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1. Introduction 

A new class of materials known as ‘functionally graded materials’ (FGMs) has emerged 

recently, in which the material properties are graded but continuous particularly along the 

thickness direction. In an effort to develop the super heat resistant materials, Koizumi [1] 

first proposed the concept of FGM. These materials are microscopically heterogeneous and 

are typically made from isotropic components, such as metals and ceramics.  

In the quest for developing lightweight high performing flexible structures, a concept 

emerged to develop structures with self-controlling and self-monitoring capabilities. 

Expediently, these capabilities of a structure were achieved by exploiting the converse and 

direct piezoelectric effects of the piezoelectric materials as distributed actuators or sensors, 

which are mounted or embedded in the structure [2, 3]. Such structures having built-in 

mechanisms are customarily known as ‘smart structures’. The concept of developing smart 

structures has been extensively used for active control of flexible structures during the past 

decade [4].  
Recently considerable interest has also been focused on investigating the performance of FG 
plates integrated with piezoelectric actuators. For example, Ootao and Tanigawa [5] 
theoretically investigated the simply supported FG plate integrated with a piezoelectric 
plate subjected to transient thermal loading. A 3-D solution for FG plates coupled with a 
piezoelectric actuator layer was proposed by Reddy and Cheng [6] using transfer matrix and 
asymptotic expansion techniques. Wang and Noda [7] analyzed a smart FG 
compositestructure composed of a layer of metal, a layer of piezoelectric and a FG layer in 
between, while in [8] a finite element model was developed for studying the shape and 
vibration control of FG plates integrated with piezoelectric sensors and actuators. Yang et al. 
[9] investigated the nonlinear thermo-electro-mechanical bending response of FG 
rectangular plates covered with monolithic piezoelectric actuator layers; most recently, 
Huang and Shen [10] investigated the dynamics of a FG plate coupled with two monolithic 
piezoelectric layers undergoing nonlinear vibrations in thermal environments. All the 
aforementioned studies focused on the rectangular-shaped plate structures.  
However, to the authors’ best knowledge, no researches dealing with the free vibration 
characteristics of the circular FGM plate integrated with the piezoelectric layers has been 
reported. Therefore, the present work attempts to solve the problem of providing analytical 
solution for free vibration of thin circular FG plates with two full size surface-bonded 
piezoelectric layers on the top and the bottom of the FG plate. The formulations are based 
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on CPT. A consistent formulation that satisfies the Maxwell static electricity equation is 
presented so that the full coupling effect of the piezoelectric layer on the dynamic 
characteristics of the circular FGM plate can be estimated based on the free vibration results. 
The physical and mechanical properties of the FG substrate plate are assumed to be graded 
continuously in the thickness direction according to the power-law distribution in terms of 
the volume fractions of the constituents. The differential equations of motion are solved 
analytically for clamped edge boundary condition of the plate. By using of some 
mathematical techniques these differential equations are transformed to a sixth order 
ordinary differential equation and finally by implementing the operator decomposition 
method on this equation, three Bessel types of equations are obtained which can easily be 
solved for the plate deflection and the potential function. The detailed mathematical 
derivations are presented. In Numerical investigations, the emphasis is placed on 
investigating the effect of varying the gradient index of FG plate on the free vibration 
characteristics of the structure. The results are verified by those obtained from 3D finite 
element analyses. 

2. Functionally graded materials 

In a FG material made of ceramic and metal mixture, if the volume fraction of the ceramic 
part is represented by Vc and the metallic part by Vm, we have; 

 1m cV V+ =  (1) 

Based on the power law distribution [11], the variation of Vc vs. thickness coordinate (z) 
placed at the middle of thickness, can be expressed as; 

 ( 2 1 2) , 0g
c fV z h g= + ≥  (2) 

We assume that the inhomogeneous material properties, such as the modulus of elasticity E 
and the density ρ  change in the thickness direction z based on Voigt’s rule over the whole 
range of the volume fraction [12]; while Poisson’s ratio υ is assumed to be constant in the 
thickness direction [13] as; 

 ( ) ( ) ( )c m c mE z E E V z E= − +  (3a) 

 ( ) ( ) ( )c m c mz V zρ ρ ρ ρ= − +  (3b) 

where subscripts m and c refer to the metal and ceramic constituents, respectively. After 
substituting Vc from Eq. (2) into Eqs. (3), material properties of the FGM plate are 
determined in the power law form which are the same as those proposed by Reddy et al. 
[11] i.e.; 

