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Application of ANN to Real and  
Reactive Power Allocation Scheme 

S.N. Khalid, M.W. Mustafa, H. Shareef and A. Khairuddin 
Universiti Teknologi Malaysia  

Malaysia 

1. Introduction      

This chapter describes the implementation of ANN for real and reactive power transfer 
allocation. The 25 bus equivalent power system of south Malaysia region and IEEE 118 bus 
system are used to demonstrate the applicability of the ANN output compared to that of the 
Modified Nodal Equations (MNE) which is  used as trainers for real and reactive power 
allocation. The basic idea is to use supervised learning paradigm to train the ANN. Then the 
descriptions of inputs and outputs of the training data for the ANN are easily obtained from 
the load flow results and each method used as teachers respectively. The proposed ANN 
based method provides promising results in terms of accuracy and computation time. 
Artificial intelligence has been proven to be able to solve complex processes in deregulated 
power system such as loss allocation. So, it can be expected that the developed methodology 
will further contribute in improving the computation time of transmission usage allocation for 
deregulated system.     

2. Importance of deregulation 

Deregulated power systems unbundles the generation, transmission, distribution and retail 
activities, which are traditionally performed by vertically integrated utilities. Consequently 
different pricing policies will exist between different companies. With the separate pricing of 
generation, transmission and distribution, it is necessary to find the capacity usage of different 
transaction happening at the same time so that a fair use-of-transmission-system charge can be 
given to individual customer separately. Then the transparency in the operation of 
deregulated power systems can be achieved. In addition, the capacity usage is another 
application for transmission congestion management. For that reason the power produced by 
each generator and consumed by each load through the network should be trace in order to 
have acceptable solution in a fair deregulated power system. In Malaysian scenario the future 
electricity sector will be highly motivated to be liberalized, i.e. deregulated. Thus the proposed 
methodology is expected to contribute significantly to the development of the local 
deregulated power system. Promising test results were obtained from the extensive case 
studies conducted for several systems. These results shall bring about some differences from 
those based on other methods as different view-points and approaches may end up with 
different results. This chapter is offering the solution by an alternative method with better 
computational time and acceptable accuracy. These findings bring a new perspective on the 
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subject of how to improve the conventional real power allocation methods. A technically 
sound approach, to determine the real power output of individual generators, is proposed. 
This method is based on current operating point computed by the usual laod flow code and 
basic equations governing the load flow in the network. The proposed MNE method has also 
been extended to reactive power allocation. The simulation results have also shown that of 
reactive power supply and reception in a power system is in conformity with a given 
operating point. The study results and analysis suggest that, the proposed MNE Method 
overcome problems arising in the conventional reactive allocation algorithms. From these two 
methods, the calculations results might bring about some differences because of the deviation 
in the concept applied by the proposed method. For example the proposed methods use each 
load current as a function of individual generators’ current and voltage. This is different from 
the Chu’s Method (Chu & Liao, 2004), where each load voltage is represented as a function of 
individual generators’ voltage only. The proposed MNE Method for reactive power allocation is 
enhanced by utilizing ANN. When the performances of the developed ANN are investigated, it 
can be concluded that the developed ANN is more reliable and computationally faster than that 
of the MNE Method. Furthermore, the developed algorithms and tools for the proposed 
techniques have been used to investigate the actual 25 bus system of South Malaysia. The 
proposed methods have so far been focused on the viewpoint of suppliers. It is also very 
useful to develop and test the allocation procedures from the perspective of consumers. Both 
MNE Method and Chu’s Method are equally suitable for modification in this respect. 
Additionally, this technique requires handling of future expansions into an ANN structure to 
make it a universal structure. Moreover adaptation of appropriate ANN architecture for the 
large real life test system is expected to deliver a considerable efficiency in computation time, 
especially during training processes. It may be a future work to analyze the performance of the 
algorithm for every change in the network topology. 

3. Modified nodal equations method 

The derivation, to decompose the load real powers into components contributed by specific 
generators starts with basic equations of load flow. Applying Kirchhoff’s law to each node 
of the power network leads to the equations, which can be written in a matrix form as in 
equation (1) (Reta & Vargas, 2001): 

 =I YV  (1) 
where: 
       V: is a vector of all node voltages in the system 
        I: is a vector of all node currents in the system 
       Y: is the Y-bus admittance matrix 
The nodal admittance matrix of the typical power system is large and sparse, therefore it can 
be partitioned in a systematic way. Considering a system in which there are G generator 
nodes that participate in selling power and remaining L= n-G nodes as loads, then it is 
possible to re-write equation (1) into its matrix form as shown in equation (2): 

  
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G GG GL G

L LG LL L

I Y Y V

I Y Y V

 (2) 

Solving for IG and IL using equation (2), the relationship can be obtained as shown in 
equations (3) and (4). 
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 = +
G GG G GL L

I Y V Y V  (3) 

 = +
L LG G LL L

I Y V Y V  (4) 

From equation (3), VG can be solved as depicted in equation (5): 

 ( )1−= −
G GG G GL L

V Y I Y V  (5) 

Now, on substituting equation (5) in equation (4) and rearranging it, the load currents can 
be presented as a function of generators’ current and load voltages as shown in equation (6): 

 ( )1 1− −= + −
L LG GG G LL LG GG GL L

I Y Y I Y Y Y Y V  (6) 

Then, the total real and reactive power SL of all loads can be expressed as shown in equation (7): 

 ∗=
L L L

S V I  (7) 

where ( ∗ ) stands for conjugate,  
Substituting equation (6) into equation (7) and solving for SL   the relationship as shown in 
equation (8) can be found; 
 

( ) ( )( )
*

* *1 1  − −= + −
L L LG GG G L LL LG GG GL L

S V Y Y I V Y Y Y Y V

( )( )*
* 1

1

Re  −

=

⎧ ⎫⎪ ⎪= Δ + −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ Gi

nG
I

L L LL LG GG GL LL

i

V I V Y Y Y Y V

(8) 

where 

( ) *1

1

 − ∗ ∗

=
= Δ∑ Gi

nG
I

LG GG G L

i

Y Y I I  

nG : number of generators 
Now, in order to decompose the load voltage dependent term further in equation (8), into 

components of generator dependent terms, the equation (10) derivations are used. A 

possible way to deduce load node voltages as a function of generator bus voltages is to 

apply superposition theorem. However, it requires replacing all load bus current injections 

into equivalent admittances in the circuit. Using a readily available load flow results, the 

equivalent shunt admittance YLj of load node j can be calculated using the equation (9): 

 
1 Lj

Lj
Lj Lj

S
Y

V V

∗
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (9) 

SLj is the load complex power on node j and VLj is the bus load voltage on node j. After 

adding these equivalences to the diagonal entries of Y-bus matrix, equation (1) can be 

rewritten as in equation (10): 

 ' 1−=
G

V Y I  (10) 
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where '
Y is the modified Y.  

Next, adopting equation (10) and taking into account each generator one by one, the load 
bus voltages contributed by all generators can be expressed as in equation (11): 

 *

1=

= Δ∑ Gi

nG
I

L L

i

V V  (11) 

It is now, simple mathematical manipulation to obtain required relationship as a function of 
generators dependent terms. By substituting equation (11) into equation (8), the 
decomposed load real and reactive powers can be expressed as depicted in equation (12): 

 ( )( )** * 1

1 1

 −

= =

= Δ + Δ −∑ ∑Gi Gi

nG nG
I I

L L LL LG GG GL LL L

i i

S V I V Y Y Y Y V  (12) 

This equation shows that the real and reactive power of each load bus consists of two terms 
by individual generators. The first term relates directly to the generator’s currents and the 
second term corresponds to their contribution to load voltages. With further simplification 
of equation (12), the real and reactive power contribution that load j acquires from generator 
i is as shown in equation (13): 

 
1 1

L L

nG nG
I V

Lj Lji Lji
i i

S S SΔ Δ

= =

= +∑ ∑  (13) 

where: 

L
ji

I
LSΔ : current dependent term of generator i to SLj  

LV
LjiSΔ : voltage dependent term of generator i to SLj 

All procedures of the computation mentioned above can be demonstrated as a flowchart 
illustrated in Figure 1. Vector SLj  is used as a target in the training process of the proposed 
ANN.  

