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1. Introduction

Multiple-Input Multiple-Output (or the so-called MIMO) system, which employs multiple

antennas at both ends of the receiver and transmitter terminals, has been the subject

of intensive research efforts in the past decade with potential application in high speed

wireless communications network. This is chiefly motivated by the benefits of 1) the spatial

multiplexing gain, which makes use of the degrees of freedom in communication system by

transmitting independent symbol streams in parallel through spatial channels, to improve

bandwidth efficiency; 2) diversity gain, which can be achieved by averaging performance over

multiple path gains to combat fading, to improve channel capacity and/or bit-error rate (BER).

Information theoretical analysis reveals that MIMO systems indeed offer high spectral

efficiency (Foschini, 1996; Goldsmith et al., 2003; Telatar, 1999). It has been shown in (Tse

and Viswanath, 2005) that the capacity of an Nr × Nt MIMO system with Nt transmit and Nr

receive antennas over i.i.d. Rayleigh fading channels scales with the minimum of the number

Nt of transmit antennas and the number Nr of receive antennas at the high SNR regime. With

ideal capacity achieving Gaussian codes, capacity is attained by minimum mean squared error

successive interference cancellation (MMSE-SIC) at the receiver (Tse and Viswanath, 2005) if

the number of receive antennas is equal to or larger than the number of transmit antennas.

The receive diversity achieved by endorsing multiple receive antennas have been utilized

in practical communication systems. Recently, Space-Time codes have also been developed

to obtain transmit antenna diversity gain (Alamouti, 1998; Caire and Shamai, 1999; Ma and

Giannakis, 2003; Tarokh et al., 1999; Xin et al., 2003). Performance gains induced by different

schemes of MIMO systems were comprehensively compared in (Catreux et al., 2003).

It is well-known that there is a tradeoff between multiplexing gain and diversity gain.

The diversity gain is usually measured by the slope of the BER curve. Over i.i.d. Rayleigh

distributed channels, the diversity order of Nr × Nt systems with linear equalization is given

by Nr − Nt + 1 at high SNR at full multiplexing (Winters et al., 1994). This implies that given a

fixed number Nt of transmit antennas, increasing the number Nr of receive antennas increases

the diversity order. Conversely, given a fixed Nr, an increase in Nt (which contributes to

multiplexing gain) decreases the diversity order. In (Narasimhan, 2003), by exploiting the
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tradeoff, an adaptive control of the number of transmit antennas and symbol constellations

is proposed to improve the performance of spatial multiplexing in correlated fading channels.

Moreover, theoretical analysis that shows a fundamental tradeoff between multiplexing gain

and/or diversity gain including Vertical-Bell Laboratories Layered Space-Time (V-BLAST)
and Space-Time Codes (STC) have been reported (Tse and Viswanath, 2005; Zheng and Tse,

2003).

Capacity or ergodic capacity, which is the capacity averaged over fading channels, are often

utilized to evaluate capacity gain. On the other hand, BER or average BER, which is the BER

averaged over fading channels, relate to diversity gain. These gains have been analyzed by

approximate expressions for these measures at the SNR extremes, or by directly evaluating

them for a particular channel probability density function (pdf), e.g., i.i.d. complex-normal

distribution (Chiani et al., 2003; Marzetta and Hochwald, 1999; Smith et al., 2003). However,

since the full diversity order appears only at high SNR, having higher diversity order does not

necessarily mean having better performance at a particular value of SNR. Moreover, diversity

gain of Rayleigh channels does not necessarily imply the existence of diversity gain for other

distributed channels. In this chapter, we study universal properties of the performance of

MIMO system as in (Ohno and Teo, 2007), which is independent of channel probability density

functions and hold at any SNR.

We only consider the case where the performance measure is a convex or concave function of

SNR. However, it is shown that important performance measures, including channel capacity

and BER, are convex or concave. Thus, our results are significant. To get more insights into

MIMO systems, we study capacity gain from a different point of view. A similar approach is

adopted in (Ohno and Teo, 2007) to analyze the impact of antenna size of MIMO systems on

BER performance with zero-forcing (ZF) equalization.

Take channel capacity for example. Let us suppose that you can install an additional receive

antenna in the Nr × Nt system to construct an (Nr + 1) × Nt system. Assume that the

underlying channel environment is not time-varying (i.e., static). Then, can any other gain

(besides power gain) be obtained by increasing the number of receive antennas? Without the

values of channel coefficients or the associated channel pdf, no one can answer this question

or evaluate the possible gain correctly. Now, we look at the problem from another perspective.

