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1. Introduction  

Applications of sandwich construction and composites continue to expand. They are used in 
a number of industries such as the aerospace, automotive, marine and even sports 
equipment. Sandwich construction offers designers high strength to weight ratios, as well as 
good buckling resistance, formability to complex shapes and easy reparability, which are of 
extremely high importance in aerospace applications. Due to their many advantages over 
traditional aerospace materials, the analysis of sandwich beams has been investigated by a 
large number of authors for more than four decades. Sandwich construction can also offer 
energy and vibration damping when a visco-elastic core layer is used.  However, such non-
conservative systems are not the focus of the present study.  
The most common sandwich structure is composed of two thin face sheets with a thicker 
lightweight, low-stiffness core. Common materials used for the face layers are metals and 
composite while the core is often made of foam or a honeycomb structure made of metal. It 
is very important that the core, although weaker than the face layers, be strong enough to 
resist crushing. The current trend in the aerospace industry of using composites and 
sandwich material, to lighten aircraft in an attempt to make them more fuel efficient, has led 
to further recent researches on development of reliable methods to predict the vibration 
behaviour of sandwich structures.  
In the late 1960s, pioneering works in the field of vibration analysis of viscously damped 
sandwich beams (Di Taranto, 1965, and Mead and Marcus, 1968) used classical methods to 
solve the governing differential equations of motion, leading to the natural frequencies and 
mode shapes of the system. Ahmed (1971) applied the finite element method (FEM) to a 
curved sandwich beam with an elastic core and performed a comparative study of several 
different formulations in order to compare their performances in determining the natural 
frequencies and mode shapes for various different beam configurations. Interest in the 
vibration behaviour of sandwich beams has seen resurgence in the past decade with the 
availability of more powerful computing systems. This has allowed for more complex finite 
element models to be developed. Sainsbury and Zhang (1999), Baber et al. (1998), and 
Fasana and Marchesiello (2001) are just some among many researchers who investigated 
FEM application in the analysis of visco-elastically damped sandwich beams. The Dynamic 
Stiffness Method (DSM), which employs symbolic computation to combine all the governing 
differential equations of motion into a single ordinary differential equation, has also been 
well established. Banerjee and his co-workers (1995-2007) and Howson and Zare (2005) have 
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published numerous papers on DSM illustrating its successful application to numerous 
homogeneous and sandwich/composite beam configurations, with a number of papers 
focusing on elastic-core sandwich beams. It is worth noting that in all the above-mentioned 
sandwich element models, the beam motion is assumed to exhibit coupled bending-axial 
motion only, with no torsional or out-of-plane motion. Also, the layers are assumed to be 
perfectly and rigidly joined together and the interaction of the different materials at the 
interfaces is ignored. Although it is known that bonding such very much different materials 
will cause stress at the interfaces, the study of their interactions and behaviour at the 
bonding site is another research topic altogether and is beyond the scope of the present 
Chapter.  
Another important factor that largely affects the results of the sandwich beam analysis is the 
assumed vibration behaviour of the layers. The simplest sandwich beam model utilizes 
Euler-Bernoulli theory for the face layers and only allows the core to deform only in shear.  
This assumption has been widely used in several DSM and FEM studies such as those by 
Banerjee (2003), Ahmed (1971,1972), Mead and Markus (1968), Fasana and Marchesiello 
(2001), Baber et al. (1998), and in earlier papers by the authors; see e.g.,  Adique & Hashemi 
(2007), and Hashemi & Adique (2009). In more recent publications, Banerjee derived two 
new DSM models which exploit more complex displacement fields. In the first and simpler 
of the two (Banerjee & Sobey, 2005), the core bending is governed by Timoshenko beam 
theory, whereas the face plates are modeled as Rayleigh beams. To the authors’ best 
knowledge, the most comprehensive sandwich beam theory was developed and used by 
Banerjee et al. (2007), where all three layers are modeled as Timoshenko beams. However, 
increasing the complexity of the model also significantly increases the amount of numerical 
and symbolic computation in order to achieve the complete formulation. 
Classical FEM method has a proven track record and is the most commonly used method for 
structural analysis. It is a systematic approach, leading to element stiffness and mass 
matrices, easily adaptable to a wide range of problems. The polynomial shape functions are 
used to approximate the displacement fields, resulting in a linear eigenproblem, whose 
solutions are the natural frequencies of the system. Most commercial FEM-based structural 
analysis software also offer multi-layered elements that can be used to model layered 
composite materials and sandwich construction (e.g., ANSYS® and MSC 
NASTRAN/PATRAN®). As a numerical formulation, however, the versatility of the FEM 
theory comes with a drawback; the accuracy of its results depends on the number of 
elements used in the model. This is the most evident when FEM is used to evaluate system 
behaviour at higher frequencies, where a large number of elements are needed to achieve 
accurate results.  
Dynamic Stiffness Matrix (DSM) method, on the other hand, provides an analytical solution 
to the free vibration problem, achieved by combining the coupled governing differential 
equations of motion of the system into a single higher order ordinary differential equation.  
Enforcing the boundary conditions then leads to the system’s DSM and the most general 
closed form solution is then sought. The DSM formulation results in a non-linear eigenvalue 
problem and the bi-section method, combined with the root counting algorithm developed 
by Wittrick & Williams (1971), is then used as a solution technique. DSM provides exact 
results (i.e., closed form solution) for any of the natural frequencies of the beam, or beam-
structure, with the use of a single continuous element characterized by an infinite number of 
degrees of freedom. However, the DSM methods is limited to special cases, for which the 
closed form solution of the governing differential equation is known; e.g., systems with 
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constant geometric and material properties and only a certain number of boundary 
conditions.  
The Dynamic Finite Element (DFE) method is a hybrid formulation that blends the well-
established classical FEM with the DSM theory in order to achieve a model that possesses all 
the best traits of both methods, while trying to minimize the effects of their limitations; i.e., 
to fuse the adaptability of classical FEM with the accuracy of DSM. Therefore, the 
approximation space is defined using frequency dependent trigonometric basis functions to 
obtain the appropriate interpolation functions with constant parameters over the length of 
the element. DFE theory was first developed by Hashemi (1998), and its application has ever 
since been extended by him and his coworkers to the vibration analysis of intact (Hashemi 
et al.,1999, and Hashemi & Richard, 2000a,b) and defective homogeneous (Hashemi et al., 
2008), sandwich (Adique & Hashemi, 2007-2009, and Hashemi & Adique, 2009, 2010) and 
laminated composite beam configurations (Hashemi & Borneman, 2005, 2004, and Hashemi 
& Roach, 2008a,b) exhibiting diverse geometric and material couplings. DFE follows a very 
similar procedure as FEM by first applying the weighted residual method to the differential 
equations of motion. Next, the element stiffness matrices are derived by discretizing the 
integral form of the equations of motion.  For FEM, the polynomial interpolation functions 
are used to express the field variables, which in turn are introduced into the integral form of 
the equations of motion and the integrations are carried out and evaluated in order to obtain 
the element matrices. At this point, DFE applies an additional set of integration by parts to 
the element equations, introduces the Dynamic Trigonometric Shape Functions (DTSFs), 
and then carries out the integrations to form the element matrices. In the case of a three-
layered sandwich beam, the closed form solutions to the uncoupled parts of the equations of 
motion are used as the basis functions of the approximation space to develop the DTSFs.  
The assembly of the global stiffness matrix from the element matrices follows the same 
procedure for FEM, DSM and DFE methods. Like DSM, the DFE results in a non-linear 
eigenvalue problem, however, unlike DSM, it is not limited to uniform/stepped geometry 
and can be readily extended to beam configurations with variable material and geometric 
parameters; see e.g., Hashemi (1998). 
In the this Chapter, we derive a DFE formulation for the free vibration analysis of curved 
sandwich beams and test it against FEM and DSM to show that DFE is another viable tool 
for structural vibration analysis. The face layers are assumed to behave according to Euler-
Bernoulli theory and the core deforms in shear only, as was also studied by Ahmed 
(1971,1972). The authors have previously developed DFE models for two straight, 3-layered, 
sandwich beam configurations; a symmetric sandwich beam, where the face layers are 
assumed to follow Euler-Bernoulli theory and core is allowed to deform in shear only 
(Adique & Hashemi, 2007, and Hashemi & Adique, 2009), and a more general non-
symmetric model, where the core layer of the beam behaves according to Timoshenko 
theory while the faces adhere to Rayleigh beam theory (Adique & Hashemi, 2008, 2009). The 
latter model not only can analyze sandwich beams, where all three layers possess widely 
different material and geometric properties, but also it has shown to be a quasi-exact 
formulation (Hashemi & Adique, 2010) when the core is made of a soft material.   

