificial neural network represents one of the available techniques for 
overcoming this obstacle. 

2.1 System description 

Reactor furnace base is a cored cylinder made of insulative material, described in [Mareš et 

al., 2010a].  On the inner surface there are two heating spirals (powered by voltage 230 V). In 
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the middle of the cylinder there is a reactor. The reactor temperature is measured by one 

platinum thermometer (see Figure 1).  
 

 

Thermocouple 

 

Fig. 1. Reactor furnace chart 

The system is a thermal process with two inputs (spiral power and ambient temperature) and 

one output (reactor temperature). Thus, the controlled variable is the reactor temperature and 

the manipulated variable is the spiral power with the ambient temperature as measured error. 

The plant is significantly nonlinear system. Nonlinearity is caused by heat transfer 

mechanism. When the temperature is low, heat transfer is provided only by conduction. 

However, when the temperature is high, radiation presents an important transfer principle. 

2.2 Nonlinear model 

Nonlinear mathematical model of reactor furnace consists of four parts. Differential 

equations describing isolation, heating spiral, inner space and reactor were derived. 

Because variables changes along devices dimension are irrelevant, process behavior can be 

considered as a lumped system. 

Nonlinear mathematical model is possible to describe by equations (1) to (4), more in [Mares 

et al., 2010a].  

Isolation 
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Spiral 
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Inner space 
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Reactor 

 4 4 4 4
1 4. .( ) . .( ) . .( ) . . D

CD CD C D B D A D D D

PDaCD

dT
S T T S T T S T T m c

dt
α σ σ− + − + − = '()'*(*)  (4) 

where 
A is isolation 
B is spiral 
C is inner space 
D is reactor 

ijα  ,J.K-1.m-2.s-1, is transfer coefficient between i and j 

ijS  , m2, is surface of contact between i and j 

S1,S ,S3,S4 are surfaces of reactor, isolation inside and outside surface of the furnace 
mi , kg, is weight of i 
β , K-1, is spiral temperature coefficient  
ci , J.K-1.kg-1, is capacity of i 
σ , J.K-4.m-2.s-1, is Stefan-Bolzmann constant 

From the model it is evident that the system is strongly nonlinear and very difficult to 

control. Thus complex techniques are necessary to use. 

3. Control techniques 

Several control techniques with neural network were chosen, applied and compared to 

classical ones. One of the objectives is to find out whether control techniques with neural 

networks bring any improvement to control performances at all. Brief description of the 

applied techniques is given below. 

3.1 Internal model control 

Standard internal model control (IMC) is technique closely connected to direct inverse control 

which brings some limitations to system to be controlled. On the other side, IMC has some 

convenient features, e.g. it is able to cope well with output disturbances. The concept of IMC is 
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presented in [Rivera et al., 1986]. IMC for nonlinear systems is introduced in [Economou et al., 

1986] and IMC with neural networks is described e.g. in [Norgaard et al., 2000]. 
 

Inverse 
Neural 
Model
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Model
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yM

wS

v

Filter
Inverse 
Neural 
Model

u
Plant

Forward 
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yS

yM

wS

v

Filter

 

Fig. 2. Internal model control scheme 

Internal model controller requires a forward model as well as an inverse model of the system 

to be controlled. Both models are replaced with adequate neural network model - design of 

both models is described in [Nguyen et al., 2003]. Then, control loop can be put together – see 

Fig. 2, where wS, u, v, yS, and yM are reference variable, control signal, output disturbance, 

control variable and forward model output. It can be shown, that equation (5) is valid in case 

of ideal inverse and forward neural model. In some cases, filtering can be applied ahead of 

inverse controller to smooth reference variable to eliminate negative influence of sudden 

changes. In the case of linear continuous-time IMC, filter usage is essential. 

 1 0S Sy w v= +  (5) 

The equation above is unattainable in real processes but can be approximately approached if 
discrete neural models are used. 
In section 4.3, control experiments with neural models of linear IMC as well as IMC with 
neural models are demonstrated 

3.2 Predictive control 

Predictive control is used in two variants. The first one is typical Model Predictive Control 
and the second one is Neural Network Predictive Control. 

3.2.1 Model predictive control 

Model predictive control (MPC) is widely used technique for process control in industry, 
where better control performance is necessary. MPC is a general strategy which comes from 
the process model, therefore MPC controllers are truly-tailor-made.  The working principle 
is briefly described in this chapter (the description is not in general, but only for SISO 
systems), more in [Camacho, 2007].  
The mathematical model of the controlled system is assumed in the form of equation (6). 