For simplicity, we put Nr = 2 and Nt = 2. From a 3 × 2 system, we can remove one receive

antenna in three different ways to obtain three possible 2 × 2 systems. Then, we compare the

performance of the original 3 × 2 system with the average performance of the three 2 × 2

systems. We show in this chapter that without the knowledge of channel coefficients and at

any value of SNR, the capacity of the original 3× 2 system is greater than the average capacity

of the three 2 × 2 systems. More generally, our analysis reveals that increasing the number of

receive antennas generates capacity gain even in static channels. From this, we can prove that

the mean capacity with respect to channel pdf, which is mathematically equivalent to the

so-called ergodic capacity for fading channels, increases as the number of receive antennas

increases at any value of SNR. Our proof relies not on the channel pdf but on the concavity

of the capacity function. This implies that the concavity is indispensable to obtain receive

antenna diversity.

Next, we consider removing a transmit antenna from an Nr × Nt system and compare the

capacity of the Nr × Nt system with the average capacity of Nr × (Nt − 1) systems. Clearly,

removing one transmit antenna reduces the multiplexing gain. For comparison, we adopt

the capacity per transmit antenna as a parameter. Then, we prove that reducing the number
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of transmit antennas improves the capacity per transmit antenna. It follows that the mean

capacity per transmit antenna degrades as the number of transmit antennas increases at any

value of SNR irrespective of channel pdf. This means that increasing the number of transmit

antennas improves the multiplexing gain but degrades the capacity per transmit antenna.
There exists a tradeoff between multiplexing gain and capacity gain regardless of channel pdf

and SNR.

Although we do not evaluate how much gains there actually are, which requires the

knowledge of channel coefficients or channel pdf, our results are universal in the sense that

performance ordering with the number of transmit antennas and the number of receive

antenna is independent of channel pdf and holds true at any value of SNR. We also study

the achievable information rate of block minimum mean squared error (MMSE) equalization

to obtain similar results.

2. Preliminaries and system model

We consider a MIMO transmission with Nt transmit and Nr receive antennas over flat

non-frequency-selective channels. Let us define ρ/Nt as the transmit power at each transmit

antenna for the Nr × Nt MIMO system. We denote the path gain from transmit antenna n

(n ∈ [1, Nt]) to receive antenna m (m ∈ [1, Nr ]) as hmn. The path gains are assumed to be

unknown to the transmitter but perfectly known to the receiver.

Let the received signal at receive antenna m be xm . The Nr received signals are arranged in a

vector as x = [x1, . . . , xNr
]T, where [·]T denotes transposition. Then, x is expressed as

x =

√

ρ

Nt
Hs+w, (1)

where the Nr × Nt channel matrix H , the Nt × 1 combined data vector s having i.i.d. entries

with unit variance, the Nr × 1 vector w of zero mean circular complex additive white Gaussian

noise (AWGN) entries with unit variance are respectively given by

H =

⎡

⎢

⎣

h11 . . . h1Nt

...
. . .

...

hNr1 . . . hNr Nt

⎤

⎥

⎦
, (2)

s =
[

s1 . . . sNt

]T
, (3)

w =
[

w1 . . . wNr

]T
. (4)

Let the mth row (which corresponds to the mth receive antenna) of the channel matrix H be

hm for m ∈ [1, Nr], and the nth column (which corresponds to the nth transmit antenna) of the

channel matrix H be h̃n for n ∈ [1, Nt] so that we can also express the channel matrix as

H =

⎡

⎢

⎣

h1
...

hNr

⎤

⎥

⎦
=

[

h̃1 · · · h̃Nt

]

. (5)

The signal-to-noise ratio (SNR) at receive antenna m is found to be ρ||hm||2/Nt, where || · || is

the 2-norm of a vector, while the overall receive power of the symbol transmitted from antenna

n, i.e., the sum of power from transmit antenna n at all receive antennas, is ρ||h̃n||2/Nt.
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With capacity achieving Gaussian codes, for a given channel H , the information rate of the

Nr × Nt MIMO system is expressed as (see. e.g. (Telatar, 1999; Tse and Viswanath, 2005))

CNr,Nt
= log

∣

∣

∣

∣

INr
+

ρ

Nt
HH

H

∣

∣

∣

∣

= log

∣

∣

∣

∣

INt
+

ρ

Nt
H

H
H

∣

∣

∣

∣

, (6)

where (·)H stands for complex conjugate transposition. Over fading channels, MIMO system

offers the benefits of multiplexing gain and/or capacity/diversity gain (Larsson and Stoica,

2003; Tse and Viswanath, 2005).

For our analysis that follows, we utilize the achievable information rates of non-linear

Maximum Likelihood (ML) equalization and minimum mean squared error (MMSE)

equalization. MMSE equalizations at the receiver becomes available if the channel matrix has

column full rank, which requires Nr ≥ Nt.