2. Mathematical model 

Figure 1 below shows the notation and corresponding coordinate system used for a 
symmetrical curved three-layered sandwich beam with a length of S and radius R at the 
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mid-plane of the beam. The thicknesses of the inner and outer face layers are t while the 
thickness of the core is represented by tc. In the coordinate system shown, the z-axis is the 
normal co-ordinate measured from the centre of each layer and the y-axis is the 
circumferential coordinate and coincides with the centreline of the beam. The beam only 
deflects in the y-z plane. The top and bottom faces, in this case, are modelled as Euler-
Bernoulli beams, while the core is assumed to have only shear rigidity (e.g., the stresses in 
the core in the longitudinal direction are zero). The centreline displacements of layers 1 and 
3 are v1 and v2, respectively. The main focus of the model is flexural vibration, w, and is 
common among all three layers, which leads to the assumption v1 = -v2 = -v. 
 

 

Fig. 1. Coordinate system and notation for curved symmetric three-layered sandwich beams 

For the beam model developed, the following assumptions made (Ahmed, 1971): 

• All displacements and strains are so small that the theory of linear elasticity still applies. 

• The face materials are homogeneous and elastic, while the core material is assumed to 
be homogeneous, orthotropic and rigid in the z-direction. 

• The transverse displacement w does not vary throughout the thickness of the beam. 

• The shear within the faces is negligible. 

• The bending strain within the core is negligible. 

• There is no slippage or delamination between the layers during deformation. 
Using the model and assumptions described above, Ahmed (1971) used the principle of 
minimum potential energy to obtain the differential equations of motion and corresponding 
boundary conditions. For free vibration analysis, the assumption of simple harmonic motion 
is used, leading to the following form of the differential equations of motion for a curved 
symmetrical sandwich beam (Ahmed, 1971): 
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In the equations above, v(y) and w(y) are the amplitudes of the sinusoidally varying 

circumferential and radial displacements, respectively. E is the Young’s modulus of the face 

layers, Gc is the shear modulus of the core layer, and ρ and ρc are the mass densities of the 

face and core materials, respectively. The appropriate boundary conditions are imposed at 

y=0 and y=S.  For example, for  

• clamped at y = 0 and y = S; v = w = ∂w/∂y = 0.   