3. Test conducted on the practical 25-bus equivalent power system of south 
Malaysia region 

3.1 Application of ANN to real and reactive power allocation method  

This section presents test conducted on the practical 25-bus equivalent power system of 
south Malaysia region. An ANN can be defined as a data processing system consisting of a 
large number of simple, highly interconnected processing elements (artificial neurons) in an 
architecture inspired by the structure of the cerebral cortex of the brain (Tsoukalas & Uhrig, 
1997). The processing elements consist of two parts. The first part simply sums the weighted 
inputs; the second part is effectively a nonlinear filter, usually called the activation function, 
through which the combined signal flow. These processing elements are usually organized 
into a sequence of layers or slabs with full or random connections between the layers. 
Neural network perform two major functions which are training (learning) and testing 
(recall). Testing occurs when a neural network globally processes the stimulus presented at 
its input buffer and creates a response at the output buffer. Testing is an integral part of the 
training process since a desired response to the network must be compared to the actual 
output to create an error function. 
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Start

Obtain load flow solution for the system to 

be studied

Partitions the system Y-bus matrix 

according to equation (2) 

Modify the diagonal elements of admittance 

matrix Y, to obtain Y’

End

Obtain load current as a function of the 

generators’ current and load voltages with 

equation (6)

Calculate the  real and reactive power 

contribution to loads by individual 

generator using equations (12) and (13) 

Obtain the total real and reactive power  SL

of all loads using equations (7) and (8) 

Calculate the equivalent admittance of each 

load bus with equation (9) 

Obtain the load bus voltages contributed by 

all generators with equation (11)

 

Fig. 1. Flow chart of the proposed real and reactive power allocation method 

3.1.1 Structure of the proposed neural network in real and reactive power allocation 
method 

In this work, 3 fully connected feedforward neural networks under MATLAB platform are 
utilized to obtain both real as well as reactive power transfer allocation results for the 
practical 25-bus equivalent power system of south Malaysia region as shown in Figure 2. 
This system consists of 12 generators located at buses 14 to 25 respectively. They deliver 
power to 5 loads, through 37 lines located at buses 1, 2, 4, 5, and 6 respectively. All 
discussions on designing of each of these ANN below are for this 25-bus equivalent system. 
Each network corresponds to four numbers of generators in the test system and each 
consists of two hidden layers and a single output layer. This means that in the first network 
is associated with four numbers of generator located at buses 14 to 17. This realization is 
adopted for simplicity and to reduce the training time of the neural networks. 
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Fig. 2. Single line diagram for the 25-bus equivalent system of south Malaysia 

The input samples for training is assembled using the daily load curve and performing load 

flow analysis for every hour of load demand. Again the load profile on hourly basis (Cheng, 

1998) is utilized to produce 24 hours loads here also. Similarly the target vector for the 

training is obtained from the proposed method using MNE. Input data (D) for developed 

ANN contains independent variables such as real loads (P1, P2, P4 to P6) or reactive loads 

(Q1, Q2, Q4 to Q6) for real and reactive power transfer allocation respectively, bus voltage 

magnitude (V1  to V13) for both real as well as reactive power, real power (Pline1 to Pline37) or  

reactive power (Qline1 to Qline37) for line flows of real and reactive power transfer allocation 

respectively, and the target/output parameter (T) which is real or reactive power transfer 

between generators and loads placed at buses 1, 2, 4 to 6. This is considered as 20 outputs for 

both real as well as reactive power transfer allocation. Hence the networks have twenty 

output neurons. For the neural network 1, the first five neurons represent the contribution 

from generator 14 to the loads and the remaining outputs neurons correspond to the other 

three generators located at buses 15 to 17 respectively. Tables 1 and 2 summarize the 

description of inputs and outputs of the training data for each ANN for real and reactive 

power allocation respectively. 

 

Input and Output (layer) Neurons Description (in p.u) 

I1 to I5 5 Real loads 

I6 to I18 13 Bus voltage magnitude 

I19 to I55 37 Real power for line flows 

O1 to O20 20 Real power transfer between generators and loads 

Table 1. Description of inputs and outputs of the training data for each ANN for real power 

www.intechopen.com



Application of ANN to Real and Reactive Power Allocation Scheme   

 

289 

Input and Output (layer) Neurons Description (in p.u) 

I1 to I5 5 Reactive loads 

I6 to I18 13 Bus voltage magnitude 

I19 to I55 37 Reactive power for line flows 

O1 to O20 20 Reactive power transfer between generators and loads 

Table 2. Description of inputs and outputs of the training data for each ANN for reactive 
power 

3.1.2 Training 

Neural networks are sensitive to the number of neurons in their hidden layer. Too few 
neurons in the hidden layer prevent it from correctly mapping inputs to outputs, while too 
many may impede generalization and increasing training time. Therefore number of hidden 
neurons is selected through experimentation to find the optimum number of neurons for a 
predefined minimum of mean square error in each training process. To take into account the 
nonlinear characteristic of input (D) and noting that the target values are either positive or 
negative, the suitable transfer function to be used in the hidden layer is a tan-sigmoid 
function. Non linear activation functions allow the network to learn nonlinear relationships 
between input and output vectors. Levenberg-Marquardt algorithm has been used for 
training the network. After the input and target for training data is created, next step is to 
divide the data (D and T) up into training, validation and test subsets. In this case 100 
samples (60%) of data are used for the training and 34 samples (20%) of each data for 
validation and testing. Table 3 shows the numbers of samples for training, validation and 
test data for real and reactive power allocation respectively.  
 

Data Types Number of Samples (Hour) 

Training 100 

Validation 34 

Testing 34 

Table 3. The number of samples for training, validation and test set  

The error on the training set is driven to a very small value i.e. 3.5× 10-8 . If the calculated 
output error becomes much larger than acceptable, when a new data is presented to the 
trained network, then it can be said that the network has memorized the training samples, but 
it has not learned to generalize to new situations. Validation sets is used to avoid this 
overfitting problem. The test set provides an independent measure of how well the network 
can perform on data not used to train it. In real power allocation scheme, the performance of 
the training for the ANN with two hidden layers having different number of neurons i.e. 15 
and 10 respectively is as shown in Figure 3. From Figure 3, it can also be seen that the training 
goal is achieved in 12 epochs with a mean square error of 8.897× 10-9. For reactive power 
allocation scheme, the performance of the training for the ANN is also made with two hidden 
layers having different number of neurons i.e. 10 and 15 respectively as shown in Figure 4. 
In this Figure 4 the training goal is achieved in 13 epochs with a mean square error of 
9.50128× 10-9. Note that the mean square error is not much different for both real as well as 
reactive power transfer allocation. This indicates that the developed ANN can allocate both 
real as well as reactive power transfer between generators and loads with almost similar 
accuracy. 
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Fig. 3. Training curve with two hidden layers having different number of  neurons i.e. 15 
and 10 respectively for real power allocations  
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Fig. 4. Training curve with two hidden layers having different number of  neurons i.e. 10 
and 15 respectively for reactive power allocations  

The result is reasonable, since the test set error and the validation set error have similar 
characteristics with the training set, and it doesn’t appear that any significant overfitting has 
occurred. The same network setting parameters is used for training the other 2 networks. 

