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Vibration Analysis of Beams with and without 
Cracks Using the Composite Element Model  

Z.R. Lu, M. Huang and J.K. Liu  
Sun Yat-sen University  

P.R. China   

1. Introduction    

Beams are fundamental models for the structural elements of many engineering applications 
and have been studied extensively. There are many examples of structures that may be 
modeled with beam-like elements, for instance, long span bridges, tall buildings, and robot 
arms.  
The vibration of Euler–Bernoulli beams with one step change in cross-section has been well 
studied. Jang and Bert (1989) derived the frequency equations for combinations of classical 
end supports as fourth order determinants equated to zero. Balasubramanian and 
Subramanian (1985) investigated the performance of a four-degree-of-freedom per node 
element in the vibration analysis of a stepped cantilever. De Rosa (1994) studied the 
vibration of a stepped beam with elastic end supports. Recently, Koplow et al. (2006) 
presented closed form solutions for the dynamic response of Euler–Bernoulli beams with 
step changes in cross section. 
There are also some works on the vibration of beams with more than one step change in 
cross-section.  Bapat and Bapat (1987) proposed the transfer matrix approach for beams with 
n-steps but provided no numerical results. Lee and Bergman (1994) used the dynamic 
flexibility method to derive the frequency equation of a beam with n-step changes in cross-
section. Jaworski and Dowell (2008) carried out a study for the free vibration of a 
cantilevered beam with multiple steps and compared the results of several theoretical 
methods with experiment.  
A new method is presented to analyze the free and forced vibrations of beams with either a 
single step change or multiple step changes using the composite element method (CEM) 
(Zeng, 1998; Lu & Law, 2009). The correctness and accuracy of the proposed method are 
verified by some examples in the existing literatures. The presence of cracks in the structural 
components, for instance, beams can have a significant influence on the dynamic responses 
of the whole structure; it can lead to the catastrophic failure of the structure. To predict the 
failure, vibration monitoring can be used to detect changes in the dynamic responses and/or 
dynamic characteristics of the structure. Knowledge of the effects of cracks on the vibration 
of the structure is of importance. Efficient techniques for the forward analysis of cracked 
beams are required. To this end, the composite element method is then extended for free 
and forced vibration analysis of cracked beams.  
The principal advantage of the proposed method is that it does not need to partition the 

stepped beam into uniform beam segments between any two successive discontinuity points 
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and the whole beam can be treated as a uniform beam. Moreover, the presented work can 

easily be extended to cracked beams with an arbitrary number of non-uniform segments.  

2. Theory  

2.1 Introduction to Composite Element Method (CEM)  

The composite element is a relatively new tool for finite element modeling. This method is 

basically a combination of the conventional finite element method (FEM) and the highly 

precise classical theory (CT).  In the composite element method, the displacement field is 

expressed as the sum of the finite element displacement and the shape functions from the 

classical theory. The displacement field of the CEM can be written as 

 ( , ) ( , ) ( , )CEM FEM CTu x t u x t u x t= +  (1) 

where ( , )FEMu x t  and ( , )CTu x t are the individual displacement fields from the FEM and CT, 

respectively. 
Taking a planar beam element as an example, the first term of the CEM displacement field 
can be expressed as the product of the shape function vector of the conventional finite 

element method ( )N x  and the nodal displacement vector q 

 ( , ) ( ) ( )FEMu x t N x q t=  (2) 

where 1 1 2 2( ) [ ( ), ( ), ( ), ( )]Tq t v t t v t t= θ θ  and ‘ v ’ and ‘θ ’ represent the transverse and rotational 

displacements, respectively.  
The second term uCT(x,t) is obtained by the multiplication of the analytical mode shapes 

with a vector of N coefficients c ( also called the c degrees-of-freedom or c-coordinates). 

 
1

( , ) ( ) ( )
N

CT i i
i

u x t x c t
=

=∑ϕ  (3) 

where  iϕ (i=1,2,…N) is the analytical shape function of the beam. Different analytical shape 

functions are used according to the boundary conditions of the beam. 

Like the FEM, the CEM can be refined using the h-refinement technique by increasing the 

number of finite elements. Moreover, it can also be refined through the c-refinement 

method, by increasing the number of shape functions. Here, we apply the c-refinement from 

the CEM, where the beam needs only to be discretized into one element. This will reduce the 

total number of degrees-of-freedom in the FEM. 