Let us shortly review MMSE equalization for MIMO systems. If we employ block-by-block

equalization, the MMSE equalizer is given by G =
√

ρ

Nt
H

H(
ρ

Nt
HH

H + INr
)−1. The

equalized output is thus expressed as ŝ = Gx. We define the nth entry of the equalized output

as ŝn = pnsn + vn, where vn is the effective noise contaminating the nth symbol. Then, we can

show that the signal-to-interference noise ratio (SINR) of symbol n after MMSE equalization

is expressed as (Kay, 1993; Tse and Viswanath, 2005)

SINRNr,Nt,n =
ρ

Nt
h̃
H
n

(

INr
+

ρ

Nt

Nt

∑
l=1,l �=n

h̃lh̃
H
l

)−1

h̃n. (7)

Block-by-block MMSE equalization can be easily implemented but cannot achieve the

capacity except for some special cases. Capacity is achieved by MMSE successive interference

cancellation (MMSE-SIC) at the receiver. Then, SIC with optimal cancellation order is utilized

in Vertical-Bell Laboratories Layered Space-Time (V-BLAST) (Foschini et al., 1999). Although

cancellation order affects the BER performance, it does not change the achievable information

rate (Tse and Viswanath, 2005, Chapter 8). Thus, it is convenient in what follows to only
consider the simplest MMSE-SIC that does not perform the optimal ordering (i.e., arbitrary

ordering) procedure. We first equalize symbols from transmit antenna 1. Then after decoding

them, the contribution of the signal due to the symbol from transmit antenna 1 is reconstructed

and eradicated from the received vector. The same procedure is repeated for the remaining

symbols from transmit antenna 2 to transmit antenna Nt. If we denote the SINR of the

equalized output at the nth step of MMSE-SIC as SINRSIC
n and there is no error propagation,

then the capacity in (6) can be adequately expressed as (Tse and Viswanath, 2005, Chapter 8)

CNr,Nt
=

Nt

∑
n=1

log
(

1 + SINRSIC
n

)

. (8)

3. Decreasing the number of receive antennas

Based on the mathematical tools in the previous section, we investigate information rates of

MIMO systems when we decrease the number of receive antennas, while fixing the number of

transmit antennas. As the number of receive antennas decreases/increases, the overall receive

power decreases/increases, which is known as power loss/gain. Thus, it seems obvious that

capacity degrades as the number of receive antennas decreases. However, the MIMO system
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may have different receive power from each transmit antenna and the same conclusion is not

self-evident. This begs the question: Given the “fair” condition that the overall receive power

from each transmit antenna is kept constant even if the number of receive antennas decreases,

does capacity decreases or increases? We study how the capacity is affected by the number of
receive antennas when the overall receive power from each transmit antenna is fixed.

Let us define a sample correlation of the channel matrix H as

RNr,Nt
= H

H
H =

Nr

∑
m=1

h
H
mhm. (9)

Assuming that Nr ≥ 2, we fix the number of transmit antennas at Nt and decrease the number

Nr of receive antennas by one. When receive antenna µ is removed from the Nr × Nt system,

the corresponding channel matrix is denoted as H(µ). The (Nr − 1)× Nt channel matrix H
(µ)

yields the Nt × Nt correlation matrix R
(µ)
Nr−1,Nt

, corresponding to (9), expressed as

R
(µ)
Nr−1,Nt

= H
(µ)H

H
(µ) =

Nr

∑
m=1,m �=µ

h
H
mhm. (10)

It is easy to see that the matrices RNr,Nt
and R

(µ)
Nr−1,Nt

are related as

Nr

∑
µ=1

R
(µ)
Nr−1,Nt

= (Nr − 1)RNr,Nt
. (11)

If we remove one receive antenna from the Nr × Nt system, there are Nr possible systems

having Nr − 1 receive antennas. We compare the capacity of the Nr × Nt system with the

average capacity of (Nr − 1) × Nt systems with respect to antenna selection. This average

capacity is equivalent to the average capacity when we uniformly remove one receive antenna

among Nr antennas, i.e., the selection of any one receive antenna has the same probability

1/Nr .