3.1.3 Pre-testing and simulation 

After the networks have been trained, next step is to simulate the network. The entire 
sample data is used in pre testing. After simulation, the obtained result from the trained 
network is evaluated with a linear regression analysis. In real power allocation scheme, the 
regression analysis for the trained network that referred to contribution of generator at bus 
15 to load at bus 1 is shown in Figure 5. 
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Fig. 5. Regression analysis between the network output and the corresponding target for 
real power allocation 

The correlation coefficient, (R) in this case is equal to one which indicates perfect correlation 

between MNE Method and output of the neural network. The best linear fit is indicated by a 

solid line whereas the perfect fit is indicated by the dashed line. Subsequently, similar 

results is obtained on regression analysis for reactive power allocation method for the 

trained network that referred to contribution of generator at bus 14 to load at bus 2 as 

shown in Figure 6. 
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Fig. 6. Regression analysis between the network output and the corresponding target for 
reactive power allocation 

Finally, both real as well as reactive power contribution to loads is determined and 

compared with the MNE Method’s output. Daily load curves for every load bus are shown 

in Figures 7 to 8 and the target patterns for generator located at buses 14 and 22 are given in 

Figures 9 to 12. 
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Fig. 7. Real power allocation method daily load curves for different buses 
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Fig. 8. Reactive power allocation method daily load curves for different buses 
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Fig. 9. Selected target patterns of generator at bus 14 of real power allocation scheme within 
168 hours 
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Fig. 10. Selected target patterns of generator at bus 22 of real power allocation scheme 
within 168 hours 
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Fig. 11. Selected target patterns of generator at bus 14 of reactive power allocation scheme 
within 168 hours 

20 40 60 80 100 120 140 160
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Hour

C
o

n
tr

ib
u

ti
o

n
s 

o
f 

g
e

n
e

ra
to

r 
2

2
 t

o
 l

o
a

d
s 

(p
.u

)

Bus 1

Bus 2

Bus 4

Bus 5

Bus 6

 

Fig. 12. Selected target patterns of generator at bus 22 of reactive power allocation scheme 
within 168 hours  
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4. Real power allocation results for 25-bus test system 

At different loads, comparison of results of (Bialek, 1996) Method with the proposed method 
is as shown in Table 4. It is observed that, the results of proposed method is very much 
comparable with (Bialek, 1996) Method. Due to the different approach the difference of 
allocation factor lies between the results of proposed method and (Bialek, 1996) Method 
occurred at each load buses 1, 2, and 4 to 6. This difference does not exist i.e. zero 
contribution in the (Bialek, 1996). Method for about half count  buses while the proposed 
method distribute allocation factor to all load buses. The other difference of the proposed 
method is due to the use of basic system nodal equations which minimize the simplifying 
assumptions such as the proportional sharing and lossless network as considered in Bialek’s 
Method. From Table 4, it can also be observed that the sum of the real power contributed by 
each generator is in conformity with the solved load flow. In this system, (Bialek, 1996) 
Method and the proposed method can compute the required relationship with similar 
computation time i.e. within 46 msec. Hence, it is proven that the proposed methodology 
provides reasonable and acceptable results to real power transfer allocation as compared to 
(Bialek, 1996) Method. 
 
Supplied Load bus no. 

by Modified Nodal Equations Method Bialek's Method 

(MW) 1 2 4 5 6 1 2 4 5 6 

Gen-14 1.150 15.041 8.519 11.475 15.318 0 71.274 0 0 0 

Gen-15 1.150 15.041 8.519 11.475 15.318 0 71.274 0 0 0 

Gen-16 1.489 16.741 96.602 14.772 18.816 0 0 85.144 0 0 

Gen-17 1.456 16.257 93.268 14.388 18.307 0 0 82.090 0 0 

Gen-18 0.93393 10.786 7.210 9.402 12.027 2.181 0 16.593 21.805 13.444 

Gen-19 1.064 11.538 64.478 10.35 13.108 0 0 56.392 0 0 

Gen-20 0.97752 11.451 7.619 9.919 12.717 2.353 0 17.903 23.527 14.505 

Gen-21 1.343 17.026 9.602 13.087 17.626 0 19.446 0 0 51.670 

Gen-22 1.376 17.389 9.759 13.337 17.997 0 19.446 0 0 51.670 

Gen-23 1.376 16.756 11.011 14.275 18.408 3.586 0 27.292 35.863 22.111 

Gen-24 1.248 14.774 9.796 12.739 16.358 3.070 0 23.362 30.699 18.927 

Gen-25 1.554 18.643 12.308 15.982 20.564 3.931 0 29.912 39.306 24.234 

Total  
Load 

15.120 181.443 338.691 151.202 196.564 15.121 181.440 338.688 151.200 196.561 

Actual  
Load 

15.12 181.44 338.69 151.2 196.56 15.12 181.44 338.69 151.2 196.56 

Table 4. Comparison of the real power distribution by each generator to load at  buses 1, 2, 4 
to 6 for the practical 25-bus equivalent power system 

The proposed MNE Method has been simulated to reveal the accuracy of the developed 
ANN. The case scenario is that the real and reactive load is decreasing in 10% from the 
nominal trained pattern. Furthermore, it is also assumed that all generation is divided 
proportionally according to the load demands, to ensure that all real power generation of 
generator at buses 14 to 25 varies in respond to the daily load pattern of the loads at least by 
a small amount rather than to give the unbalance load only to the slack generator. Figure 13 
shows the real power transfer allocation results due to generator located at bus 14 by the 
ANN output along with the result obtained through to proposed method for loads at buses 
1, 2, and 4 to 6 within 168 hours. 
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Fig. 13. Distribution of real power from generator at bus 14 to loads within 168 hours 

Results obtained from the ANN output are indicated with lines having circles and the solid 
lines represent the output of the MNE Method. From Figure 13, it can be observed that the 
developed ANN can allocate real power transfer between generators and load with very 
good accuracy, almost 100 %. In this simulation, ANN computes within 45 msec whereas the 
MNE Method takes 1314 msec for the same real power transfer allocation. Consequently, it 
can be concluded that the ANN is more efficient in terms of computation time. Moreover, 
the final allocation of real power to loads on hours twelve out of 168 hours using developed 
ANN is presented in Table 5 along with the result obtained through MNE Method. Note 
that the result obtained by the ANN output is comparable with the result of MNE Method. 
The difference of real power between generators in both methods is very small which is less 
than 0.0053 MW. 
 