 ( ) ( )( 2 1 2)g
c m f mE z E E z h E= − + +  (4a) 

 ( ) ( )( 2 1 2)g
c m f mz z hρ ρ ρ ρ= − + +  (4b) 

 ( )zν ν=  (4c) 
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3. Piezoelectric materials 

For symmetry piezoelectric materials in polar coordinate, the stress - strain - electric field 
intensity relations based on well-known assumptions of classical plate theory,  can be 
written as [16]; 

 
11 12 31

p E E
rr rr zC C e Eθθσ ε ε= + −  (5) 

 
12 11 31

p E E
rr zC C e Eθθθθσ ε ε= + −  (6) 

 ( ) ( )11 12 11 12
p E E E E

rr C C z C Cθθτ ε= − = − −  (7) 

in which iσ  , kε  and e represent the stress and strain components and the permeability 
constant of piezoelectric material and Ek indicates the components of the electric field and 

E
ijC are the components of the symmetric piezoelectric stiffness matrix and 31e  is the reduced 

permeability constant of piezoelectric material as [13]; 

( )2

11 11 13 33
E E E EC C C C= − , ( )2

12 12 13 33
E E E EC C C C= −  

31 31 13 33 33
E E Ee e C e C= −  

4. Constitutive relations  

 

 

Fig. 1. Schematic representation of the FGM circular plate with two piezoelectric layers 
mounted on its upper and lower surfaces 

The cross section of a circular FGM plate with a piezoelectric layer mounted on its surface is 
shown in Fig. 1. In most practical applications, the ratio of the radius to the thickness of the 
plate is more than ten, and the Kirchhoff assumption for thin plates is applicable, whereby 
the shear deformation and rotary inertia can be omitted. For such a structure, the 
displacement field is assumed as follows: 

 ( , , ) ( , , )z zu u r t w r tθ θ= =  (8) 
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 ( , , ) z
r r

u
u u r t z

r
θ

∂
= = −

∂
 (9) 

 ( , , ) zu
u u r t z

r
θ θ θ

θ
∂

= = −
∂

 (10) 

where uz, ur and uθ are the displacements in the transverse z-direction, radial r-direction, and 
tangential θ-direction of the plate, respectively. 
It is also assumed that the poling direction of the piezoelectric material to be in the z-
direction. A differential strain can be induced in case of applying external electric potential 
across the piezoelectric layer resulting in bending of the plate. The strain of the FGM plate 
and piezoelectric layer in the radial and tangential directions and the shear component are 
given by [14] 

 
2

2
r

rr

u w
z

r r
ε ∂ ∂

= = −
∂ ∂

 (11) 

 
2

2 2
( )ru u w w

z
r r r rr

θ
θθε

θ θ
∂ ∂ ∂

= + = − +
∂ ∂∂

 (12) 

 1
( )

2
r

r

u u u

r r r
θ θ

θε
θ

∂ ∂
= + −

∂ ∂
 (13) 

The stress components in the FGM plate in terms of strains or component of displacement 
field based on the generalized Hooke’s Law are [14]; 

 2( )( ) (1 )f
rr rrE z θθσ ε νε ν= + −  (14) 

 2( )( ) (1 )f
rrE z θθθθσ ε νε ν= + −  (15) 

 
2

2

( )

1

f
r

zE z w w

r r r
θτ

ν θ θ

⎛ ⎞∂ ∂
= − −⎜ ⎟⎜ ⎟+ ∂ ∂ ∂⎝ ⎠

 (16) 

where the superscript f represents the variable in the FGM structure; Two piezoelectric 
layers are attached to the FG plate and intended to be used as an actuator or sensor to 
determine the natural frequencies of a vibrating coupled plate,. There are several different 
models representing the input electric potential for such a piezoelectric layer. In this paper 
we decided to adopt the following Wang et al. electric potential function which is 
appropriate for free vibrations of proposed system [13]; 

 ( )( ) 21 2 2 ( , , )f p pz h h h r tφ ϕ θ⎡ ⎤= − − −⎢ ⎥⎣ ⎦
 (17) 

where ( , , )r tϕ θ is the electric potential on the mid-surface of the piezoelectric layer.  
Based on Eq. (17), the components of electric field intensity E and electric flux density D is 
written as [15]: 

 
11 11( )r rD E

r

φΞ Ξ ∂
= = −

∂
 (18) 
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 11 11( )D E
r

θ θ
φΞ Ξ
θ

∂
= = −

∂
 (19) 

 ( )33 31z z rrD E e θθΞ ε ε= + +  (20) 

where 11Ξ , 33Ξ  are the symmetric reduced dielectric constants of piezo layer and given by 
[17]; 

 2
33 33 33 33( )Ee CΞ Ξ= + , 11 11Ξ Ξ=  (21) 

in which 33Ξ , 11Ξ  are the dielectric constants. 