The displacement field of the CEM for the Euler-Bernoulli beam element can be written 

from Equations (1) to (3) as 

 ( , ) ( ) ( )CEMu x t S x Q t=  (4) 

where 1 2 3 4 1 2( ) [ ( ), ( ), ( ), ( ), ( ), ( ),..., ( )]NS x N x N x N x N x x x x= φ φ φ  is the generalized shape 

function of the CEM, 1 1 2 2 1 2( ) [ ( ), ( ), ( ), ( ), ( ), ( ),..., ( )]TNQ t v t t v t t c t c t c t= θ θ  is the vector of 

generalized displacements, and N is the number of shape functions used from the classical 
theory. 
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2.2 Vibration analysis for stepped beams without crack  

Figure 1 shows the sketch of a beam with n steps, the height of the beam ( )d x  with n step 

changes in cross section is expressed as 

 

1 1

2 1 2

1

0

( )

n n n

d x L

d L x L
d x

d L x L−

≤ <⎧
⎪ ≤ ≤⎪= ⎨
⎪
⎪ ≤ ≤⎩

B
 (5) 

It is assumed that the beam has aligned neutral axis, the flexibility of the beam ( )EI x  can be 

expressed as 

 

1

2

3

1

3

1 2

3

1

0
12

( ) 12

12
n

n n

wd
x L

wd
L x LEI x

wd
L x L−

⎧
⎪ ≤ <
⎪
⎪
⎪ ≤ ≤= ⎨
⎪
⎪
⎪
⎪ ≤ ≤
⎩

B
 (6) 

where w is the width of the beam. For the stepped beam with misaligned neutral axes, the 

expression of ( )EI x  can not expressed simply as shown in Equation (6). 
The beam mass per unit length is 

 

1 1

2 1 2

1

0

( )

n n n

wd x L

wd L x L
m x

wd L x L−

≤ <⎧
⎪ ≤ ≤⎪= ⎨
⎪
⎪ ≤ ≤⎩

B

ρ
ρ

ρ

 (7) 

where ρ is the mass density of the beam. 
The elemental stiffness matrix of the stepped beam can be obtained from the following 
equation 

 
2 2

2 20

[ ] [ ]
( )

[ ] [ ]

T
L qq qc

cq cc

k kd S d S
EI x dx

k kdx dx

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
∫e

K  (8) 

where the submatrix [ ]qqk  corresponds to the element stiffness matrix from the FEM for the 

stepped beam; the submatrix [ ]qck  corresponds to the coupling terms of the q-dofs and the 

c-dofs; submatrix [ ]cqk  is a transpose matrix of [ ]qck , and the submatrix [ ]cck  corresponds 

to the c-dofs and is a diagonal matrix. 
The consistent elemental mass matrix can be expressed as 

 
0

[ ] [ ]
( ) ( ) ( )

[ ] [ ]

TL qq qc

cq cc

m m
S x m x S x dx

m m

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
∫e

M  (9) 
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where the submatrix [ ]qqm  corresponds to the elemental mass matrix from the FEM for the 

stepped beam; the submatrix [ ]qcm  corresponds to the coupling terms of the q-dofs and the 

c-dofs; submatrix [ ]cqm  is a transpose matrix of [ ]qcm , and the submatrix [ ]ccm  corresponds 

to the c-dofs and is a diagonal matrix.  

After introducing the boundary conditions, this can be performed by setting the associated 

degrees-of-freedom in the systematic stiffness matrix K to be a large number, say, 1210 , the 

governing equation for free vibration of the beam can be expressed as 

 2( ) 0V− =K Mω  (10) 

where K and M are system stiffness and mass matrices, respectively, ω  is the circular 

frequency,   from which and the natural frequencies are identified. The ith normalized mode 

shapes of the stepped beam can be expressed as 

 
4

4
1 1

N

i i i i i
i i

N V V +
= =

Ψ = +∑ ∑ϕ  (11) 

The equation of motion of the forced vibration of the beam with n steps when expressed in 
terms of the composite element method is 

 ( )Q Q Q f t+ + =M C K$$ $  (12) 

where M and K are the system mass and stiffness matrices, which are the same as those 

shown in Equation (10), C is the damping matrix which represents a Rayleigh damping 

model,say, 1 2a a= +C M K , 1a  and 2a  are constants to be determined from two modal 

damping ratios. For an external force F(t) acting at the location Fx  from the left support, the 

generalized force vector ( )f t  can be expressed as 

 1 2 3 4 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

F F F F F n Ff t N x N x N x N x x x F t= ⎡ ⎤⎣ ⎦Aφ φ  (13) 

The generalized acceleration Q$$ , velocity Q$  and displacement Q  of the stepped beam can 

be obtained from Equation (12) by direct integration. The physical acceleration ( , )u x t$$  is 

obtained from  

 ( , ) [ ( )]Tu x t S x Q= $$$$  (14) 

The physical velocity and displacement can be obtained in a similar way, i.e. 