Supplied Load bus no. 

by ANN Output Modified Nodal Equations Method 

(MW) 1 2 4 5 6 1 2 4 5 6 

Gen-14 1.150 15.042 8.519 11.476 15.319 1.150 15.041 8.519 11.475 15.318 

Gen-15 1.150 15.043 8.519 11.477 15.32 1.150 15.041 8.519 11.475 15.318 

Gen-16 1.489 16.744 96.603 14.773 18.816 1.489 16.741 96.602 14.772 18.816 

Gen-17 1.456 16.258 93.273 14.388 18.308 1.456 16.257 93.268 14.388 18.307 

Gen-18 0.93393 10.786 7.210 9.402 12.027 0.93393 10.786 7.210 9.402 12.027 

Gen-19 1.064 11.538 64.477 10.35 13.108 1.064 11.538 64.478 10.35 13.108 

Gen-20 0.97752 11.451 7.619 9.919 12.717 0.97752 11.451 7.619 9.919 12.717 

Gen-21 1.343 17.026 9.602 13.087 17.626 1.343 17.026 9.602 13.087 17.626 

Gen-22 1.375 17.389 9.759 13.336 17.996 1.376 17.389 9.759 13.337 17.997 

Gen-23 1.376 16.755 11.01 14.275 18.407 1.376 16.756 11.011 14.275 18.408 

Gen-24 1.248 14.773 9.795 12.739 16.357 1.248 14.774 9.796 12.739 16.358 

Gen-25 1.553 18.642 12.307 15.981 20.563 1.554 18.643 12.308 15.982 20.564 

Total  
Load 

15.120 181.446 338.697 151.202 196.564 15.120 181.443 338.691 151.202 196.564 

Actual  
Load 

15.12 181.44 338.69 151.2 196.56 15.12 181.44 338.69 151.2 196.56 

Table 5. Analysis of real power allocation for the practical 25-bus equivalent power system 
of south Malaysia 
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5. Reactive power allocation results for 25-bus test system 

Table 6 shows a comparison of reactive power distribution of generators at buses 14 to 25 

obtained through the Chu’s Method (Chu & Liao,2004)  and proposed MNE Method. By 

comparing the values depicted in Table 6, it is obvious that the reactive power allocation 

made by the proposed method is slightly difference from that of Chu’s Method. The 

difference in the result between both methods is only noticeable for load at bus 4 while the 

results of others load buses are almost similar. This may due to the concept applied by the 

proposed method which represents each load current as a function of individual generators’ 

current and voltage. On the other hand the Chu’s Method represents each load voltage as a 

function of individual generators’ voltage. 

 
Supplied Load bus no. 

by Modified Nodal Equations Method Chu's Method 

(MVAr) 1 2 4 5 6 1 2 4 5 6 

Gen-14 0.31492 17.18 0.96389 1.5687 4.5436 0.31492 17.18 2.5279 1.5687 4.5436 

Gen-15 0.31492 17.18 0.96389 1.5687 4.5436 0.31492 17.18 2.5279 1.5687 4.5436 

Gen-16 0.74182 1.2167 36.688 3.4787 4.0287 0.74182 1.2167 23.467 3.4787 4.0287 

Gen-17 0.73775 1.2058 36.835 3.4491 3.9978 0.73775 1.2058 23.325 3.4491 3.9978 

Gen-18 0.97819 1.6864 3.2764 4.7926 5.484 0.97819 1.6864 8.6761 4.7926 5.484 

Gen-19 0.57913 0.93221 30.051 2.6715 3.1082 0.57913 0.93221 18.266 2.6715 3.1082 

Gen-20 0.99247 1.7194 3.3289 4.8834 5.5814 0.99247 1.7194 8.8266 4.8834 5.5814 

Gen-21 0.28846 3.2488 0.89633 1.9222 5.2149 0.28846 3.2488 2.4623 1.9222 5.2149 

Gen-22 0.28846 3.2488 0.89633 1.9222 5.2149 0.28846 3.2488 2.4623 1.9222 5.2149 

Gen-23 1.2757 2.2432 4.2971 6.3601 7.2436 1.2757 2.2432 11.44 6.3601 7.2436 

Gen-24 1.248 2.1686 4.1895 6.1571 7.0321 1.248 2.1686 11.118 6.1571 7.0321 

Gen-25 1.2941 2.2928 4.3687 6.4951 7.3842 1.2941 2.2928 11.655 6.4951 7.3842 

Total 
Load 

9.05392 54.3227 126.755 45.2694 63.377 9.05392 54.32271126.7541 45.2694 63.377 

Actual 
 Load 

9.0539 54.323 126.75 45.269 63.377 9.0539 54.323 126.75 45.269 63.377 

Table 6. Reactive power distribution of generators to loads for the 25-bus  equivalent system 
 

A number of simulations have been carried out to demonstrate the accuracy of the 

developed ANN with the same 25-bus equivalent system of south Malaysia. The scenario is 

a decrement by 10% of the real and reactive load demand from the nominal trained pattern. 

Besides it also assumed that all generators also decrease their production proportionally 

according to this variation in the load demands. Figure 14 shows the reactive power transfer 

allocation result for generator located at bus 14 calculated by the ANN along with the result 

obtained through MNE Method for loads at buses 1, 2, and 4 to 6 within 168 hours. 

The pattern used for results is same as of real power allocation. From Figure 14, it can be 

observed that the developed ANN can allocate reactive power transfer between generators 

and load with very good accuracy, almost 100%. In this simulation, ANN computes within 

45 msec whereas the MNE Method took 908 msec for the calculation of same reactive power 

transfer allocation. Therefore it can be concluded that the ANN is more efficient in terms of 

computation time. From Table 7, it can be noted that the result obtained by the ANN output 

in this thesis is compared well with the result of MNE Method. 
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Fig. 14. Distribution of reactive power from generator at bus 14 to loads within 168 hours 

  
Supplied Load bus no. 

by ANN Output Modified Nodal Equations Method 

(MVAr) 1 2 4 5 6 1 2 4 5 6 

Gen-14 0.31492 17.18 0.96386 1.5686 4.5436 0.31492 17.18 0.96389 1.5687 4.5436 

Gen-15 0.31492 17.18 0.96386 1.5687 4.5435 0.31492 17.18 0.96389 1.5687 4.5436 

Gen-16 0.74181 1.2167 36.689 3.4786 4.0286 0.74182 1.2167 36.688 3.4787 4.0287 

Gen-17 0.73775 1.2058 36.835 3.449 3.9978 0.73775 1.2058 36.835 3.4491 3.9978 

Gen-18 0.97821 1.6865 3.2764 4.7927 5.4841 0.97819 1.6864 3.2764 4.7926 5.484 

Gen-19 0.57914 0.9322 30.05 2.6715 3.1082 0.57913 0.93221 30.051 2.6715 3.1082 

Gen-20 0.99249 1.7194 3.3288 4.8834 5.5815 0.99247 1.7194 3.3289 4.8834 5.5814 

Gen-21 0.28846 3.2489 0.89634 1.9223 5.2152 0.28846 3.2488 0.89633 1.9222 5.2149 

Gen-22 0.28845 3.2487 0.89632 1.9222 5.2147 0.28846 3.2488 0.89633 1.9222 5.2149 

Gen-23 1.2756 2.2431 4.2971 6.3599 7.2433 1.2757 2.2432 4.2971 6.3601 7.2436 

Gen-24 1.2479 2.1685 4.1894 6.1569 7.0319 1.248 2.1686 4.1895 6.1571 7.0321 

Gen-25 1.2941 2.2928 4.3687 6.4949 7.3839 1.2941 2.2928 4.3687 6.4951 7.3842 

Total  
Load 

9.05375 54.3226 126.755 45.2687 63.3763 9.05392 54.32271 126.755 45.2694 63.377 

Actual Load 9.0539 54.323 126.75 45.269 63.377 9.0539 54.323 126.75 45.269 63.377 

Table 7. Analysis of reactive power allocation for the 25-bus equivalent system 

The difference of reactive power between generators in both methods is very small, which 

are less than 10-3 MVAr. The consumer located at bus 4 consumed the highest demand 

compared to other consumers in this hour. Consequently, the contribution of reactive power 

due to generators 16, 17 and 19 located at the same bus provides more reactive power to 

load at bus 4 by both methods as well. For this reason the acquired result illustrates that the 

contribution of individual generators are mostly confined in their neighborhood. 