5. Governing equations  

In order to obtain the governing differential equation of the coupled circular plate, we begin 
with resultant moments components as [16];  

 2
f f p

f f

h h hf p
rr rr rrh h

M z dz z dzσ σ
+

−
= +∫ ∫  (22) 

 2
f f p

f f

h h hf p

h h
M z dz z dzθθ θθ θθσ σ

+

−
= +∫ ∫  (23) 

 2
f f p

f f

h h hf p
r r rh h

M z dz z dzθ θ θτ τ
+

−
= +∫ ∫  (24) 

and the resultant shear forces are herein written as 

 rr r rr
r

M M M M
q

r r r
θ θθ

θ
∂ ∂ −

= + +
∂ ∂

 (25) 

 
2r rM M M

q
r r r

θ θθ θ
θ θ

∂ ∂
= + +

∂ ∂
 (26) 

Substituting Eqs. (11-13) in to Eqs. (14-16) and Eqs. (5-7) and substituting the results in to 
Eqs. (22-26) and substituting the final results into the governing equation for the Kirchhoff 
plate, 

 2 2

2 2
( ) 2 0

f f p

f f

r r

h h hz z
f ph h

q q q

r r r

u u
z dz dz

t t

θ

θ

ρ ρ
+

−

∂ ∂
+ + −

∂ ∂
⎛ ⎞∂ ∂

+ =⎜ ⎟⎟⎜ ∂ ∂ ⎠⎝
∫ ∫

 (27) 

will result in the equation for the piezoelectric coupled circular FGM plate, 

 ( )
2

1 2 31 0 2

4
0

3
p

w
D D w h e P

t
ΔΔ Δϕ ∂

+ + + =
∂

 (28) 
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where Δ is the Laplace operator in polar coordinate and 

2

1 2

( )

1

f

f

h

h

z E z
D dz

ν−
=

−∫  

2 2
2 11

2
(3 3 )

3
E

p f f p pD h h h h h C= + +  

1
( )

2

f

f

h

f fh
f

z dz
h

ρ ρ
−

= ∫# , 0 2( )f f p pP h hρ ρ= +# #  

where ρf and ρp are material densities of the FGM plate and piezoelectric layer, respectively.  

Note that all of the electrical variables primarily must satisfy the Maxwell's equation which 
requires that the divergence of the electric flux density vanishes at any point within the 
media as [15]; 

 ( )
0

f p

f

h h r z

h

rD D D
dz

r r r z
θ

θ
+ ⎛ ⎞∂ ∂ ∂

+ + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
∫  (29) 

Now, by substituting Eqs. (18- 20) into the above equation we arrive at; 

 

2 2
11 31

33 33

0
12 8

p ph h e
w

Ξ
Δϕ ϕ Δ

Ξ Ξ
− + =  (30) 

6. Solution method  

Primarily we solve Eqs. (28) and (30) simultaneously by which φ can be expressed in terms 
of w as; 

 

( ) 2
1 2 11 31

31 33 33

2
11

2
31 33

( , , )
16 8

( )

8

p p

p f f p p

D D h h e
r t w w

e

h h h w

e t

Ξ
ϕ θ ΔΔ Δ

Ξ Ξ
ρ ρ Ξ

Ξ

+
= − +

+ ∂
−

∂

#
 (31) 

Applying the Laplacian operator to the above equation and substituting the result into 
equation (28) gives a decoupled sixth-order partial differential equation, namely 

 
2 2

3 2 1 02 2
( ) 0

w w
P w P w P P

t t
ΔΔΔ ΔΔ Δ ∂ ∂

− + − =
∂ ∂

 (32) 

where 

 