 1 1 1( ) ( ) . ( ) ( 1) ( ) ( )dA z y k z B z u k C z e k− − − −= − +  (6) 
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where A, B, C are polynomials, y(k) is model output, u(k) is model input e(k) is output error. 
The model without errors and without output delay is supposed, therefore C(z-1) = 0 a d = 0. 
Then it is possible to rewrite (6) to the form of (7).  

 1 1( ) ( ) ( ) ( 1)A z y k B z u k− −= −  (7) 

The model is used for the calculation of future output prediction. There are several different 
methods how to calculate it. One of the simplest ways (using the inverse matrix) is 
described in this chapter.  
The prediction of N steps is possible to write by the set of equations (8). 
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In matrix form it is possible to write 
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Output prediction y(k+i) is possible to calculate by multiplying the equation (9) by the 

inverse matrix A -1, equation (10). 

( 1) ( ) ( 1) ( )

( 2) ( 1) ( 2) ( 1)

( ) ( 1) ( ) ( )
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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+ + − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1A B A B A A# #
B B B B  (10) 

Because the last two terms describe only the system history, it is possible to put them 

together to the matrix F and the vector of historical output and input [ ]T=h y u . Thus, it is 

possible to rewrite the equation of prediction to the form of equation (11). 

 = +y Gu Fh  (11) 

 

The aim of MPC is to calculate the vector of manipulated variable by minimizing the cost 

function (12), described in [Baotic, 2006]. 

 . . .T T
N NJ λ= +e e u u  (12) 

 

where e is vector of control errors (length N), u is vector of manipulated variables (length N) 

and λ is weighting coefficient. 

The cost function can be modified using output prediction (10) and set point vector w. 

 ( ) ( ) .TJ λ= − − − − + Tw G.u F.h w G.u F.h u .u  (13) 

 

It is possible to calculate the vector of manipulated variable u analytically using the square 

norm, equation (14). 

 λ −= + −.(w F.h)T 1 T
u (G .G .I) .G  (14) 

Only one actual value of the manipulated variable (the first element of the vector) is needed, 

therefore the final form of the control law is equation (15). 
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3.2.2 Method modification 
GPC theory is formulated in detail for the group of linear systems but in the case of 
nonlinear systems it is not possible to use it because linear models are not able to describe 
nonlinear processes well enough. Nonlinear process control needs better description using 
piecewise linearized model. 
In the case of linearized MPC several points where the linearization is done are chosen and 
for each point controller setting (matrices G and F) is pre-calculated. Then the controller 
switches between pre-calculated settings during control experiment (according to actual 
reactor temperature) and it is possible to interpolate between two adjoining settings. Thus, 
nonlinear behavior of the system is substituted by piecewise linearized model, more in 
[Mares et al., 2010b]. 
Control law can be transformed to equation (16). 
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 (16) 

where vector K is the same as in equation (14) and vector F is product of matrices K and F 
multiplying. Interpolation is the main reason of multiplying (it is simpler to interpolate 
between vectors than matrices). 
The whole algorithm can be written as: 
1. Pre-control 

fill the data history 

 calculate vectors TLIN, KLIN and LINF  

2. Control 
a. measure actual temperature 

b. choose the interval KTi KTi+1 and TiF a 1Ti+F  

c. using interpolation calculate vectors K a F for the control law 
d. calculate the actual value of manipulated variable u  

e. actualize the data history 
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Vectors TLIN, KLIN and LINF are defined as 
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3.2.3 Neural network predictive control 
There are several variations of neural network predictive controller. This approach uses a 
neural network model of nonlinear plant to predict future plant performance. The controller 
then calculates the control input that will optimize plant performance over a specified future 
time horizon. 
The first stage of neural network predictive control is to design a neural network which 
represents the dynamics of the plant. The prediction error between the plant output and 
neural network output is used as the neural network training signal [Nguyen et al., 2003]. 
Obtained neural network predicts the plant response over a specified time horizon. The 
predictions are used by some search technique to determine the control signal that 
minimizes the following performance criterion over the specified horizon N 

 . . .T T
N NJ λ= + Δ Δe e u u  (17) 
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Fig. 3. Neural network predictive control 

where e is vector of control errors and Δu is vector of controller outputs differences in time. 
The following figure illustrates the neural network predictive control process. The controller 
consists of the neural network plant model and the optimization block. The optimization 
block determines the values of u’ that minimize the criterion J and the optimal u’ is input to 
the plant. 
In section 4.4, experimental results of typical Model Predictive Control performance are 
compared to Neural Network Predictive Control ones. 