• simply supported at y = 0 and y = S; ∂v/∂y = w = ∂2w/∂y2 = 0.   

• cantilever configuration; at y = 0: v=w=∂w/∂y=0; and at y=S: ∂v/∂y=∂2w/∂y2=0 and a 

resultant force term of  γ β∂ ∂ + + ∂ ∂ =2 3 3 2[2 / 2 (2 / )] 0w y h v h w y , … 
For harmonic oscillation, the weak form of the governing equations (1) and (2) are obtained 

by applying a Galerkin-type integral formulation, based on the weighted-residual method.  

The method involves the use of integration by parts on different elements of the governing 

differential equations and then the discretization of the beam length into a number of two-

node beam elements (Figure 2).  

 

 

Fig. 2. Domain discretized by N number of 2-noded elements 

Applying the appropriate number of integration by parts to the governing equations and 

discretization lead to the following form (in the equations below, primes denote integration 

with respect to y):  

 δ α δ ω β δ β= − − +∫ ∫ ∫2 2 2 2
1

0 0 0

' ' ( 4 ) 2 '
l l l

k
vW v v dy v Q vdy v h w dy  (4) 

 δ γ δ β δ α ω δ β= + + − +∫ ∫ ∫ ∫2 2 2 2 2 2 2
2

0 0 0 0

" " ' ' ( / ) '2
l l l l

k
wW w w dy w h w dy w R Q wdy w h vdy   (5) 

All of the resulting global boundary terms produced by integration by parts before 

discretization in the equations above are equal to zero. The above equations are known as 

the element Galerkin-type weak form associated to the discretized equations (4) and ( 5) and 

also satisfy the principle of virtual work: 
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 = − = + − =( ) 0INT EXT v w EXTW W W W W W  (6) 

For the free vibration analysis, WEXT = 0, and 

 
Number of Elements

1

;  where  k k k k
INT v w

k

W W W W W
=

= = +∑  (7) 

In the equations above, ├v and ├w are the test- or weighting -functions, both defined in the 
same approximation spaces as v and w, respectively. Each element is defined by nodes j and 
j+1 with the corresponding co-ordinates (l=xj+1–xj). The admissibility condition for finite 
element approximation is controlled by the undiscretized forms of equations (4) and (5).  

3. Finite elements method (FEM) derivations 

Two different FEM models were derived for the curved beam model.  The first one has three 
degrees of freedom (DOFs) per node and uses a linear approximation for the axial 
displacement and a Hermite type polynomial approximation for the bending displacement.  

 + +=< > = +1 1 2 1( ) ( ) {   } ( ) ( )v j j v j v jv y N y v v N y v N y v  (8) 

+ + + +=< > = + + +1 1 1 2 3 1 4 1( ) ( ) {  '   ' } ( ) ( ) ' ( ) ( ) 'w j j j j w j w j w j w jw y N y w w w w N y w N y w N y w N y w  (9) 

In the equations above, vj, vj+1, wj and wj+1 are the nodal values at j and j+1 corresponding to 
the circumferential and radial displacements, respectively (these can be likened to the axial 
and flexural displacements for a straight beam).  wj’ and w’j+1 represent the nodal values of 
the rate of change of the radial displacements with respect to x (which can be likened to the 
bending slope for a straight beam). The same approximations were also used for ├v and ├w, 
respectively. The first FEM formulation is achieved when the nodal approximations 
expressed by equations (8) and (9) are applied to simplify equations (4) and (5). Similar 
approximations are also used for the corresponding test functions, ├v and ├w, and the 
integrations are performed to arrive at the classical linear (in ω2) eigenvalue problem as 
functions of constant mass and stiffness matrices, which can be solved using programs such 
as Matlab®.  
In the second FEM model the number of DOFs per node is increased to four and Hermite-
type polynomial approximations are used for both the axial and bending displacements.  

 + + + + +=< > = + + +1 1 1 2 1 3 1 4 1( ) ( ) {  '   ' } ( ) ( ) ' ( ) ( ) 'v j j j j v j v j v j v jv y N y v v v v N y v N y v N y v N y v  (10) 

 + + + +=< > = + + +1 1 1 2 3 1 4 1( ) ( ) {  '   ' } ( ) ( ) ' ( ) ( ) 'w j j j j w j w j w j w jw y N y w w w w N y w N y w N y w N y w  (11) 

In the equations above, vj, vj+1, wj and wj+1 are the nodal values at j and j+1 corresponding to 
the circumferential and radial displacements, respectively. vj’, v’j+1, wj’ and w’j+1 are the 
nodal values at j and j+1 for the rate of change with respect to y for the circumferential and 
radial displacements, respectively. The same approximations are also used for ├v and ├w.  
The second FEM formulation applies equations (10) and (11) to simplify equations (4) and 
(5) to produce the linear (in ω2) eigenvalue problem as a function of constant mass and 
stiffness matrices, which can again be solved using programs such as Matlab®. For the 
current research, both FEM models were programmed using Matlab®.  
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4. Dynamic finite element (DFE) formulation 