2
1 11 0 33

3 2
2 1 2 31 33

2
3 1 2 11 33

12 ,

6 ,

( ) 12

p

p

p

P h P

P D D h e

P D D h

Ξ Ξ

Ξ

Ξ Ξ

=

= + +

= +

 (33)  
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To solve Eq. (34) for w, we first assume that; 

 
( )

1( , , ) ( )
i m t

w r t w r e
θ ωθ −=  (34) 

where 1( )w r  is the displacement amplitude in the z - direction as a function of radial 

displacement only;  ω is the natural angular frequency of the compound plate; and m is the 

wave number in the circumferential direction. Rewriting Eq. (32) in terms of 1( )w r  and 

using Eq. (34), after canceling the exponential term one would get; 

 
2 2

3 1 2 1 1 1 0 1 0P w P w P w P wΔΔΔ ΔΔ ω Δ ω− − + =  (35) 

where 2 2 2 2d dr d rdr m rΔ = + −  

Eq. (35) can be solved by the method of decomposition operator and noting that the 1w  is 
non-singular at the center of the plate its general solution yields to 

 
3

1
1

( )nm nm n
n

w A Z rα
=

= ∑  (36) 

here  

 1 1xα = , 2 2xα = , 3 3xα =  (37) 

in which x1, x2 and x3 are the roots of the following cubic characteristic equation, 

 3 2 2 2
3 2 1 0 0P x P x P x Pω ω− − + =  (38) 

and 

 
( ) , 0

( ) ( , )
( ) , 0

m i i
im i im i

m i i

J r x
Z r Z r

I r x

α
α α

α
<⎧

= = ⎨ >⎩
 (39) 

here i=(1,2,3) and ( )m iJ rα , ( )m iI rα are the first type and the modified first type Bessel 

function ,both of them of the order of m. In order to obtain appropriate solution for ( , , )r tϕ θ , 

we assume; 

 ( )
1( , , ) ( )

i m t
r t r e

θ ωϕ θ ϕ −=  (40) 

then substituting Eq. (36) in to Eq. (31)we arrive to the following relation for ( , , )r tϕ θ ; 

 

3
1 2 2

1 31 33 31
1

4 2
1 2 11 0 11

( ) 16 (2

( ) ) ( )

nm p n n p
n

n nm n

r e A h s h e

D D P Z r

ϕ Ξ α

α Ξ ω Ξ α

−

=

⎡⎡ ⎤= −⎣ ⎦ ⎣

⎤+ + ×⎦

∑
 (41) 

7. Case studies, results and discussions 

We will solve above the relations in this section; the material parameters and geometries are 

listed in Table 1. 
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FGM Plate: Ec = 205 GPa  ρc =8900  (kg/ m3) 

 Em = 200 GPa ρm =7800 

PZT4: 11
EC = 132 33

EC = 115 

55
EC = 26 GPa 13

EC = 73 12
EC = 71 

e31 =-4.1 (C/m2) e33 =14.1 e15 =10.5  

11Ξ =7.124 (nF/m) 33Ξ =5.841  ρp =7500 (kg/ m3) 

   

Geometry(mm): r0=600 hf =2, hp =10  

Table 1. Material properties and geometric size of the piezoelectric coupled FGM plate [13,17] 

7.1 Clamped circular piezo-coupled FGM plate 
The boundary condition is given by 

 1 1 1 00 ( )w dw dr d dr at r rϕ= = = =  (42) 

and the characteristic equation is 

 

11 12 13

21 22 23

31 32 33

0

c c c

c c c

c c c

=  (43) 

 

1 0 2 0 0

2 3 5 4
0 1 2 0 11 1 2 11

3 02 2 3
31 31 0

( ),     ( )

( ) ( )
( )

8 16 16

i im i i i im i

p i i p i p i
i im i

c Z r c r Z r

h r s D D h r D D h
c Z r

e e r

α α α

α α Ξ α λ Ξ
α

′= =

⎛ ⎞+ +
⎜ ⎟ ′= − +
⎜ ⎟
⎝ ⎠

 (44) 

 

1
2 4

0
1 2

2( )f f p ph h
r

D D

ρ ρ ω
λ

⎡ ⎤+
⎢ ⎥=

+⎢ ⎥⎣ ⎦

#
 (45) 

 
2

1 2
2
0 2( )f f p p

D D

h hr

λω
ρ ρ

+
=

+#  (46) 

in which the ()’ symbol indicates the derivative with respect to r and λ is the 
nondimensional angular natural frequency.  
After calculating ω from Eq. (43) and using Eqs. (36, 42) we find the mode shape for w1 as; 