3.3 Discrete controller tuning online 
This technique amplifies the basic feedback control loop. It aims to tune any discrete controller 
online. For this purpose the knowledge of the controlled system model (e.g. neural model) and 
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reference variable course over known future finite horizon is necessary. Based on this, the 
parameters of any chosen discrete controller are determined repeatedly every discrete time 
instant so that the control response computed via the neural model over future horizon is 
optimal (according to chosen performance criterion). Simplified scheme is depictured in Fig. 4. 
The search of discrete controller parameters has to run repeatedly in every single step of the 
sampling interval, which puts great demands on computing time of the search algorithm. 
Naturally, usage of some iterative optimization algorithm with only one iteration realization 
every time instant is suggested. Gradient descent techniques seem inconvenient because of 
neural model usage. Neural model is black-box-like model so it is not possible to determine 
gradient descent analytically. On the other hand, evolutionary search techniques (genetic 
algorithm, differential evolution, … see [Coello et al., 2002]) appear to be suitable because 
these techniques do not require any particular information about search problem. The other 
indisputable advantage is its operating principle. In each iteration, evolutionary search 
techniques explore not only one value of input variables but whole set of them (one 
generation of individual solutions), which lowers significantly troubles with initial 
parameters random choice. In this particular case, differential evolution is chosen. The 
reasons are, among others, that differential evolution works with decimal input values 
(contrary to genetic algorithm) and population of possible solutions is kept more diversified. 
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model
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ym(j)u'(j)

u(k)
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y(k)
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w(k)

y(k)
Controller

j = k ... k+N-1  

Fig. 4. Controller tuning online using neural network 

The control method which is described here does not require any special form of discrete 
controller. According to some experiments [Dolezel et al., 2009a], [Dolezel et al., 2009b], 
controller form 

 0 1 2 3( ) ( ) ( ) ( 1) ( 2) ( 1)u k p w k p y k p y k p y k u k= − − − − − + −  (18) 

was considered to be convenient. For some p0 …  p3 parameters combinations, controller (18) 
acts like discrete PID controller. In general, however, it has one additional independent 
parameter. Suitable control performances can be obtained by well-tuned controller (18). 
Because of the evolutionary algorithm, cost function can be selected from huge number of 
possibilities. One of suitable definitions is 
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−
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where Δu(i) = u(i) - u(i-1), e(i) is control error, h1 is function parameter influencing 
manipulated variable differences, h2 is function parameter influencing the state on the end of 
future horizon, N is future horizon length and w(i) is reference variable. 
Note that definition (19) can be changed in order to get any particular control performance. 
The whole algorithm of the above described control method is compiled in the following 
points: 
1. Create dynamical neural model of controlled system – see [Nguyen, 2003] 
2. Choose future horizon length N 
3. Choose differential evolution parameters (number of individual solutions in one 

generation NP – any solution represents one particular quaternion of controller 
parameters p0 …  p3, crossover constant CR, mutation constant F) and their initial values 

4. Measure controlled variable y(k) 
5. Perform one iteration of differential evolution (based on the knowledge of controlled 

variable y(k), course of its reference w(k) till w(k+N-1) and neural model of controlled 
system)  

a. perform control simulation with discrete controller and the neural model over future horizon N 
and evaluate cost function for all the individual solutions from current generation 

b. Apply cross-over and mutation (see [Coello et al., 2002]) so that offspring generation of 
solutions is bred 

c. Evaluate cost functions of offspring (see step a)) 
d. Choose the best individual solution from the offspring generation 
6. Evaluate manipulated variable u(k) with discrete controller determined by the best 

individual solution obtained in step 5d) 
7. k = k +1, go to step 4 

4. Experimental results 

4.1 Dynamical neural model of the plant 
Control techniques described above need neural plant model to be designed. In [Nguyen, 
2003], whole algorithm of neural model design is presented in detail. First, a training set of 
process data is to be measure. For this purpose, a simple control experiment with reactor 
furnace and PI controller is performed – see Fig. 5. 
Data (sampling interval 3s) are slotted according to Table 1 so that neural network 
corresponds to difference equation (20) 

 ( ) [ ( 1), ( 2), ( 1), ( 2)]M M M
D D DT k T k T k E k E kϕ= − − − −  (20) 

Input Output 

TD
M(k-1) TD

M (k-2) E(k-1) E(k-2) TD
M(k) 

TD
M(2) TD

M(1) E(2) E(1) TD
M(3) 

TD
M(3) TD

M(2) E(3) E(2) TD
M(4) 

… … … … … 

TD
M(N-1) TD

M(N-2) E(N-1) E(N-2) TD
M(N) 