If receive antenna µ is removed from the Nr × Nt system, then the overall receive power

from transmit antenna n reduces to ρ ∑
Nr

m=1,m �=µ
|hmn|2/Nt. Thus, for (Nr − 1) × Nt system,

the average overall receive power from antenna n with respect to random receive antenna

dropping is given by

1

Nr

Nr

∑
µ=1

⎛

⎝

Nr

∑
m=1,m �=µ

ρ
|hmn|2

Nt

⎞

⎠ =

(

Nr − 1

Nr

)

ρ
||h̃n||2

Nt
, (12)

which depicts a reduction in the average overall receive power from antenna n. To ensure

that the average overall receive power from each transmit antenna remains constant even
when the number of receive antennas is reduced by one, we increase the transmit power of

the (Nr − 1) × Nt system by a factor of Nr
Nr−1 , i.e., we replace ρ in (12) by Nr

Nr−1 ρ. Then, for

this (Nr − 1)× Nt system, the receive SNR at receive antenna m increases to Nr
Nr−1

ρ||hm||2

Nt
and

hence the average overall receive power of the (Nr − 1)× Nt systems is equal to the overall

receive power of the Nr × Nt system. Thus, the effects of power loss due to the reduction of

the number of receive antennas disappears on the average.
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The information rate of the (Nr − 1)× Nt system without receive antenna µ is expressed as

C
(µ)
Nr−1,Nt

= log

∣

∣

∣

∣

INt
+

(

Nr

Nr − 1

ρ

Nt

)

R
(µ)
Nr−1,Nt

∣

∣

∣

∣

. (13)

Then, we have from (11) that

ρ

Nt
RNr,Nt

=
1

Nr

Nr

∑
µ=1

(

Nr

Nr − 1

ρ

Nt

)

R
(µ)
Nr−1,Nt

. (14)

At this stage, we utilize a fundamental property of log det function: its concavity property.

Since log det is a concave function in positive definite matrices, substituting (14) into (6), we

find that

CNr,Nt
= log

∣

∣

∣

∣

∣

INt
+

1

Nr

Nr

∑
µ=1

(

Nr

Nr − 1

ρ

Nt

)

R
(µ)
Nr−1,Nt

∣

∣

∣

∣

∣

≥
1

Nr

Nr

∑
µ=1

log

∣

∣

∣

∣

INt
+

(

Nr

Nr − 1

ρ

Nt

)

R
(µ)
Nr−1,Nt

∣

∣

∣

∣

=
1

Nr

Nr

∑
µ=1

C
(µ)
Nr−1,Nt

, (15)

where the equality holds if and only if all R
(µ)
Nr−1,Nt

for µ ∈ [1, Nr] can be diagonalized with

the same unitary matrix.

Eq. (15) shows that for a fixed channel, the capacity of the Nr × Nt system is not smaller

than the average capacity of (Nr − 1) × Nt systems taken over antenna dropping. It should

be noted that the average is not taken over fading channels. For a static channel, we find

another disadvantage/advantage of decreasing/increasing the number of receive antennas in

addition to power loss/gain. Indeed, (15) is fundamental, from which we will see later that

the mean capacity of MIMO systems is also an increasing function in the number of receive

antennas at any value of SNR irrespective of channel pdf. Eq. (15) comes only from the basic

property of the log det function. It is worth emphasizing that the capacity gain achieved by

increasing the number of receive antennas is a direct consequence of the concavity of the

log det function.

To analyze the average capacity over random channels, let us denote the channel probability

density function (pdf) of channel H as P(H) and similarly for H(µ) as P(H(µ)). We consider

the following channel characteristics:

Assumption 1.

P(H(1)) = P(H(2)) = · · · = P(H(Nr)). (16)

This implies that when any one row is removed from the Nr × Nt channel matrix, the resultant

(Nr − 1)× Nt channel matrix has the same probability density function. Clearly, if the entries

of H are i.i.d., then (16) holds true. However, it should be remarked that a more general

class of channels which includes for example, non i.i.d. channels having correlation between

channel gains, meets (16).

The mean capacity is defined as the expectation of the capacity with respect to channel pdf,

i.e.,

E{CNr,Nt
} =

∫

CNr,Nt
P(H)dH , (17)
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where E{·} denotes the expectation operator. This is mathematically equivalent to the

so-called ergodic capacity if the channel is slowly fading and the channel statistics are ergodic.

Consequently, it follows from (15) that

E{CNr,Nt
} >

1

Nr

Nr

∑
µ=1

∫

C
(µ)
Nr−1,Nt

P(H)dH =
1

Nr

Nr

∑
µ=1

E{C
(µ)
Nr−1,Nt

}, (18)

where the equality sign is removed since the equality in (15) holds only for some special

channel realizations. Under Assumption 1, E{C
(µ)
Nr−1,Nt

} = E{CNr−1,Nt
}, where E{CNr−1,Nt

}
is the mean capacity of (Nr − 1)× Nt system. Thus, we can conclude that:

Theorem 1. Let the capacity of an M × N MIMO system be CM,N. If the MIMO channel satisfies

Assumption 1, then the average capacity taken over channel pdf is an increasing function in the number

of receive antennas, i.e.,

E{CNr,Nt
} > E{CNr−1,Nt

}, (19)

where Nr × Nt system and (Nr − 1)× Nt system have the same receive power.