 

3 2 2 0 3 3 0 2 3 3 0 2 2 0
1 3 1 1

2 1 1 0 2 2 0 1 2 2 0 1 1 0

1 3 3 0 1 1 0 3 1 1 0 3 3 0

2 1 1 0 2 2 0 1 2 2 0 1 1

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) (

m m m m
m m

m m m m

m m m m

m m m m

Z r Z r Z r Z r
w r A Z r

Z r Z r Z r Z r

Z r Z r Z r Z r

Z r Z r Z r Z r

α α α α α α α
α α α α α α

α α α α α α
α α α α α α

⎡⎛ ⎞′ ′−
= × × +⎢⎜ ⎟′ ′−⎢⎝ ⎠⎣

′ ′−
′ ′−

]2 2 3 3
0

( ) ( )
)

m mZ r Z rα α
⎛ ⎞

× +⎜ ⎟
⎝ ⎠

 (47) 

and moreover, by using Eqs. (36, 41, 42) we have the electric potential as; 
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3 2 2 0 3 3 0 2 3 3 0 2 2 0
3

2 1 1 0 2 2 0 1 2 2 0 1 1 0

12 2 4 2
1 1 1 1 31 1 2 1 11 0 11 31 33

1 3 3 0 1

( ) ( ) ( ) ( )
ˆ( )

( ) ( ) ( ) ( )

         ( ) (2 ( ) ) 16

( )

m m m m
m

m m m m

m p p

m m

Z r Z r Z r Z r
r A

Z r Z r Z r Z r

Z r h s h e D D P e

Z r Z

α α α α α α
ϕ

α α α α α α

α α α Ξ ω Ξ Ξ

α α

−

⎡⎛ ⎞′ ′−
= × ×⎢⎜ ⎟′ ′−⎢⎝ ⎠⎣

⎡ ⎤ ⎡ ⎤× × − + + × +⎣ ⎦⎣ ⎦
′

+ 1 0 3 1 1 0 3 3 0

2 1 1 0 2 2 0 1 2 2 0 1 1 0

12 2 4 2
2 2 2 2 31 1 2 2 11 0 11 31 33

2 2 4 2
3 3 31 1 2 3 11 0 11

( ) ( ) ( )

( ) ( ) ( ) ( )

        ( ) (2 ( ) ) 16

(2 ( ) ) 16

m m

m m m m

m p p

p p

r Z r Z r

Z r Z r Z r Z r

Z r h s h e D D P e

h s h e D D P

α α α α
α α α α α α

α α α Ξ ω Ξ Ξ

α α Ξ ω Ξ

−

⎛ ⎞′−
×⎜ ⎟′ ′−⎝ ⎠

⎡ ⎤ ⎡ ⎤× × − + + × +⎣ ⎦⎣ ⎦

⎡ ⎤+ − + + ×⎣ ⎦
1

31 33 3 3( )me Z rΞ α
− ⎤⎡ ⎤⎣ ⎦ ⎥⎦

 (48) 

 

Power
Index 

Mode 
no. 

FGM plate 

g m Present 
Method 

Present 
(FEM) 

Error 
(%) 

Wang 
et al. 
[13] 