6. Test conducted on the IEEE 118 bus system 

The proposed methods have also been tested on IEEE 118 bus system.  This system consists 

of 186 lines, 33 physical reactive power sources and 54 real power generators. 
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6.1.1 Application of RBFN in real and reactive power allocation method 

One of the main purposes of this work is to incorporate RBFN into real and reactive power 

allocation method between generators and load. The structure of the proposed RBFN for 

each allocation scheme is discussed in the following sub-sections. 

6.1.2 Real power allocation method 

In this case study, RBFN with one hidden layer and one output layer has been chosen. The 

proposed allocation method is elaborated by designing an appropriate RBFN for the IEEE 

118 bus system as shown in Figure 15. This system consists of 54 generators located at 

selected buses which lies in between buses numbered as 1 to 118. They deliver power to 64 

loads, through 186 branches located at selected buses which lies in between buses numbered 

as 1 to 118. 
 

 

Fig. 15. Single line diagram for the IEEE 118 bus system 

The input samples for training is assembled using the daily load curve and performing load 
flow analysis for every hour of load demand. Again the load profile on hourly basis (Cheng, 
1998) is utilized to produce 24 hours loads here also. Similarly the target vector for the 
training is obtained from the proposed method using nodal equations. Input data (D) for 
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developed ANN contains independent variables such as real power generation located at 
selected buses which lies in between buses numbered as (Pg1, to Pg118), real loads located at 
selected buses which lies in between buses numbered as (P2 to P118), reactive loads located at 
selected buses which lies in (Q2  to Q118), average power for line flows (Pline1 to Pline186)  and 
the target/output parameter, (T) which is real power transfer between generators and loads 
placed at  selected buses which lies in between buses numbered as 2 to 118. This is 
considered as 3456 outputs and therefore the networks have three thousand, four hundred 
and fifty six output neurons. Each generator allocates to the sixty four output neurons which 
correspond to the loads located at selected buses which lies in between buses numbered as 2 
to 118. For example, the first sixty four neurons (1-64) represent the contribution from 
generator at bus 1 to the sixty four loads, the second sixty four neurons (65-128) represent 
the contribution from generator at bus 4 to the sixty four loads and so on for generators 
located at selected buses which lies in between buses numbered as 1 to 118. Table 8 
summarizes the description of inputs and outputs of the training data for the RBFN. 
 

Input and Output (layer) Neurons Description (in p.u) 

I1 to I54 54 Real power generations 
I55 to I118 64 Real loads
I119 to I182 64 Reactive loads
I183 to I368 186 Average power for line flows 

O1 to O3456 3456 Real power transfer between gen. and loads 

Table 8. Description of inputs and outputs of the training data for the RBFN 

6.1.3 Reactive power allocation scheme 

In this case study, structure and description of input and output of each RBFN is similar to 
those of the real power allocation scheme. Table 9 shows the details of inputs and outputs of 
the training data for the RBFN. 
 

Input and Output (layer) Neurons Description (in p.u) 

I1 to I54 54 Real power generations
I55 to I118 64 Real loads
I119 to I182 64 Reactive loads
I183 to I368 186 Average power for line flows 

O1 to O3456 3456 Reactive power transfer between gen. and loads 

Table 9. Description of inputs and outputs of the training data for the RBFN 

6.1.4 Unsupervised learning to choose the centers of training samples 

The well-known k-means clustering algorithm is used to find a set of centers for the training 
samples. In k-means clustering, the number of desired centers (k), must be decided in 
advance. One simple way of choosing the value of k is to set it equal to a fraction of total 
training data samples. The k-means algorithm is as follows (Abdullah, 2008): 
Step 1: Assign the input data to random k sets. 
Step 2: Compute the mean of each set. 
Step 3: Reassign each point to a new set according to which is the nearest mean vector. 
Step 4: Recomputed the mean of each set. 
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Step 5: Repeat steps 3 and 4 until there is no further change in the grouping of data points. 
Step 6: The mean of the sets will be the RBFN center. 

6.1.5 Training 

After the input and target for training data is created, it can be made more efficient to scale 
(preprocess) the network inputs and targets so that they always fall within a specified range. 
In this case the minimum and maximum value of input and output vectors is used to scale 
them in the range of -1 and +1. Next step is to divide the input data and target data up into 
training. In this case 14 samples (60%) of data are used for the training as shown in Table 10. 
 

Data Types Samples (Hour) 

Training 1,6,11,16,21,3,8,13,18,23,5,10,15,20

Table 10. The Numbers of Samples for Training 

The training of the RBFN consists of two separate stages. First step is to find the centers 
parameter by using the k-means clustering algorithm. Initially, the number of trials with 
different number of k keeping the β  constant and vice versa is set. In both real and reactive 
power allocation scheme, the k is taken as 14 samples equal to number of hours and the β  
as 10, resulting in reasonable accuracy of the output of the RBFN with the target. For this 
k=14 and β =10, the computed training time i.e. 187 msec taken by the RBFN is same for 
both of the real and reactive power allocation scheme. Total number of the second layer 
weights influencing the individual output is, 14. Therefore, the minimum number of data set 
required to train the network is 14. In the second training stage, the second layer weights in 
connections between the hidden layer and the output layer are determined using the least 
squares based on minimization of quadratic errors of RBFN network output values over the 
set of training input-output vector pairs. At that stage, the weights in connections between 
the input layer and the hidden layer and the parameters of the radial basis functions of the 
hidden layer are already set as determined in the first training stage and are not subject to 
any further changes. During this training, the RBFN network is presented with individual 
input vectors from the set of training samples and responds with certain output vectors. 
These output vectors are compared with the target output vectors also given in the training 
set, and the individual weights are updated in a way ensuring a decrease of the difference 
between the actual and target output vectors. The individual input-output training pairs are 
presented to the RBFN network repeatedly until the error decreases to an acceptable level. 

6.1.6 Pre-testing and simulation 

In first step using MATLAB, the network is to be trained. In the second step involves 
simulating the network. The entire sample data is used in pre testing. After simulation, the 
obtained result from the trained network is evaluated with a linear regression analysis. The 
regression analysis for the trained network that referred to contribution of generator at bus 1 
to load at bus 2 is shown in Figure 16. 
The correlation coefficient, (R) in this case is equal to one which indicates perfect correlation 
between MNE Method and output of the neural network. The best linear fit is indicated by a 
solid line whereas the perfect fit is indicated by the dashed line. Moreover, performing 
regression analysis of reactive power allocation scheme for the trained network, similar 
results is obtained which refers to contribution of generator at bus 1 to load at bus 16 as 
shown in Figure 17. 
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Fig. 16. Regression analysis between the network output and the corresponding  target 
keeping k =14 and β =10 for real power allocation 
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Fig. 17. Regression analysis between the network output and the corresponding  target 
keeping k =14 and β =10 for reactive power allocation 

6.1.7 Real power allocation results for IEEE 118 bus system 

The case scenario is that increment by 10% of the real and reactive load demand from the 

nominal trained pattern. In addition it is also assumed that all generation is divided linearly 

according to the load demands. Figure 18 shows the real power transfer allocation result for 

generator located at bus 69 calculated by the RBFN along with the result obtained through 

to the MNE Method for loads at buses 41, 43, 44, 45, 47, 48, 53, 57, 58 and 79 within 24 hours. 