Theorem 1 clearly states the capacity gain in MIMO transmission that can be acquired by

simply increasing the number of receive antennas. A special case of Theorem 1 is well-known

where at high SNR, the diversity order of Nr × Nt systems over i.i.d. Rayleigh distributed

channels with linear equalization is Nr − Nt + 1 at full multiplexing (Winters et al., 1994).

Here, no approximation is made and no channel pdf is specified except for Assumption 1 to

obtain Theorem 1. It is universal in the sense that (19) holds not just for a specific channel

pdf but for all kinds of channel pdf meeting Assumption 1, and at all values of SNR. The

capacity gain that arises from increasing the number of receive antennas always exists, since

it is a result not attributed to the distinct characteristic of Rayleigh fading but attributed to

the basic property of the log det function. Hypothetically, if log det were convex (which is
never the case), the inequality in (15) and hence the inequality in (19) would be reverse. Thus,

the concavity of the log det function is indispensable to obtain receive antenna diversity. To

know how much the actual gain is, one has to evaluate the expectation using the underlying

channel pdf. In some special channel pdf, e.g., complex-normal distribution, one could derive

an analytical expression of the corresponding capacity gain, e.g., as in (Winters et al., 1994).

3.1 Block MMSE equalization case

Assuming that the channel matrix H is tall and has column full rank, let us analyze the

achievable information rate with block MMSE equalization.

After block MMSE equalization, we have Nt parallel channels. Then, the achievable

information rate, denoted as CB
Nr,Nt

, of Nr × Nt system with block MMSE equalization can

be expressed as

CB
Nr,Nt

=
Nt

∑
n=1

log (1 + SINRNr,Nt,n) . (20)

If we define the (post-processing) SINR for symbol sn after block MMSE equalization when

receive antenna µ is removed as SINR
(µ)
Nr−1,Nt,n

for n ∈ [1, Nt], then the achievable information

rate of the (Nr − 1)× Nt system is

C
B,(µ)
Nr−1,Nt

=
Nt

∑
n=1

log
(

1 + SINR
(µ)
Nr−1,Nt,n

)

. (21)
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We utilize the following inequality in (Ohno and Teo, 2007):

SINRNr ,Nt,n ≥
1

Nr

Nr

∑
µ=1

SINR
(µ)
Nr−1,Nt,n

. (22)

The R.H.S. of (22) denotes the average SINR of symbol n when one receive antenna is

randomly dropped.

Since log is a concave function, we have from (22) that

CB
Nr,Nt

≥
1

Nr

Nt

∑
n=1

Nr

∑
µ=1

log
(

1 + SINR
(µ)
Nr−1,Nt,n

)

=
1

Nr

Nr

∑
µ=1

C
B,(µ)
Nr−1,Nt

. (23)

This states a deterministic yet universal characteristics of the achievable information rate

of MIMO systems with block MMSE equalization. For a given channel environment, if a

receive antenna is randomly dropped, the average information rate with respect to random

antenna dropping degrades except for some special cases. Indeed, the average information

rate depends on the number of receive antennas and a fortiori deteriorates as the number of

receive antennas is lessened.

By using a similar derivation of Theorem 1, averaging (23) over channel pdf leads to:

Theorem 2. Let the achievable information rate of an M × N MIMO system be CB
M,N, when block

MMSE equalization is adopted. If the MIMO channel satisfies Assumption 1, then the achievable

information rate averaged over channel pdf is an increasing function in the number of receive antennas,

i.e.,

E{CB
Nr,Nt

} > E{CB
Nr−1,Nt

}, (24)

where Nr × Nt system and (Nr − 1)× Nt system have the same receive power.

Theorem 2 states that capacity gain with increasing number of receive antennas exists

even for block MMSE equalization. Theorem 1 as well as Theorem 2 highlight the

advantage/disadvantage of MIMO system upon increasing/decreasing the number of receive

antennas.

4. Decreasing the number of transmit antennas

In this section, we consider the information rate for a fixed number Nr of receive antennas

when the number Nt of transmit antennas is reduced by one, assuming that 2 ≤ Nt ≤ Nr. For

comparison between Nr × Nt system and Nr × (Nt − 1) system, as in the previous section, we

uniformly remove one transmit antenna among Nt transmit antennas, i.e., the selection of any

one transmit antenna has the same probability 1/Nt.