In order to obtain the DFE formulation, an additional set of integration by parts are applied 
to the element equations (4) and (5) leading to:  

 δ α δ ω δ β δ α δ β

×

= − + + + +∫ ∫ ∫
:++++++++++++++++; :++++++++++++++++++; :++++++++++;

2 4

2 2 2 2 2
1 0

0 0 0
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k l
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W v v Q vdy v vdy v v v h w dy  (12) 
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k
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×

∫
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 (13) 

Equation (12) and (13) are simply a different, yet equivalent, way of evaluating equations (4) 
and (5) at the element level. The follwing non-nodal approximations are defined 

 δ δ=< > =< >( ) { };    ( ) { };V Vv P y a v P y a  (14) 

 δ δ=< > =< >( ) { };    ( ) { },W Vw P y b w P y b  (15) 

where {a} and {b} are the generalized co-ordinates for v and w, respectively, with the basis 
functions of approximation space expressed as:  

 ε ε ε< > =( ) cos( )  sin( )/ ;VP y y y  (16) 

 σ τ σ τ σ
σ

σ σ τ σ τ
− −

< > =
+ +2 2 3 3

sin( ) cosh( ) cos( ) sinh( ) sin( )
( ) cos( )         ,W

y y y y y
P y y  (17) 

where ┝, ┫ and ┬ (shown below) are calculated based on the characteristic equations (*) and 
(**) in expressions (12) and (13) being reduced to zero.  

 
β β γ α ωωε σ τα γ

± − −
=

2 2 2 2 2 2 2 2 22
21

2 2

h (h ) 4 ( / )
;     ,  =

2

R QQ  (18) 

The non-nodal approximations (14) and (15) are made for ├v, v, ├w and w so that the integral 
terms (*) and (**) in expressions (12) and (13) become zero. The former term has a 2nd-order 
characteristic equation of the form A1D2 + B1 ω2 = 0, whereas the latter one has a 4th-order 
characteristic equation of the form A2D4 – B2D2 + C2ω2 = 0.  Solving (*) and (**) yields the 
solution to the uncoupled parts of (12) and (13), which are subsequently used as the 
dynamic basis functions of approximation space to derive the DTSFs. The nodal 
approximations for element variables, v(y) and w(y), are then written as: 

 =< > < >-1
n V n V 1 2( ) [P ]  {u } = ( ) {   };V Vv P y N y v v  (19) 

 =< > < >-1
n W n W 1 1 2 2( ) [P ]  {u } = ( ) {   '     ' };V Ww P y N y w w w w  (20) 
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where <N(y)v> and <N(y)w> are the dynamic (frequency-dependent), trigonometric, shape 
functions, DTSFs, of the approximation space. Similar expressions are also written for the 
weighting functions, ├v(y) and ├w(y). Substituting the above nodal approximations into (12) 
and (13) and carrying out the integrations and term evaluations leads to the following 
matrix form:  

 ω= + + =k
Uncoupled Uncoupled CouplingW ([ ]  [ ]  [ ]  ){ } [ ( )] { }k k k k

V W V n nk k k u k u  (21) 

where [k(ω)]k represents the frequency-dependent element dynamic stiffness matrix for 
coupled bending-axial vibrations of a curved symmetric sandwich beam element k. The 
appendix provides a more in-depth description of the process used to obtain the element 
matrices. The standard assembly method is used to obtain the global equation: 

 δ ω
=

=< > =∑
Number of Elements

1

W= [ ( )]{ } 0k

k

W U k U  (22) 

where [k(ω)] is the global, overall, dynamic Stiffness Matrix (DSM), and {U} stands for the 
vector of global DOFs of the system.   
Matlab® program was used in the calculation of the integral terms for the element dynamic 
stiffness matrix. It is worth noting that Matlab® performs the calculations using complex 
arithmetics and as a result some of the elements in the matrix [K]kCoupling are complex.  
However, the resulting dynamic stiffness matrix [k(ω)] is real and symmetric, with the 
imaginary parts of each element being zero.  

It should also be pointed out that in equation (12) an integral term containing 

“ 2(4 )v vdyδ β ”, was purposely left out of (*). This term represents the effect of the shear 

from the core on the face layers (SCF), and its inclusion in (*) would change the trigonometric 

basis functions to purely hyperbolic functions. This, in turn, makes it impossible to find the 

solution to the free vibration problem. However, above a given frequency, the excluded 

integral term can be included in the (*) term (using, e.g., an ’if’ statement) without any 

convergence problems. For the test cases being studied here, the critical frequency is much 

higher than the range being studied. Therefore, the SCF term is simply evaluated separately 

and using the originally proposed basis functions (16) and (17).  

5. Numerical tests and results 

The DFE is used to compute the natural frequencies and modes of curved symmetrical 
sandwich beams. The solution to the problem lies in finding the system eigenvalues (natural 
frequencies, ω), and eigenvectors (natural modes). A simple determinant search method is 
utilized to compute the natural frequencies of the system. The beam considered has a span 
of S = 0.7112 m, a radius of curvature of R = 4.225 m, with the top and bottom faces having 
thicknesses of t = 0.4572 mm, and a core thickness of tc = 12.7 mm. The material properties of 
the face layers are: E = 68.9 GPa and ρf = 2680 kg/m3, while the core has properties of Gc = 
82.68 MPa and ρc = 32.8 kg/m3.   