Results obtained from the RBFN are indicated with lines having circles, and the solid lines 
represent the output of the MNE Method. From Figure 18, it can be observed that the 
developed RBFN can allocate real power transfer between generators and load with very 
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Fig. 18. Distribution of real power from generator at bus 69 to loads within 24  hours 

good accuracy, almost 100%. In this simulation, RBFN computes within 15 ms, whereas the 
MNE Method took 3000 ms for the calculation of same real power transfer allocation. For 
that reason it can be concluded that the RBFN is more efficient in terms of computation time. 
Moreover, the final allocation of real power to loads using proposed RBFN on hours 12 out 
of 24 hours is presented in Table 11 along with the result obtained through MNE Method. It 
can be noted that the result obtained by the proposed RBFN compares well with the result 
of MNE Method. The difference of real power between generators in both methods is too 
small i.e. less than 7.687 × 10-4MW. It is worth noting that the total contributions of each 
generator to loads are reasonable since it is less than its total production. For example, the 
total contribution of generator at bus 107 to all loads is 56.609 MW and this value does not 
exceed its generation i.e. 60MW. 
 
Bus Actual RBFN Output Modified Nodal Equations Method 

no. load Gen-107 Gen-110 Gen-111 Gen-112 Gen-113 Gen-116 Gen-107 Gen-110 Gen-111 Gen-112 Gen-113 Gen-116 

 (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) 

2 33.742 0.17641 0.07029 0.074479 0.084484 0.26015 0.54608 0.17642 0.070304 0.074488 0.084469 0.26018 0.54609 

3 34.936 0.0011481 0.02429 -0.00184 -0.00487 -0.12908 0.08572 0.0011802 0.024295 -0.00184 -0.00487 -0.12913 0.08577 

7 20.532 -0.50109 -0.08008 -0.22335 -0.26714 -1.397 -1.139 -0.50109 -0.08014 -0.22334 -0.26723 -1.397 -1.139 

11 22.044 -0.079927 -0.01767 -0.03514 -0.04149 -0.19599 -0.19864 -0.079927 -0.01767 -0.03514 -0.04150 -0.19607 -0.19855 

13 21.964 0.3324 0.16024 0.13762 0.15281 0.33545 1.124 0.33242 0.16026 0.13762 0.15282 0.33547 1.124 

14 20.691 0.16734 0.085524 0.068802 0.075821 0.1413 0.58286 0.16735 0.085535 0.068803 0.075822 0.14129 0.58291 

16 20.85 0.27669 0.12888 0.115 0.12823 0.30286 0.92001 0.2767 0.12889 0.115 0.12823 0.30278 0.92001 

17 21.089 -1.328 -0.44117 -0.5697 -0.65629 32.756 -3.794 -1.328 -0.44119 -0.5698 -0.65648 32.755 -3.795 

20 21.168 0.20442 0.13588 0.080957 0.085462 0.015533 0.815 0.20441 0.13587 0.080954 0.085448 0.015482 0.81502 

21 20.85 0.41409 0.21672 0.16975 0.18646 0.34599 1.435 0.41409 0.21673 0.16975 0.18646 0.34593 1.435 

22 21.487 0.42325 0.22155 0.1735 0.19058 0.36393 1.456 0.42326 0.22155 0.17351 0.19058 0.3639 1.456 

23 22.839 -0.66814 -0.25275 -0.28345 -0.323 0.080557 -1.915 -0.66823 -0.25273 -0.28347 -0.32303 0.080539 -1.916 

28 18.463 0.13753 0.078981 0.055688 0.060326 0.46697 0.50158 0.13752 0.078984 0.055685 0.060323 0.46693 0.50158 

29 35.015 0.08196 0.056481 0.032272 0.033801 0.71278 0.3329 0.081951 0.056484 0.032257 0.033798 0.7128 0.33289 

33 42.177 0.59022 0.2685 0.24595 0.275 0.66717 1.956 0.59024 0.26853 0.24594 0.275 0.66711 1.956 

35 26.261 -0.22153 -0.11404 -0.09094 -0.1002 -0.19487 -0.78481 -0.22151 -0.11404 -0.09099 -0.10018 -0.19497 -0.78503 

39 29.445 0.15404 0.18401 0.052954 0.045775 -0.16485 0.90055 0.15401 0.18401 0.05296 0.045736 -0.16498 0.90052 

Table 11. Analysis of real power allocation for selected generators in the IEEE  118 bus 
system 
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41 29.445 -0.38925 0.034202 -0.18297 -0.22959 -0.89799 -0.58842 -0.38924 0.034191 -0.18297 -0.2296 -0.89814 -0.58843 

43 30.24 0.50245 0.24314 0.20791 0.23076 0.47352 1.729 0.50243 0.24313 0.20792 0.23077 0.4735 1.729 

44 28.649 0.57406 0.30863 0.23452 0.25662 0.45607 2.082 0.57406 0.30864 0.23453 0.25663 0.45605 2.082 

45 42.177 0.28215 0.1641 0.11407 0.12332 0.20542 1.066 0.28215 0.16412 0.11406 0.12331 0.20536 1.066 

47 58.889 0.23569 0.15323 0.093944 0.099664 0.152 0.93871 0.23577 0.15319 0.093967 0.099666 0.15199 0.93889 

48 47.748 0.055997 0.023694 0.023554 0.026538 0.048013 0.18169 0.056017 0.023724 0.023556 0.026553 0.04797 0.18162 

50 29.445 0.21457 0.12709 0.086539 0.093283 0.1485 0.82321 0.21457 0.12708 0.086535 0.093279 0.14849 0.82322 

51 29.445 0.40261 0.22604 0.16355 0.17781 0.28905 1.506 0.40262 0.22604 0.16356 0.17781 0.28903 1.506 

52 30.24 0.63096 0.34321 0.25738 0.28115 0.46243 2.325 0.63096 0.34321 0.25738 0.28115 0.46242 2.325 

53 26.261 -0.10263 0.055608 -0.05283 -0.07115 -0.17384 -0.00468 -0.10269 0.055604 -0.05285 -0.07121 -0.17391 -0.00487 

57 33.424 -0.08542 0.13265 -0.05248 -0.07895 -0.22284 0.28771 -0.085465 0.13258 -0.05248 -0.07897 -0.22301 0.28766 

58 19.895 -0.31289 0.063793 -0.15073 -0.19292 -0.4379 -0.36759 -0.31304 0.063805 -0.15073 -0.19294 -0.43799 -0.36768 

60 62.072 0.012021 0.17156 -0.01134 -0.03242 -0.12428 0.58579 0.011923 0.17159 -0.01138 -0.03239 -0.12441 0.58567 

67 22.282 0.13199 0.10379 0.050696 0.051522 0.068946 0.59666 0.13198 0.10379 0.050696 0.051512 0.068944 0.59664 

75 37.403 0.18798 -0.02875 0.092096 0.11654 0.17113 0.048409 0.18811 -0.02816 0.091987 0.1166 0.17089 0.049178 

78 56.502 0.54436 0.46 0.23461 0.24055 0.25415 1.780 0.54457 0.46035 0.23476 0.2407 0.25441 1.780 

79 31.036 0.37995 0.40042 0.15918 0.15374 0.17367 1.528 0.37987 0.40043 0.15914 0.15373 0.17364 1.528 

82 42.973 0.8622 0.77475 0.32579 0.31954 0.41579 2.577 0.86217 0.77462 0.3258 0.31954 0.41581 2.577 

83 15.916 0.31408 0.27243 0.11957 0.11858 0.14553 0.86389 0.31408 0.27244 0.11958 0.11856 0.14552 0.86388 

84 87.538 0.018614 -0.17347 0.029182 0.054584 -0.03262 -0.56264 0.018548 -0.17346 0.029177 0.054564 -0.03262 -0.56274 