It is often the case that the sum of total transmit power of all transmit antennas is kept

constant for different numbers of transmit antennas. But, here we fix the transmit power of

each transmit antenna to be ρ/Nt. This implies that the sum of transmit power reduces from

ρ to ρ(Nt − 1)/Nt, if one transmit antenna is removed. In this case, the overall receive power

from a transmit antenna remains constant, while the average receive power at each receive

antenna of Nr × (Nt − 1) system with respect to antenna dropping is (Nt − 1)/Nt of the receive

power at each receive antenna of the original Nr × Nt system.
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For analysis, we recall block MMSE equalization and MMSE-SIC equalization. If there is no

error propagation in SIC, then we have

SINRNr,Nt,n ≤ SINRSIC
n , (25)

where SINRNr,Nt,n and SINRSIC
n are respectively the SINR of symbol from transmit antenna n

in block MMSE equalization and in MMSE-SIC equalization. For all n ∈ [1, Nt], the equalities

in (25) hold if and only if the channel matrix H has orthogonal columns.

We can decompose the capacity of Nr × Nt system by the following manipulation:

CNr,Nt
= log

∣

∣

∣

∣

∣

INr
+

ρ

Nt

Nt

∑
n=1

h̃nh̃
H
n

∣

∣

∣

∣

∣

= log

∣

∣

∣

∣

∣

INr
+

ρ

Nt

Nt

∑
n=1,n �=ν

h̃nh̃
H
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

INr
+

(

INr
+

ρ

Nt

Nt

∑
n=1,n �=ν

h̃nh̃
H
n

)−1
ρ

Nt
h̃νh̃

H
ν

∣

∣

∣

∣

∣

∣

= C
[ν]
Nr,Nt−1 + log (1 + SINRNr ,Nt,ν) , (26)

where C
[ν]
Nr,Nt−1 is the capacity of the Nr × (Nt − 1) system without transmit antenna ν. It

follows from (26) that

NtCNr,Nt
=

Nt

∑
ν=1

[

C
[ν]
Nr,Nt−1 + log (1 + SINRNr ,Nt,ν)

]

. (27)

On the other hand, from (8) and (25), we have the relation:

Nt

∑
ν=1

log (1 + SINRNr ,Nt,ν) ≤ CNr,Nt
, (28)

where the equality holds if and only if SINRNr,Nt,n = SINRSIC
n for all n ∈ [1, Nt], i.e., the

channel matrix H is orthogonal. Combining (27) and (28) results in

CNr,Nt
≤

1

Nt − 1

Nt

∑
ν=1

C
[ν]
Nr,Nt−1. (29)

Capacity per transmit antenna for Nr × Nt system can be defined as C̄Nr,Nt
= 1

Nt
CNr,Nt

.

Similarly for Nr × (Nt − 1) system, as C̄
[ν]
Nr,Nt−1 = 1

Nt−1C
[ν]
Nr,Nt−1. Then, we obtain from (29)

that

C̄Nr,Nt
=

1

Nt
CNr,Nt

≤
1

Nt

Nt

∑
ν=1

1

Nt − 1
C
[ν]
Nr,Nt−1 =

1

Nt

Nt

∑
ν=1

C̄
[ν]
Nr,Nt−1. (30)

This means that the capacity per transmit antenna of Nr × Nt system is in general smaller than

the average capacity per transmit antenna of Nr × (Nt − 1) system. The relation in Eq. (30) is

satisfied for any channel (channel-independent) and for any SNR.

To get more insights, we assume that

Assumption 2.

P(H [1]) = P(H [2]) = · · · = P(H [Nt]), (31)

where H [ν] denotes the channel matrix when transmit antenna ν is dropped from the Nr × Nt system.

123Another Interpretation of Diversity Gain of MIMO Systems

www.intechopen.com



Multiplying both sides of (30) by P(H) and taking the average over P(H), we can conclude

that

Theorem 3. Suppose an Nr × Nt system where Nr ≥ Nt ≥ 2. Let the capacity per transmit antenna of

M × N MIMO system be C̄M,N. If the MIMO channel satisfies Assumption 2, then the mean capacity

per transmit antenna is an decreasing function in the number of transmit antennas, i.e.,

E{C̄Nr,Nt
} < E{C̄Nr,Nt−1}, (32)

where Nr × Nt system and Nr × (Nt − 1) system have the same transmit power at each antenna.

Intuitively, this result may be quite reasonable, since in the original Nr × Nt system, symbols

from transmit antenna ν can be considered as an interference to symbols from transmit

antenna n and the effect of symbols from transmit antenna ν is absent if transmit antenna

ν is removed. For i.i.d. Rayleigh channels at high SNR, the diversity order of Nr × Nt systems

is Nr − Nt + 1 and hence reducing Nt increases diversity order (Winters et al., 1994), while the

capacity scales with min(Nt, Nr) (Tse and Viswanath, 2005). However, diversity or capacity

gain at high SNR for Rayleigh channels does not imply capacity gain at all SNR for other

channels. Thus, our result is not self-evident. From (32), we can find a fundamental tradeoff

between bandwidth efficiency and capacity gain for any channel pdf at any value of SNR, i.e.,

if one increases the number of transmit antennas, then bandwidth efficiency or multiplexing

gain is enhanced but the average capacity per transmit antenna is degraded.