5.1 Cantilever end conditions 
The first test case investigates the natural frequencies of the beam described above, with 
cantilever end conditions. The DFE and FEM results (Table 1) are presented and compared 
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with those reported by Ahmed (1971), obtained from a 10-element FEM model of 2-noded 8-
DOFs beam elements. The model developed by Ahmed employs polynomial cubic Hermite 
shape functions for the approximation space of the field variables v, v’, w and w’. 
 

FEM; 3-DOF/node FEM; 4-DOF/node 
ωn 

rad/s 

FEM, 
10-Elem. 
Ahmed, 

1971 

DFE 
20-Elem.

DFE 
30- Elem.

DFE 
40-Elem.

20-Elem. 40-Elem. 20-Elem. 40-Elem. 

ω1 1124.69 1124.69 1121.93 1121.8 1121.67 1121.61 1121.61 1121.61 

ω2 1671.33 1678.87 1671.89 1668.37 1668.25 1665.67 1665.48 1664.98 

ω3 3430.62 3451.98 3420.38 3408.88 3420.32 3402.97 3402.41 3398.51 

ω4 5868.50 5901.80 5838.65 5817.10 5860.33 5811.82 5811.07 5799.69 

ω5 8664.51 8695.93 8600.30 8567.37 8659.42 8566.24 8564.74 8524.02 

Table 1. Natural frequencies (rad/s) of a clamped- free curved symmetric sandwich beam 

 

radial

circumferential

Mode 1; 1121.8 rad/s

circumferential

radial 
Mode 2; 1668.37 rad/s

radial 

circumferential

Mode 4; 5817.10  rad/sradial

circumferential

Mode 3; 3408.88rad/s

 

Fig. 3. First four ormalized modes for cantilever curved symmetric sandwich beam 

The frequency results for the FEM and DFE models agree very well with one another with 
the maximum difference of 1.53% for the fifth natural frequency for 20-element models 
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when comparing the DFE and the 4-DOF FEM. For the 40-element models, the largest 
difference is 0.51% again for the fifth mode when comparing the DFE and 4-DOF FEM. Also, 
the first four normalized modes were computed using DFE model for the cantilevered 
curved sandwich beam and are shown in the Figure 3 below, generated using a 40-element 
DFE model. The curved beam has a large radius of curvature compared to its span, so the 
mode shapes of a straight beam can be used as a rough guideline to gauge the acceptability 
of the current modes. The frequency values used in the calculations of the mode shapes of 
the beam are 99.99% of the natural frequencies because the displacements cannot be 
evaluated as the true value of the natural frequency is approached.  
As can be seen in Figures 3, all the mode shapes are dominated by radial displacements.  
This was expected as the bending stiffness of the beam is much smaller than its axial 
stiffness and the primary concern of the equations derived by Ahmed was to study the 
flexural behaviour of the beam (The undeformed shape of the beam was not included in the 
figures above because the beam’s short length (0.7112) with respect to its large radius of 
curvature (4.225 m) would make the beam appear nearly straight).  

5.2 Clamped-Clamped (C-C) end conditions 
The next test case uses the same beam properties as the previous example, with clamped-
clamped end conditions. The results of the DFE, and 3- and 4-DOF/node FEM formulations 
along with those reported by Ahmed (1971,1972) are listed in Table 2 below. For the first set 
of results from Ahmed (1971), shown in the second column of Table 2 below, each node has 
4-DOFs.  The 10-element FEM model developed employs similar polynomial Hermite shape 
functions such as those found in equations (10) and (11) for the approximation space of the 
field variables v, v’, w and w’, respectively. The results from Ahmed (1972), shown in the 
third column of Table 2, are from a 10-element FEM model where each node has 6-DOFs.  
The DOFs, in this case, are associated with circumferential displacement (v and v’), radial 
displacement (w and w’) and transverse shear in the x-y plane (φ and φ’, which none of the 
derived models takes into account). For each of the displacements, a Hermite polynomial 
shape function similar to expressions (10) and (11) was used to define the approximation 
space for both the field variables and weighting - or test - functions.   
 

FEM DFE 

10 Elements 
Ahmed, 1971, 1972

3-DOF 4-DOF ωn 

4-DOF 6-DOF 20-Elem 40-Elem 20-Elem 40-Elem

20 Elem. 30 Elem. 40 Elem. 

ω1 1658.76 1507.96 1653.73 1649.96 1649.84 1648.96 1665.67 1655.62 1652.23 

ω2 3279.82 2978.23 3272.97 3249.60 3250.92 3244.20 3295.53 3263.30 3252.30 

ω3 5585.75 5296.73 5563.57 5502.19 5508.34 5488.74 5580.10 5520.47 5499.99 

ω4 8243.54 7872.83 8208.29 8093.94 8107.70 8069.37 8203.96 8112.91 8081.62 

ω5 11102.4 10662.6 11054.8 10878.2 10900.1 10839.1 11020.1 10896.0 10853.0 

Table 2. Natural frequencies (rad/s) of a clamped- clamped curved symmetric sandwich beam 