86 16.712 -0.1309 -0.23078 -0.03578 -0.01950 -0.08321 -0.6854 -0.13092 -0.2308 -0.03580 -0.01955 -0.08323 -0.6857 

88 38.198 0.87967 -0.05461 0.43983 0.54895 0.14802 -0.5368 0.87941 -0.05460 0.43979 0.54891 0.14805 -0.53752 

93 95.496 -0.25741 -0.11605 -0.07175 -0.07622 -0.10564 -0.3485 -0.25755 -0.11608 -0.07176 -0.07621 -0.10566 -0.34858 

94 23.874 1.668 0.63315 1.507 1.794 -0.19487 -1.373 1.6685 0.63318 1.507 1.794 -0.19489 -1.374 

95 33.424 0.6563 0.80719 0.22336 0.18961 0.34821 2.309 0.65622 0.80733 0.22336 0.18955 0.34821 2.31 

96 30.24 0.4655 0.60166 0.1647 0.13912 0.25282 1.886 0.46548 0.60158 0.16469 0.13909 0.25282 1.886 

97 11.937 -0.19377 0.23982 -0.09554 -0.1436 -0.05865 0.77291 -0.1938 0.23974 -0.09558 -0.14365 -0.05867 0.77298 

98 27.057 0.8291 0.49602 0.59536 0.68224 0.08842 0.61209 0.82889 0.49604 0.59535 0.68216 0.088447 0.6121 

101 97.088 3.857 2.371 1.911 2.107 0.9018 3.569 3.857 2.371 1.911 2.107 0.90182 3.569 

102 11.937 0.007438 -0.34445 0.09218 0.15069 -0.13734 -1.125 0.007336 -0.34441 0.092196 0.15065 -0.13734 -1.125 

106 34.219 42.439 -0.57113 1.485 1.895 -0.54923 -2.923 42.438 -0.57107 1.485 1.895 -0.5493 -2.923 

108 89.13 12.297 3.114 2.377 2.603 0.57067 1.915 12.296 3.114 2.377 2.602 0.57067 1.915 

109 14.324 -1.378 12.968 17.664 20.427 -0.53203 -2.062 -1.378 12.968 17.664 20.427 -0.53203 -2.062 

114 14.324 0.050762 0.069213 0.01661 0.013121 1.568 0.32816 0.050775 0.069204 0.016619 0.013128 1.567 0.32813 

115 17.508 0.081997 0.050169 0.0329 0.035261 0.48282 0.30947 0.081973 0.050169 0.032889 0.035252 0.48282 0.30945 

117 15.916 0.26975 0.14147 0.11056 0.1214 0.2092 0.95213 0.26977 0.14147 0.11056 0.12141 0.20917 0.95212 

118 26.261 0.20535 0.22663 0.074181 0.067384 0.093782 1.021 0.20527 0.22663 0.074156 0.067356 0.093762 1.021 

Total: 56.609 18.605 24.406 28.148 29.977 26.348 56.609 18.607 24.405 28.148 29.977 26.354 

Table 11. Analysis of real power allocation for selected generators in the IEEE  118 bus 
system (cont.) 

6.1.8 Reactive power allocation results for IEEE 118 bus system 

For case scenario, the real and reactive load demand from the nominal trained pattern is 

increased by 10%. Figure 19 shows the reactive power transfer allocation result for generator 

located at bus 69 calculated by the RBFN along with the result obtained through to the MNE 

Method for loads at buses 2, 3, 11, 13, 14, 16, 17, 20, 21 and 22 within 24 hours. The pattern 

used for results is same as of real power allocation. From Figure 6.7, it can be observed that 

the developed RBFN can allocate reactive power transfer between generators and load with 

very good accuracy, almost 100%. In this simulation, RBFN computes within 15ms, whereas 

the MNE Method took 2911ms for the calculation of same reactive power transfer allocation. 

As a result it can be concluded that the RBFN is more efficient in terms of computation time. 
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Furthermore, the final allocation of reactive power to loads at hour 12 using developed 

RBFN is presented in Table 12 along with the result obtained through MNE and found close 

match between their results. The difference of reactive power between generators in both 

methods is very small i.e. <0.0067Mvar. 
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Fig. 19. Distribution of reactive power from generator at bus 69 to loads within 24  hours 

 

Bus Actual RBFN Output Modified Nodal Equations Method 

no. load Gen-107 Gen-110 Gen-111 Gen-112 Gen-113 Gen-116 Gen-107 Gen-110 Gen-111 Gen-112 Gen-113 Gen-116 

 (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) 

2 22.442 0.006014 -0.06158 0.00882 0.017496 0.36319 -0.2018 0.00603 -0.06151 0.00884 0.017491 0.36318 -0.2017 

3 22.282 0.070593 0.02632 0.02990 0.034195 0.11366 0.21179 0.07059 0.02634 0.02998 0.034208 0.11366 0.21241 

7 22.282 0.3418 0.30944 0.1272 0.12409 -0.45274 1.656 0.34178 0.30957 0.12725 0.12405 -0.45274 1.655 

11 22.839 0.03888 0.04396 0.01367 0.01214 -0.09954 0.21848 0.03895 0.04395 0.01364 0.012157 -0.09952 0.21858 

13 22.76 0.083069 -0.08600 0.04681 0.066985 0.78692 -0.1534 0.08310 -0.08600 0.04681 0.066996 0.78688 -0.1536 

14 21.487 0.057507 -0.03771 0.03022 0.041412 0.42551 -0.0309 0.05756 -0.03767 0.03027 0.041406 0.42552 -0.0309 

16 21.487 0.058085 -0.07633 0.03432 0.050523 0.67031 -0.1639 0.05811 -0.07632 0.03432 0.050547 0.67026 -0.1639 

17 21.884 0.23004 0.56429 0.05054 0.002111 18.211 2.346 0.22997 0.56432 0.05057 0.002159 18.212 2.348 

20 22.919 0.1559 -0.01169 0.07312 0.091547 0.6119 0.2164 0.15603 -0.01170 0.07315 0.091584 0.61188 0.21644 

21 22.76 0.15113 -0.08834 0.07843 0.10628 0.94974 -0.0719 0.15116 -0.08837 0.07845 0.10632 0.9498 -0.0719 

22 22.362 0.15457 -0.09030 0.08020 0.10867 0.92085 -0.0853 0.15456 -0.09031 0.08021 0.1087 0.92084 -0.0854 

23 21.248 0.028327 0.24962 -0.01151 -0.04082 -0.38525 0.95643 0.02828 0.24965 -0.01150 -0.04088 -0.3852 0.95638 

28 22.68 0.069909 -0.02159 0.03437 0.044734 0.59457 0.03467 0.06986 -0.02162 0.03436 0.04475 0.59454 0.03472 

29 22.282 0.068016 -0.00258 0.03164 0.039312 0.64619 0.10095 0.06805 -0.00250 0.03164 0.039349 0.64619 0.10104 

33 31.036 0.10281 -0.17039 0.06418 0.097457 1.096 -0.4001 0.10277 -0.17036 0.06419 0.097468 1.096 -0.4 

35 23.078 -0.063832 0.05199 -0.03457 -0.04824 -0.3362 0.05991 -0.0638 0.05203 -0.03457 -0.04825 -0.33624 0.06035 

39 22.282 0.31646 0.07433 0.13858 0.16323 0.52581 0.82355 0.3163 0.07434 0.13864 0.16325 0.52581 0.82333 

41 22.282 0.50263 0.3398 0.19844 0.20875 0.23008 2.061 0.50257 0.33997 0.19845 0.20874 0.23008 2.060 