Theorem 3 is in sharp contrast to Theorem 1. The mean capacity per transmit antenna is an

increasing function in the number of receive antennas, which is easily concluded from Theorem

1, while the mean capacity per transmit antenna is a decreasing function in the number of

transmit antennas.

4.1 Block MMSE equalization case

We return to block MMSE equalization case and will see that similar results for MMSE-SIC

equalization also hold for block MMSE equalization.

Let us denote the (post-processing) SINR of symbol n of the Nr × (Nt − 1) system without

transmit antenna ν after block MMSE equalization as SINR
[ν]
Nr,Nt−1,n. It has been shown in

(Ohno and Teo, 2007) that for n �= ν,

SINR
[ν]
Nr,Nt−1,n ≥ SINRNr,Nt,n. (33)

Hence, removing one transmit antenna, i.e., reducing the bandwidth efficiency, improves the

SINR of each symbol transmitted from the remaining antennas and hence its information rate,

i.e., if we denote the achievable information rate from antenna n of Nr × Nt system and of

Nr × (Nt − 1) system respectively as CB
Nr,Nt,n

and C
B,[ν]
Nr,Nt−1,n, then

C
B,[ν]
Nr,Nt−1,n ≥ CB

Nr,Nt,n
, for n �= ν. (34)

The achievable information rate of Nr × Nt system per transmit antenna is expressed as

C̄B
Nr,Nt

=
1

Nt

Nt

∑
n=1

CB
Nr,Nt,n

. (35)
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Similarly, the achievable information rate of Nr × (Nt − 1) system without transmit antenna ν

is

C̄
B,[ν]
Nr,Nt−1 =

1

Nt − 1

Nt

∑
n=1,n �=ν

C
B,[ν]
Nr,Nt−1,n. (36)

Subsequently, we have

C̄B
Nr,Nt

−
1

Nt

Nt

∑
ν=1

C̄
B,[ν]
Nr,Nt−1 =

1

Nt

Nt

∑
n=1

CB
Nr,Nt,n

−
1

Nt

Nt

∑
ν=1

(

1

Nt − 1

Nt

∑
n=1,n �=ν

C
B,[ν]
Nr,Nt−1,n

)

=
1

Nt

Nt

∑
n=1

[

CB
Nr,Nt,n

−

(

1

Nt − 1

Nt

∑
ν=1,ν �=n

C
B,[ν]
Nr,Nt−1,n

)]

. (37)

One finds from (34) that the argument in the brackets of (37) is less than or equal to 0, which

leads to

C̄B
Nr,Nt

≤
1

Nt

Nt

∑
ν=1

C̄
B,[ν]
Nr,Nt−1. (38)

This shows that if one transmit antenna is randomly removed with probability 1/Nt , for a

fixed number of receive antennas, the achievable information rate per transmit antenna of

the Nr × Nt system is never larger than the average achievable information rate per transmit

antenna of Nr × (Nt − 1) system. Since the equality sign holds only for some special cases,

on the average, reducing the number of transmit antennas improves information rate per
transmit antenna. We can again find a pure tradeoff between bandwidth efficiency and

capacity gain.

If we average (38) with respect to channel pdf satisfying Assumption 2, we can state that:

Theorem 4. Suppose an Nr × Nt system with block MMSE equalization where Nr ≥ Nt ≥ 2. Let

the achievable information rate per transmit antenna of M × N MIMO system be C̄B
M,N. If the MIMO

channel satisfies Assumption 2, then the average capacity per transmit antenna is a decreasing function

in the number of transmit antennas, i.e.,

E{C̄B
Nr,Nt

} < E{C̄B
Nr,Nt−1}, (39)

where Nr × Nt system and Nr × (Nt − 1) system have the same transmit power per antenna.

5. Numerical simulations

To validate our theoretical findings, we perform computer simulations on the MIMO system

for different antenna sizes. The results for both MMSE-SIC and block MMSE equalizations

are presented. In our simulations, we always keep the average overall receive power of each

symbol the same as in our theoretical analysis. We plot the information rate per transmit

antenna with respect to Eb/N0 where at each Eb/N0, the average receive power of each symbol

is kept constant regardless of the antenna configuration.