 ( , ) [ ( )]Tu x t S x Q= $$ ,  (15a) 

 ( , ) [ ( )]Tu x t S x Q=  (15b) 

2.3 The crack model  

Numerous crack models for a cracked beam can be found in the literature. The simplest one 
is a reduced stiffness (or increased flexibility) in a finite element to simulate a small crack in 
the element (Pandey et al., 1991; Pandy & Biswas, 1994). Another simple approach is to 
divide the cracked beam into two beam segments joined by a rotational spring that 
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represents the cracked section (Rizos et al., 1990; Chaudhari & Maiti, 2000). Christides and 
Barr (1984) developed the one-dimensional vibration theory for the lateral vibration of a 
cracked Euler-Bernoulli beam with one or more pairs of symmetric cracks. 

According to Christides and Barr(1984), the variation of bending stiffness ( )dEI x  along the 

cracked beam length takes up the form of 

 0( )
1 ( 1)exp( 2 / )

d
c

EI
EI x

c x x d
=

+ − − −α
 (16) 

where E is the Young’s modulus of the beam, 3
0 /12I wd=  is the second moment of area of 

the intact beam, 31 /(1 )rc C= − , /r cC d d=  is the crack depth ratio and cd and d are the 

depth of crack and the beam, respectively, cx  is the location of the crack. α is a constant 

which governs the rate of decay and it is estimated by Christides and Barr from experiments 

to be 0.667. According to Lu and Law (2009), this parameter needs to be adjusted to be 1.426.  

2.4 Vibration analysis for beams with crack(s)  

The elemental stiffness matrix of the cracked beam can be obtained from the following 
equation 

 
2 2

2 20

[ ] [ ]
( )

[ ] [ ]

T
L qq qc

d
cq cc

k kd S d S
EI x dx

k kdx dx

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
∫e

K  (17) 

It is assumed that the existence of crack does not affect the elemental mass matrix, the 

elemental mass matrix can be expressed in the similar way with the intact beam 

 
0

[ ] [ ]
( ) ( ) ( )

[ ] [ ]

TL qq qc

cq cc

m m
S x m x S x dx

m m

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
∫e

M  (18) 

The equation of motion of the forced vibration of a cracked beam with n cracks when 
expressed in terms of the composite element method is 

 
1 1, , ,( ,..., ,... ) ( )

i i n nL c L c L cQ Q x d x d x d Q f t+ + =M C K$$ $  (19) 

3. Applications Information 

3.1 Free and forced vibration analysis for beam without crack  
3.1.1 Free vibration analysis for a free-free beam with a single step 

The free vibration of the free-free beam studied in Koplow et al. (2006) is restudied using the 

CEM and the results are compared with those in Koplow et al. Figure 2 shows the geometry 

of the beam under study. The material has a mass density of 32830 /kg m=ρ , and a Young’s 

modulus of 71.7E GPa= . In the CEM when 350 numbers of c-dofs are used, the first three 

natural frequencies are converged. The first three natural frequencies of the beam are 

291.9Hz, 1176.2Hz and 1795.7Hz, respectively. The calculated natural frequencies from the 

CEM are very close to the experimental values in Koplow et al. when the test is measured at 

location A in Figure 2, which are 291Hz, 1165Hz and 1771Hz, respectively. The relative 
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errors between the CEM and the experimental values of the three natural frequencies are 

0.31%, 0.96% and 1.39%, respectively. This shows the proposed method is accuracte. 

3.1.2 Free vibration analysis for a cantilever beam with a several steps 

The cantilever beam studied in Jaworski and Dowell (2008) is restudied to further check the 

accuracy and effectiveness of the proposed method. Figure 3 shows the dimensions of the 

beam under study. The parameters of the beam under study are: 60.6E GPa=  and 
32664 /kg m=ρ .  In the CEM model of the beam, the beam is discretized into one element 

and 350 terms of c-dofs are used in the calculation. The first and second flapwise (out-of-

plane) bending mode frequencies are calculated to be 10.758 Hz and 67.553 Hz, and the first 

chordwise (in-plane) bending mode frequency is 54.699 Hz. The results from the CEM agree 

well with the theoretical results in Jaworski and Dowell  using Euler-Bernoulli theory, as 

shown in Table 1. 