43 22.282 0.12944 -0.12873 0.07239 0.10316 0.61613 -0.2036 0.12945 -0.12871 0.07240 0.10316 0.61614 -0.2039 

44 22.282 0.23245 -0.11355 0.11843 0.15832 0.55532 0.02799 0.23244 -0.11352 0.11843 0.15837 0.55533 0.02814 

45 30.24 0.14994 -0.04177 0.07327 0.094882 0.26658 0.12454 0.14991 -0.04186 0.073299 0.094987 0.26655 0.12442 

47 46.156 0.17256 -0.01586 0.08128 0.10203 0.22298 0.23989 0.17253 -0.01587 0.081271 0.10205 0.22294 0.23954 

48 30.24 0.0083913 -0.01704 0.00552 0.008596 0.026759 -0.0438 0.00826 -0.01704 0.00550 0.008619 0.026778 -0.0437 

50 22.282 0.1219 -0.02881 0.05915 0.076116 0.17817 0.12473 0.12205 -0.02880 0.059164 0.076136 0.17818 0.12482 

Table 12. Analysis of reactive power allocation for selected generators in the IEEE  118 bus 
system 
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51 22.282 0.19109 -0.06871 0.09492 0.12455 0.29682 0.1205 0.19108 -0.06869 0.09494 0.12458 0.2968 0.12057 

52 22.282 0.26658 -0.12054 0.13482 0.17936 0.43472 0.08783 0.26662 -0.12039 0.13488 0.17942 0.43477 0.08748 

53 22.282 0.26907 0.1425 0.11017 0.12086 0.20019 0.98043 0.26922 0.14249 0.11021 0.12087 0.20023 0.98073 

57 30.24 0.46583 0.21367 0.19396 0.2167 0.37681 1.584 0.46596 0.21368 0.19399 0.21671 0.37688 1.584 

58 30.24 0.52403 0.31769 0.21048 0.22596 0.3542 2.042 0.52395 0.31771 0.21051 0.226 0.35413 2.043 

60 38.198 0.46826 0.17973 0.19827 0.22563 0.39709 1.499 0.46806 0.17974 0.1983 0.22566 0.39709 1.500 

67 22.282 0.14639 0.0104 0.066526 0.08103 0.16252 0.31679 0.14638 0.0104 0.066528 0.08104 0.16252 0.31678 

75 22.282 -0.28563 -0.17173 -0.11374 -0.12204 -0.18192 -0.9441 -0.2856 -0.17227 -0.11379 -0.12211 -0.18193 -0.9455 

78 36.607 0.68374 0.15851 0.3118 0.36798 0.36303 0.61565 0.68472 0.15851 0.31193 0.36825 0.36319 0.61571 

79 25.466 0.71643 0.21628 0.32115 0.37354 0.37132 0.8582 0.71669 0.21646 0.32128 0.3736 0.37138 0.85835 

82 29.445 1.215 0.18154 0.54397 0.65232 0.45164 0.53679 1.215 0.18158 0.54398 0.65233 0.45166 0.53681 

83 30.24 0.41881 0.057094 0.18851 0.22664 0.14244 0.13402 0.41883 0.057092 0.18848 0.22665 0.14244 0.13402 

84 29.445 -0.50926 -0.19681 -0.21449 -0.24384 -0.1796 -0.5477 -0.5092 -0.19685 -0.2145 -0.24384 -0.1796 -0.5476 

86 30.24 -0.50221 -0.14519 -0.21664 -0.25197 -0.15772 -0.34537 -0.5023 -0.1451 -0.21667 -0.25204 -0.15773 -0.3453 

88 30.24 -1.130 -0.67583 -0.4443 -0.47638 -0.42418 -1.861 -1.130 -0.6758 -0.44431 -0.47644 -0.42418 -1.861 

93 29.445 -0.06821 0.16569 -0.03630 -0.06254 0.0097741 0.29743 -0.0682 0.16568 -0.03632 -0.06256 0.0097718 0.29774 

94 28.649 -0.71453 1.372 -0.21517 -0.41236 -0.27547 -0.48801 -0.7145 1.372 -0.21517 -0.41237 -0.27545 -0.4876 

95 30.24 1.539 0.37092 0.67386 0.79238 0.43411 0.66494 1.539 0.37096 0.67379 0.79239 0.43415 0.66502 

96 27.853 1.172 0.32145 0.51324 0.59942 0.39961 0.77962 1.172 0.32148 0.51324 0.59942 0.39965 0.77957 

97 31.036 0.89174 0.47193 0.37349 0.41072 0.39477 1.548 0.89179 0.47195 0.37348 0.41077 0.39481 1.548 

98 22.282 0.59015 0.72166 0.32989 0.33026 0.11952 0.20614 0.59018 0.72167 0.32991 0.33027 0.11959 0.20652 

101 19.895 2.097 0.47469 1.034 1.226 0.15317 -1.702 2.096 0.47475 1.034 1.226 0.15325 -1.703 

102 22.282 -0.99718 -0.23722 -0.4167 -0.48922 -0.2573 -0.56698 -0.9971 -0.2371 -0.41669 -0.48921 -0.25731 -0.5664 

106 20.691 3.952 1.101 -1.209 -1.611 -0.39309 -0.02700 3.953 1.101 -1.209 -1.610 -0.39313 -0.0261 

108 16.712 2.931 0.77924 1.349 1.583 -0.042595 -1.570 2.931 0.77967 1.349 1.583 -0.042592 -1.570 

109 18.303 -2.189 17.388 -0.87222 -2.934 -0.071792 1.069 -2.189 17.381 -0.87225 -2.934 -0.071785 1.069 

114 22.282 0.13799 0.036191 0.060094 0.070396 1.404 0.34794 0.13803 0.03614 0.060138 0.070399 1.404 0.34807 

115 21.487 0.05025 -0.00954 0.02414 0.030845 0.48589 0.045807 0.05031 -0.0094 0.024152 0.030837 0.48589 0.04580 

117 22.282 0.10023 -0.05713 0.05187 0.070141 0.68789 -0.02434 0.10024 -0.0571 0.051878 0.070164 0.68786 -0.0244 

118 19.895 0.40966 0.092916 0.18067 0.21309 0.30092 0.6676 0.40954 0.09295 0.18067 0.21317 0.30094 0.66786 

 

Table 12. Analysis of reactive power allocation for selected generators in the IEEE  118 bus 
system (cont.) 

7. Conclusion 

The proposed real and reactive power allocation methods have been tested in this  

chapter for 25 bus and IEEE 118 bus systems. Table 13 shows the advantages and 

improvement in the computation time of the developed ANN and RBFN vs. MNE Method. 

In the 25 bus system, the developed ANN is compared with the MNE Method while for 

large system like IEEE 118, RBFN is compared with MNE because for large bus system ANN 

requires large number of networks and hence large computational time for training.  

It is observed that, as the number of buses increase (i.e. IEEE 118) the computational time in 

the MNE Method increases proportionally (i.e. for real power allocation is 3,000 msec and 

for reactive power is 2,911 msec) while for developed RBFN it remain almost same (i.e.  

for real power allocation is 15 msec and for reactive power is 15 msec) as shown in  

Table 13. 
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Computational time in msec 

MNE ANN RBFN 
Test 

System 
Real 

Power 
Allocation

Reactive 
Power 

Allocation

Real 
Power 

Allocation

Reactive 
Power 

Allocation 

Real 
Power 

Allocation 

Reactive 
Power 

Allocation 

25 bus 1314 908 45 45 --- --- 

IEEE 118 
bus 

3000 2911 --- --- 15 15 

Table 13. Comparative computational time for MNE, ANN, and RBFN methods for different 
bus system 
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