Table 2 above, shows that for the first two natural frequencies, the DFE results are slightly 
larger than those obtained from both FEM formulations, but for the 3rd-5th frequencies, the 
DFE values are smaller than those found by the 3-DOF FEM formulation but larger than the 
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4-DOF FEM formulation. For 20-element FEM models, the largest difference is 1.4% seen 
between the 3-DOF and 4-DOF FEM formulations (in the 5th natural frequencies), but when 
the number of elements is increased to 40, the difference reduces to 0.36%, which is still the 
largest when comparing all three models.   
 

radial

circumferential

radial 

circumferential 

circumferential

radial

radial

circumferential

 

Fig. 4. First four ormalized modes for clamped-clamped curved symmetric sandwich beam 

The largest difference when comparing the 40-element DFE and 3-DOF FEM models is 
0.23% for the 5th natural frequency with the rest of the error being smaller.  When comparing 
the 40-element DFE and 4-DOF FEM models, the largest error is 0.25% for the 2nd mode. The 
dramatic decrease in the discrepancies of the three models indicates that they are all 
converging to nearly the same values for the natural frequencies. When comparing the 
results to those of Ahmed, it can be seen that they agree very well with the 4-DOF model, 
although, they are smaller in value. The main reason for this is that Ahmed only used 10 
elements and an increase in the number of elements used would give lower values. From 
Ahmed’s results for the 6-DOF model, it can be seen that they are considerably lower than 
all the calculated values. When comparing the DFE to Ahmed’s 6-DOF formulation, the 
largest differences can be seen for the first two natural frequencies with a difference of 9.56% 
and 9.20%, respectively.  For the 3rd, 4th and 5th frequencies, the difference between the DFE 
and Ahmed 6-DOF formulation is 3.84%, 2.65% and 1.79%, respectively. Ahmed (1971) 
states that the difference in values is most likely due to the differences in formulations 
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between the two models. The equations of motion upon which the DFE is based on ignores 
the shear of the face layers and the bending and axial stiffness of the core while the 6-DOF 
formulation takes all of these factors into account.  
The normalized natural modes of the curved sandwich beam, generated using a 40-element 
DFE model, are shown in Figures 4. As expected, the mode shapes for the curved 
symmetrical sandwich beam with clamped-clamped end conditions exhibit mainly radial 
displacement. Some circumferential displacement is also observed but is small when 
compared the magnitude of the radial displacement. This can be explained by the fact that 
the beam’s axial stiffness is much higher than its bending stiffness. Also, the mode shapes 
conform to the clamped-clamped boundary conditions applied to the beam; the radial and 
circumferential displacements are zero at the end points, as is also the slope.  

5.3 Simply supported-Simply supported (S-S) end conditions 
The third numerical case uses the beam described earlier in the chapter with both ends 
simply supported. The DFE, 3- and 4-DOF FEM formulations are used to calculate the 
beam’s natural frequencies and mode shapes. The results of these models are listed along 
with those reported by Ahmed (1971), obtained using a 10-element FEM model with 4-DOFs 
per node (see Table 3). The FEM model developed by Ahmed uses polynomial Hermite 
shape functions similar to equations (10) and (11) for the approximation space of the field 
variables v, v’, w and w’, respectively.  
As can be seen from the 2nd row in Table 3, there is a good agreement between all the 20-
element models, with the biggest discrepancy being between the DFE and the 4-DOF FEM 
formulations; the FEM 1st natural frequency is only 0.41% smaller than that obtained from 
the DFE. However, when the remaining frequencies are examined, the growing difference 
can be observed for the higher modes. When comparing the 20-element DFE and the 20-
element 3-DOF FEM formulations, the largest difference is for the 2nd natural frequency, 
with the FEM value being 1.21% smaller than the DFE result. The difference between the 
DFE and 3-DOF FEM results decreases with increasing mode number.   
 

FEM DFE 

3DOF 4DOF ωn 4DOF; 
10-Elem. 

Ahmed, 1971 20-Elem. 40-Elem. 20-Elem. 40-Elem.
20-Elem. 30-Elem. 40-Elem. 

ω1 1253.5 1248.60 1248.34 1248.34 1248.34 1253.50 1250.35 1249.47 

ω2 2475.58 2471.74 2466.65 2464.89 2464.89 2501.96 2480.60 2472.87 

ω3 4687.26 4690.84 4669.22 4662.06 4662.06 4746.95 4697.94 4680.97 

ω4 7382.74 7405.49 7354.72 7337.82 7337.82 7478.88 7397.82 7370.11 

ω5 10298.1 10351.3 10261.4 10231.4 10231.4 10433.9 10318.9 10279.0 

Table 3. Natural frequencies (rad/s) of a simply-supported curved symmetric sandwich beam 