Table 1. Training set 1 

It is possible to choose higher order of difference equation (20), but after many experiments, 
second order seems convenient. Formal scheme of the neural model can be found in Fig. 6. 
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Fig. 5. Control performance with PI controller – Training set experiment 
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Fig. 6. Formal scheme of the neural model 

Now, topology of the neural network has to be optimized. Several neural networks with 
different number of hidden neurons were trained (Levenberg-Marquardt Algorithm was 
used) and cost function courses are depictured in Fig. 7. 
For control experiments neural model with network of 4-6-1 topology is chosen, because 
networks with more complex topologies do not bring considerably improved performances. 
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Fig. 7. Topology optimizing I 

4.2 Inverse neural model of the plant 
For IMC control an inverse plant model is needed. Inverse neural model control design is 
formally the same as feedforward model, the only difference is, that data of training set has 
to be slotted in another way. Inverse difference equation of equation (20) can be obtained by 
actual input-actual output interchanging – equation (21).  

 ( 1) [ ( ), ( 1), ( 2), ( 2)]M M M
D D DE k T k T k T k E kϕ− = − − −  (21) 
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Input Output 

TDM(k) TDM(k-1) TDM (k-2) E(k-2) E(k-1) 

TD
M(3) TD

M(2) TD
M(1) E(1) E(2) 

TD
M(4) TD

M(3) TD
M(2) E(2) E(3) 

… … … … … 

TD
M(N) TD

M(N-1) TD
M(N-2) E(N-2) E(N-1) 

Table 2. Training set 2 

Equation above lacks time causality. However, it can be used to training set slotting – see 
Table 2. 
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Fig. 8. Topology optimizing II 
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Topology is optimized as well as in section 4.1. Cost function courses are depictured in 

Fig. 8. Now, inverse neural model with 4-10-1 topology is chosen. 

4.3 Neural internal model control 

If both feedforward and inverse neural models are designed, control loop can be put 

together – see Fig. 9. 
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Fig. 9. Reactor Furnace controlled using Neural IMC 

Control response for the desired plant output course is shown below compared to response 

obtained by classical IMC (for linear model design, same data is used). 

For ramp as reference, reactor temperature courses are similar for both control techniques 

(in addition, control response with classical IMC is smoother), so for reactor furnace control, 

it is no need to extend classical IMC technique with neural networks. 
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Fig. 10. Neural IMC control response 
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Fig. 11. Classical IMC control response 

4.4 Neural network predictive control 

As shown in section 3.2.3, only feedforward neural model of the plant is needed for neural 
network predictive control. Control experiment is performed according to section 3.2.3 with 
golden section search routine [Fletcher, 1987], prediction horizon N = 20 and weighting 
coefficient λ = 0.1. Control response is shown in Fig. 12. 
Alternatively, control response gained by piecewise linearized model predictive controller 
(the same prediction horizon and weighting coefficient – see section 3.2.1 and 3.2.2) is 
plotted in Fig. 13. It is obvious that neural network predictive controller provides less 
suitable controlperformance. However, it has to be mentioned, that neural network 
predictive controller is much simpler to design than piecewise linear model predictive 
controller. 
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Fig. 12. Neural Network Predictive control response 
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Fig. 13. Piecewise Linearized Model Predictive control response 

4.5 Discrete controller tuning online 

Control loop of this technique is connected in a way introduced briefly in section 3.3. 

Differential evolution is chosen as search technique. After some experiments, eligible 

parameters are chosen this way: NP = 30; CR = 0.85; F = 0.6; N = 20. Cost function is selected 

according to Eq. (19), where h1 = 0.1, h2 = 0.01. Control response is depicted in Fig. 14. 

There is no exact alternative in classical control theory to this technique. However, in a 

certain way it is close to predictive control, therefore it can be compared to Fig. 13. 

It is remarkable, that control response shown in Fig. 14 provides the most suitable 

performance of all experiments. But, on the other hand, it is highly computationally 

demanding technique. 
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Fig. 14. Discrete controller tuned online 

5. Conclusion 

The aim of this work was to design a controller, which provides control performance with 
control error less than 10°C. Because of the nonlinearity of the plant, two groups of 
advanced control techniques were used. The first group is based on artificial neural 
networks usage while the second one combines their alternatives in modern control theory. 
Generally speaking, neural networks are recommended to use when plant is strongly 
nonlinear and/or stochastic. Although reactor furnace is indispensably nonlinear, it is 
evident that control techniques without neural networks can control the plant sufficiently 
and in some cases (especially predictive control and internal model control) even better. 
Thus, neural network usage is not strictly necessary here, although especially Discrete 
Controller Tuning Online brings extra good performance. 
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