In simulations 1 and 2, we see the effect of the number of receive antennas on the information

rate averaged with respect to random receive antenna dropping over a fixed channel. Fig. 1

and Fig. 2 illustrate the results for a fixed Nt = 4 and Nr varying from 8 to 4 for MMSE-SIC

equalization (which achieves the capacity) and block MMSE equalization, respectively. As
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one may see from these figures, the information rate averaged with respect to random receive

antenna dropping degrades with a decrease in Nr. Especially for block MMSE equalization,

the degradation of the information rate is significant when Nr is decreased. These results hold

true not just for this fixed channel but also for other channels we have tested, which confirm
the fidelity of (15) and (23), i.e., our analysis of the ordering of the information rate based on

concavity of the log det is correct.

Then, in the next two simulations, we test the impact of the number of transmit antennas on

the information rate averaged with respect to random transmit antenna dropping over a fixed

channel. We set Nr = 8 and decrease Nt from 8 to 4. The simulation results are shown in Fig. 3

and Fig. 4 for MMSE-SIC equalization and block MMSE equalization respectively. We observe

that as the number of transmit antennas is reduced, the information rate averaged with

respect to random transmit antenna dropping improves even when the transmit power of each

transmit antenna remains the same. The information rate increase for MMSE-SIC equalization

is small but is quite significant for block MMSE equalization when we decrease the number

of transmit antennas. Evidently, this ordered information rate performances validate (30) and

(38).

In our subsequent simulations, instead of simulating over a fixed channel, we take the average

over 105 Rice channels of Rice factor 2 that compose of zero mean Gaussian taps with unit

variance in order to verify the effect of the number of receive antennas on the information

rate per transmit antenna averaged over random channels. Fig. 5 and Fig. 6 depict the results

for a fixed Nt = 4 and Nr varying from 8 to 4 for MMSE-SIC and block MMSE equalizations

respectively. We can see that the information rate averaged over random channels degrade

with a decrease in Nr for both MMSE-SIC and block MMSE equalizations, demonstrating that

the information rate averaged over random channels is an increasing function in the number

of receive antennas. These are in good agreement with Theorem 1 and Theorem 2, which hold

true for all SNR.

Lastly, to see the effect of the number of transmit antennas on the information rate per

transmit antenna averaged over random channels, Fig. 7 and Fig. 8 show the results for a

fixed Nr = 8 and Nt varying from 8 to 4 for MMSE-SIC and block MMSE equalizations

respectively. The simulation results confirm Theorem 3 and Theorem 4 as the information rate

averaged over random channels improves with a decrease in Nt (or equivalently, decrease

in both bandwidth efficiency and multiplexing gain). In other words, the information rate

averaged over random channels is a decreasing function in the number of transmit antennas.

These ordered performances show unequivocally that there is an undisputed tradeoff between

the information rate and bandwidth efficiency (and/or multiplexing gain).

6. Conclusions

Based on our novel point of view, we have demonstrated theoretically that under the condition

of a fixed overall received power and a fixed number of transmit antennas, the information

rate averaged over random receive antenna dropping and the information rate averaged

over random channels degrade with a decrease in the number of receive antennas. These

results are derived from the basic property of the log det function. On the other hand, for

a fixed number of receive antennas, we have proven that a decrease in the number of transmit

antennas translates into an amelioration in both the information rate averaged over random

transmit antenna dropping as well as the information rate averaged over random channels,
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Fig. 1. Information rate per transmit antenna with respect to random receive antenna

dropping for MMSE-SIC over a fixed channel for a fixed Nt = 4 and varying Nr.
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Fig. 2. Information rate per transmit antenna with respect to random receive antenna

dropping for block MMSE over a fixed channel for a fixed Nt = 4 and varying Nr.
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Fig. 3. Information rate per transmit antenna with respect to random transmit antenna
dropping for MMSE-SIC over a fixed channel for a fixed Nr = 8 and varying Nt.
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Fig. 4. Information rate per transmit antenna with respect to random transmit antenna

dropping for block MMSE over a fixed channel for a fixed Nr = 8 and varying Nt.
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Fig. 5. Information rate per transmit antenna averaged over random channels for MMSE-SIC

for a fixed Nt = 4 and varying Nr.
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Fig. 6. Information rate per transmit antenna averaged over random channels for block

MMSE for a fixed Nt = 4 and varying Nr.
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Fig. 7. Information rate per transmit antenna averaged over random channels for MMSE-SIC

for a fixed Nr = 8 and varying Nt.
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Fig. 8. Information rate per transmit antenna averaged over random channels for block

MMSE for a fixed Nr = 8 and varying Nt.
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which highlight the tradeoff between capacity and bandwidth efficiency (and multiplexing

gain). All these results hold for any kind of i.i.d. channel regardless of the channel pdf and is

valid at any SNR. Numerical simulations corroborated our analysis.
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