Increasing the number of elements from 20 to 40, reduces the difference between the two 
models for the 2nd frequency to 0.25% remaining the maximum and the difference for the 
other frequencies decreasing with the increase in mode number.   
Comparing the 20-element DFE and the 4-DOF FEM models, the trend is reversed; the two 
values are closest for the 1st natural frequency and increase with the higher modes with the 
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largest difference being for the 5th frequency, where the FEM value is 1.94% smaller than 
that of the DFE. When the number of elements used in the model is increased to 40, the 
agreement between the two formulations becomes much better with the maximum relative 
error being 0.46% for the 5th frequency. Increasing the number of elements from 20 to 40 
considerably reduces the relative error between all the models; i.e., convergence. For the 1st 
natural frequency, there is a perfect match between Ahmed’s results and the 20-element 
DFE model. But with the increase in the mode number, the difference between the DFE and 
Ahmed’s results grow to a maximum of 1.32% for the 5th natural frequency.   
As seen in Table 3 above, increasing the number of elements in the DFE to 40 reduces the 
values of all the DFE frequencies lower than those reported by Ahmed; the maximum 
difference is now in the 1st mode, with the DFE frequency 0.32% smaller than the value 
reported by Ahmed. Although increasing the number of elements seems to have gone in the 
opposite direction of what it was intended, it should be noted that Ahmed (1971) only used 
10 elements in the reported FEM results and based on the trend observed, increasing the 
number of elements will lower the values of the frequencies, better matching the DFE results.   
Using the 40-element DFE model, the mode shapes are calculated and illustrated in Figures 
5 below. The mode shapes were found using values 99.99% of the actual natural frequencies 
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Fig. 5. First four normalized modes for clamped-clamped curved symmetric sandwich beam 

of the system because displacements of the system become impossible to evaluate at the 
values near the natural frequencies. As can be seen from Figures 5, the mode shapes for the 
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curved symmetric sandwich beam with simply supported end conditions are dominated by 
radial displacement which is the expected result due to the beam’s high axial stiffness in 
comparison to its bending stiffness. It is worth noting that at the end points some axial 
displacement is observed.  This is in accordance with the fact that for the simply supported 
end condition, the circumferential displacement is not forced to zero, giving the possibility 
of a non-zero value for displacement at the end points.  

5.4 Simply-Supported (S-S) straight symmetric sandwich beam  
In the final numerical test, the curved symmetrical sandwich beam formulation is applied to 
a straight beam case. The beam has a length of S = 0.9144 m, radius R = ∞, with face 
thickness t = 0.4572 mm and core thickness tc = 12.7 mm. The mechanical properties of the 
face layers are: E = 68.9 GPa and ρf = 2680 kg/m3, while the core has properties of Gc = 82.68 
MPa and ρc = 32.8 kg/m3.  The natural frequencies of the beam are calculated using the DFE 
method as well as the 3-DOF and 4-DOF FEM formulations and compared to the data 
published by Ahmed (1971) (see Table 4). In the case of a straight beam, the radial 
displacement and circumferential displacements directly translate into the flexural and axial 
displacements, respectively.  
 

FEM DFE 

3DOF 4DOF ωn Ahmed,1971
4DOF 

10-Elem 20-Elem. 40-Elem. 20-Elem 40-Elem.
20-Elem. 30-Elem. 40-Elem. 

ω1 361.35 359.27 359.02 358.90 358.90 370.02 363.55 361.41 

ω3 2938.6 2940.5 2924.3 2918.9 2918.9 3012.4 2958.6 2952.72 

ω5 6980.6 7044.7 6966.0 6939.9 6939.8 7169.2 6993.5 6987.1 

ω7 11574. 11740. 11559. 11498. 11498. 11885. 11667 11591. 

ω9 16299. 16582. 16284. 16184. 16182. 16729. 16423. 16316. 

Table 4. Natural frequencies (rad/s) of a simply-supported straight symmetric sandwich beam 

6. Conclusion 

Based on the theory developed by Ahmed (1971,1972) and the weak integral form of the 
differential equations of motion, a dynamic finite element (DFE) formulation for the free 
vibration analysis of symmetric curved sandwich beams has been developed. The DFE 
formulation models the face layer as Euler-Bernoulli beams and allows the core to deform in 
shear only. The DFE formulation is used to calculate the natural frequencies and mode 
shapes for four separate test cases. In the first three cases the same curved beam, with 
different end conditions, are used: cantilever, both ends clamped and lastly, both ends 
simply supported. The final test case used the DFE formulation to determine the natural 
frequencies of a simply supported straight sandwich beam.  
All the numerical tests show satisfactory agreement between the results for the developed 

DFE, FEM and those published in literature. For all test studies, when a similar number of 

elements are used, the DFE matched more closely with the 3-DOF FEM formulation than 

with Ahmed’s 4-DOF FEM results. The reason for this is that the DFE is derived from the 3-
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DOF FEM formulation and such a trend is expected. Ahmed (1971) goes on to explain that 

the addition of an extra degree of freedom for each node has a tendency to lower the overall 

stiffness of a sandwich beam element causing an overall reduction in values of the natural 

frequencies. The mode shapes determined by the DFE formulation match the expectations 

based on previous knowledge on the behaviour of straight sandwich beams. The results of 

the DFE theory and methodology applied to the analysis of a curved symmetric sandwich 

beam demonstrate that DFE can be successfully extended from a straight beam case to 

produce a more general formulation. The proposed DFE is equally applicable to the 

piecewise uniform (i.e., stepped) configurations and beam-structures. It is also possible to 

further extend the DFE formulation to more complex configurations and to model geometric 

non-uniformity and material changes over the length of the beam.  
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8. Appendix: development of DFE Stiffness matrices for curved symmetric 
Euler-Bernoulli/Shear sandwich beam  

The Dynamic Finite Element stiffness matrix for a symmetric curved sandwich beam is 

developed from equations (12) and (13) found in Section 4. Applying the approximations for 

the element variables, v(y) and w(y), and the test functions, δv(y) and δw(y), as shown in 

expressions (19) and (20) to element integral equations (12) and (13) yield the element DFE 

stiffness matrix defined in equation (21).   