3.1.3 Forced vibration analysis for a cantilever beam with two steps 

In this section, the forced vibration analysis for the stepped beam is investigated. The 

dynamic responses of the beam under external force are obtained from the CEM and the 

results are compared with those from the FEM. Figure 4 shows the cantilever beam under 

study. The parameters of the beam under study are 69.6E GPa=  and 32700 /kg m=ρ . A 

sinusoidal external force is assumed to act at free end of the beam with a magnitude of 1 N 

and at a frequency of 10 Hz. The time step is 0.005 second in calculating the dynamic 

response. The Rayleigh damping model is adopted in the calculation with 0.01 and 0.02 as 

the first two modal damping ratios. In the CEM model, the beam is discretized into one 

element and 350 c-dofs are used in the calculation of the dynamic responses. Figure 5 shows 

the displacement response, velocity response and acceleration response at the free end of the 

beam. In order to check the accuracy of the responses from the CEM, a forced vibration 

analysis for the beam is conducted using the FEM. The beam is discretized into 90 Euler-

Bernoulli beam elements with a total of 182 dofs.  The corresponding responses from the 

FEM and the CEM are compared in Figure 5. This indicates the accuracy of the proposed 

method for forced vibration of multiple stepped beam. Figure 6 gives a close view between 

the responses from two methods. From this figure, one can see that the two time histories in 

every subplot are virtually coincident indicating the excellent agreement between the time 

histories. 

3.2 Free and forced vibration analysis for beam with crack 
3.2.1 Free vibration analysis for a uniform cantilever beam with a single crack 

An experimental work in Sinha et al. (2002) is re-examined. The geometric parameters of the 

beam are: length 996mm, width 50mm, depth 25mm, material properties of the beam are: 

Young’s modulus 69.79E GPa= , mass density 32600 /kg m=ρ . The beam is discretized into 

one element and ten shape functions are used in the calculation with the total degrees-of-

freedom in the CEM equals 14, while the total degrees-of-freedom in the finite element 

model is 34 for the beam in Sinha et al. The crack depth in the beams varies in three stages of 

4mm, 8mm and 12mm. The comparison of predicted natural frequencies of the beam from 

the proposed model and those in  Sinha et al. and the experimental results are shown in 

Table 2. The proposed model, in general, gives better results than the model in Sinha et al. 
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since the latter crack model is a linear approximation of the theoretical crack model of 

Christides and Barr.  

3.2.2 Free vibration analysis for a cantilever beam with multiple cracks 

The last beam above is studied again with a new crack introduced. The first crack is at 
595mm from the left end with a fixed crack depth of 12mm while the second crack is at 
800mm from the left end with the crack depth varying from 4mm to 12mm in step of 4mm. 
Table 3 gives the first five natural frequencies of the beam by CEM method and compares 
with those from Sinha et al. and the experimental measurement.  The results from CEM are 
found closer to the experimental prediction than those in Sinha et al. The above comparisons 
show that the CEM approach of modeling a beam with crack(s) is accurate for the vibration 
analysis. A significant advantage of the model is the much lesser number of DOFs in the 
resulting finite element model of the structure. 

3.2.3 Forced vibration analysis for a cracked simply supported beam  

The forced vibration analysis for a simply supported cracked beam  is conducted in this 

section. The effects of the presence of crack on the dynamic response of the beam is 

investigated. The parameters of the beam under study are taken as: Young’s 

modulus 28E = GPa, width w=200mm, depth d=200mm, length L=8.0m, mass 

density 32500 /kg m=ρ . Two cases are investigated in the following.  

Effect of crack depth on the dynamic response 

An impulsive force is assumed to act at mid-span of the beam with a magnitude of 100N, the 

force starts to act on the beam from the beginning and lasts for 0.1 second. The time step is 

0.002 s in calculating the dynamic response. Rayleigh damping model is adopted in the 

calculation with 0.01 and 0.02 as the first two modal damping ratios. 

Figure 7 shows comparison on the acceleration response at the 1/4 span of the beam for 

different crack depth. The crack is assumed to be at the mid-span of the beam. From this 

figure, one can see that the crack depth has significant effect on the dynamic response of the 

beam.  

Effect of crack location on the dynamic response 

Figure 8 shows comparison on the acceleration response at the 1/4 span of the beam for 

different crack locations with a fixed crack depth / 0.3cd d = . The crack is assumed to be at 

the 0.1 L, 0.2L, 0.3L, 0.4L, and 0.5L of the beam. From this figure, one can see that the 

response changes with the crack location.  
These studies show that the effect of the crack on the dynamic response is significant, so it is 

feasible to identify crack from measured structural dynamic responses. 