0 138.42 139.27 0.61 138.48

1 288.05 289.70 0.57 288.200 

2 472.55 473.45 0.19 472.79

0 134.63 135.43 0.59 - 

1 280.17 281.78 0.57 - 1 

2 459.62 460.45 0.18 - 

0 132.70 133.63 0.69 - 

1 276.19 278.04 0.67 - 3 

2 453.09 454.34 0.28 - 

0 132.12 133.06 0.70 - 

1 274.96 276.85 0.68 - 5 

2 451.06 452.39 0.29 - 

0 131.85 132.78 0.70 - 

1 274.39 276.25 0.67 - 7 

2 450.13 451.46 0.29 - 

0 131.69 132.70 0.76 - 

1 274.07 276.09 0.73 - 9 

2 449.60 450.84 0.28 - 

0 131.64 132.55 0.68 - 

1 273.96 275.79 0.67 - 10 

2 449.42 450.66 0.28 - 

Table 2. First three resonance frequencies (Hz) of FGM plate 

In order to validate the obtained results, we compared our results with those given in the 
literature [7,9,10].Further as there were no published results for the compound piezoelectric 
FGM plate, we verify the validity of obtained results with those of FEM results. 
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Our FEM model for piezo- FG plate comprises: a 3D 8-noded solid element with: number of 
total nodes 26950, number of total element 24276, 3 DOF per node in the host plate element 
and 6 DOF per node in the piezoelectric element. Tables 2 and 3 shows the numerical results 
of our method compared with other references and techniques. 
As one can see from Table 2, the obtained results from the analytical method when g=0 
(isotropic steel plate) corresponds closely with the results of [7-9] and FEM solution. As it is 
seen in these tables the maximum estimated error of our solution with FEM is about 1.51%. 
 

Power
Index 

Mode 
no. 

Coupled Piezo-FGM plate 

g m Present 
Method 

Present 
(FEM) 

Error 
(%) 

Wang 
et al. 
[13] 

0 143.63 144.69 0.73 143.71

1 298.92 300.49 0.52 299.070 

2 490.37 492.62 0.46 490.62

0 140.26 142.22 1.38 - 

1 291.89 295.82 1.33 - 1 

2 478.84 482.09 0.67 - 

0 138.54 140.60 1.46 - 

1 288.33 292.47 1.42 - 3 

2 472.99 476.61 0.76 - 

0 138.01 140.07 1.47 - 

1 287.21 291.39 1.43 - 5 

2 471.16 474.81 0.77 - 

0 137.76 139.82 1.47 - 

1 286.69 290.83 1.43 - 7 

2 470.30 473.95 0.77 - 

0 137.62 139.73 1.51 - 

1 286.40 290.54 1.43 - 9 

2 469.83 473.16 0.70 - 

0 137.57 139.61 1.46 - 

1 286.30 290.41 1.42 - 10 

2 469.66 473.26 0.76 - 

Table 3. First three resonance frequencies (Hz) for piezo-coupled FGM plate for various 
values of power index 

A close inspection of results listed in Tables 2 and 3 indicates that the amount of error between 
analytical and FEM results for the natural frequencies in FGM plate alone in the all vibration 
modes and for all values of g are less than the similar results for the compound plate. 
The obtained results in Table 3 indicate that by increasing the value of g, the frequency of 
system decreases in all different vibrational modes. Moreover, this decreasing trend of 
frequency for smaller values of g is more pronounced, for example by increasing value of g 
from 1 to 3 (~200%) the frequency of the first mode for the compound plate decreases by 
 

www.intechopen.com



Free Vibration of Smart Circular Thin FGM Plate   

 

113 

130

132

134

136

138

140

142

144

146

0 2 4 6 8 10

Power Index(g)

N
a

tu
ra

l 
F

re
q

u
e

n
c

y
 (

H
z
)

FGM Plate-Analytical FGM Plate-FEM

Piezo coupled FGM-Analytical Piezo coupled FGM-FEM

 

Fig. 2. Effect of power index on the natural frequencies (first mode) 
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Fig. 3. Effect of power index on the natural frequencies (third mode) 

1.23% but by increasing g from 3 to 9 (~ 200%) of the same plate and for the same mode, the 
frequency decreases by 0.66%. In order to see better the effect of g variations on the natural 
frequencies of the different plates, Fig. 2 and Fig. 3 also illustrate these variations for the first 
and third mode shapes. 
As it is seen from Figs. 2 and Fig. 3, the behavior of the system follows the same trend in all 
different cases, i.e. the natural frequencies of the system decrease by increasing of g and 
stabilizes for g values greater than 7. In fact for g>>1 the FGM plate becomes a ceramic plate 
and the compound plate transforms to a laminated plate with ceramic core as a host plate. 
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8. Conclusion 

In this paper free vibration of a thin FGM plus piezoelectric laminated circular plate based 
on CPT is investigated. The properties of FG material changes according to the Reddy’s 
model in direction of thickness of the plate and distribution of electric potential in the 
piezoelectric layers follows a quadratic function in short circuited form. The validity of the 
obtained results was done by crossed checking with other references as well as by obtained 
results from FEM solutions. It is further shown that for vibrating circular compound plates 
with specified dimensions, one can select a specific piezo-FGM plate which can fulfill the 
designated natural frequency and indeed this subject has many industrial applications. 
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