First, let us consider the element virtual work corresponding to the circumferential 

displacement, v(y). Based on the governing differential equation (1), the critical value, or 

changeover frequency, is then determined from  

 ω β− =2 2
1 4 0Q  (A1) 

For the frequencies below the changeover frequency, the element integral equation (12) can be 

expressed as:  

δ α δ ω δ β δ α δ β

×

= − + + + +∫ ∫ ∫
:++++++++++++++++; :++++++++++++++++++; :++++++++++;

2 4

2 2 2 2 2
1 0

0 0 0

(*) [ ]  Coupling[ ]  Uncoupled

( " ) (4 ) [ ' ] ( 2 ) '

k
VWV

l l l
k l

V

kk

W v v Q vdy v vdy v v v h w dy  (12 repeated) 

where the first integral term, (*) vanishes due to the choice of the trigonometric basis 

function for v(y), as stated in: 

 ε ε ε< > =( ) cos( )  sin( )/ ;VP y y y  (16 repeated) 

The next two terms, produce a symmetric 2x2 matrix [ k ]Vk that contains all the uncoupled 

stiffness matrix elements associated with the displacement v(y). The inclusion of SCF term in 
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(*) would make the solution to the corresponding characteristic equation (also used as basis 

functions of approximation space) change form trigonometric to purely hyperbolic 

functions. This, in turn, would lead to solution divergence of the DFE formulation, where 

natural frequencies of the system cannot be reached using the determinant search method.  

For the test cases examined here, the changeover frequency for the faces is well above the 
range of frequencies being studied; therefore, the SCF term, representing the shear effect 
from the core on the face layers, is kept out of the integral term (*) and evaluated as a part of 
the second term, [ k ]Vk.   
For the frequencies above the changeover frequency, the element integral equation can be re-
written as:  

 δ α δ ω β δ α δ β

×

= − + − + +∫ ∫
:++++++;:++++++++++++++++++++++; :++++++++++;

2 4

2 2 2 2 2
01

0 0

(*) [ ]  Coupling[ ]  Uncoupled

( " ( 4 ) [ ' ] ( 2 ) '

k
VWV

l l
k l

V

kk

W v v Q vdy v v v h w dy  (A2) 

where the SCF term is included in the integral term (*), which vanishes due to the choice of 
purely trigonometric basis functions for v(y), similar to (16). The next term, then produces a 
symmetric 2x2 matrix [ k ]Vk that contains all the uncoupled stiffness matrix elements 
associated with the displacement v(y) and the final term, produces a 2x4 matrix [kVW] that 
contain all the terms that couple the displacement v(y) with w(y).   

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

(1,1) (1,2)
[ ]

. (2,2)
V Vk

V

V

k k
k

sym k
 (A3) 

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

(1,1) (1,2) (1,3) (1,4)
[ ]

(2,1) (2,2) (2,3) (2,4)
VW VW VW VWk

VW

VW VW VW VW

k k k k
k

k k k k
 (A4) 

Now considering equations (13): 

δ γ δ β δ α ω

δ β δ γ δ γ δ

= − + − +

+ − +

∫
:+++++++++++++++++++++++++++++++++++;

:++++++++++++++++++++++++++++++;

2 2 2 2 2 2
1

0

(**)

2 2 2 2
00 0

[ ]  Uncoupled

( "" " ( / ))

                            [ ' ] [ " '] [ "' ]  '(

k
W

l
k

W

l l l

k

W w w h w R Q wdy

w h w w w w w w β

×

∫
:++++++++++;

4 2

2

0

[ ]  Coupling

2 )

WV

l

k

h vdy

 (13 repeated) 

The first integral term, (**), in equation (13), vanishes due to the choice of mixed 
trigonometric-hyperbolic basis functions for w(y), similar to (17): 

σ τ σ τ σ
σ

σ σ τ σ τ
− −

< > =
+ +2 2 3 3

sin( ) cosh( ) cos( ) sinh( ) sin( )
( ) cos( )         ,W

y y y y y
P y y    (17 repeated) 

The next three terms, produce a symmetric 4x4 matrix [k]Wk that contain all the uncoupled 
stiffness matrix elements associated with the displacement w(y). The final term, produces a 
4x2 matrix [kWV] that contain all the terms that couple the displacement w(y) with v(y). It is 
important to note that [kWV] = [kVW]T.  

www.intechopen.com



Free Vibration Analysis of Curved Sandwich Beams: A Dynamic Finite Element   

 

53 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(1,1) (1,2) (1,3) (1,4)

(2,2) (2,3) (2,4)
[ ]

(3,3) (3,4)

. (4,4)

W W W W

W W Wk
W

W W

W

k k k k

k k k
k

k k

sym k

 (A5) 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(1,1) (1,2)

(2,1) (2,2)
[ ]

(3,1) (3,2)

(4,1) (4,2)

WV WV

WV WVk
WV

WV WV

WV WV

k k

k k
k

k k

k k

 (A6) 

Matrices (A3), (A4), (A5) and (A6) are added according to equation (21) in order to obtain 

the 6x6 element stiffness matrix for a symmetric straight sandwich beam. 
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