4. Conclusion 

The composite element method is proposed for both free and forced vibration analyses of 

beams with multiple steps. As the composite beam element is of a one-element-one-member 

configuration, modeling with this type of element would not need to take into account the 

discontinuity between different parts of the beam. The accuracy of this new composite 

element has been compared satisfactorily with existing results. One advantage of the 
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method proposed is that it can be extended easily to deal with beams consisting of an 

arbitrary number of non-uniform segments. Regarding the free and forced vibration analysis 

for cracked beam using composite element, modelling with this type of element would 

allow the automatic inclusion of interaction effect between adjacent local damages in the 

finite element model. The accuracy of the present method has been compared satisfactory 

with existing model and experimental results. 

 

 

Fig. 1. Sketch of the stepped free-free beam with n segments 

 

 

Fig. 2. Sketch of the stepped free-free beam in Koplow et al. (2006). Dimension in millimetre 

 

 

Fig. 3. Cantilever beam in Jaworski and Dowell (2008) with up and down steps. Dimension 
in millimeter 

3.175 
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Fig. 4. Sketch of the stepped cantilever beam (dimensions are not scaled) 
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Fig. 5. Forced vibration dynamic response comparison between the CEM and FEM(- Solid: 
CEM; -- Dashed: FEM) 
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Fig. 6. Forced vibration dynamic response comparison between the CEM and FEM (a close 
view; - Solid: CEM, -- Dashed: FEM) 

 

 

Fig. 7. Comparison on the dynamic responses for different crack depth 
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Fig. 8. Comparison on the dynamic responses for different crack location  

 

Present Jaworski and Dowell (2008) 

CEM Rayleigh-Ritz CMA ANSYS Mode 

Euler Euler Euler Euler 
Timoshenk

o 
2D Shell 3D Solid 

Experiment 

1Bω  10.758 10.752 10.816 10.775 10.745 10.44 10.46 10.63 

2Bω  67.553 67.429 67.463 67.469 67.456 65.54 65.70 66.75 

1Cω  54.699 54.795 54.985 54.469 54.429 49.62 49.83 49.38 

Table 1. Natural frequencies [Hz] comparison for the stepped beam in Jaworski and Dowell 

(2008) 

Note: 1Bω , 2Bω  are the first and second out-of-plane bending mode frequencies, 

respectively. 

1cω  denotes the first in-plane bending mode frequency. 

CMA represents component modal analysis. 
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No crack 
1 4cd = mm at 

1 595x = mm 

1 8cd = mm at 

1 595x = mm 

1 12cd = mm at 

1 595x = mm Mod
e 

Exp. 
Propos

ed 
Exp. 

Sinha et 
al.(2002)

Propos
ed 

Exp. 
Sinha et 
al.(2002)

Propose
d 

Exp. 
Sinha et 
al.(2002) 

Propos
ed 

1 40.000 39.770 39.688 39.379 39.490 39.375 39.094 39.242 39.063 38.857 38.869 

2 109.688 109.340 109.063 108.206 108.633 108.125 107.132 107.670 105.938 106.278 106.293 

3 215.000 214.795 215.000 214.087 214.230 214.688 213.825 213.986 214.375 213.622 213.631 

4 355.000 354.853 354.688 353.107 353.683 353.438 351.872 352.524 350.625 350.881 350.921 

5 528.750 529.601 527.188 524.696 526.540 522.812 520.452 522.448 513.125 517.219 517.003 

 

Table 2. Comparison of natural frequencies (Hz) of the aluminium free-free beam with one 
crack in Sinha et al.(2002) 

 
 
 

No crack 

1 12cd = mm at 

1 595x = mm 

2 4cd = mm at 

2 800x = mm 

1 12cd = mm at 

1 595x = mm 

2 8cd = mm at 

2 800x = mm 

1 12cd = mm at 

1 595x = mm 

2 12cd = mm at 

2 800x = mm 

Mod
e 

Exp. 
Propos

ed 
Exp. 

Sinha et 
al.(2002)

Propos
ed 

Exp. 
Sinha et 
al.(2002)

Propose
d 

Exp. 
Sinha et 
al.(2002) 

Propose
d 

1 40.000 39.770 38.750 38.352 38.607 38.437 37.897 38.246 37.500 37.513 37.703 

2 109.688 109.340 105.938 105.890 106.196 105.938 105.510 106.062 105.625 105.559 105.858 

3 215.000 214.795 213.750 212.207 212.786 212.813 210.897 211.643 210.000 209.815 209.975 

4 355.000 354.853 350.000 348.920 349.843 349.063 347.235 348.410 345.625 345.876 346.374 

5 528.750 529.601 512.500 514.575 514.735 511.250 512.903 513.044 507.500 510.560 510.633 

 

Table 3. Comparison of natural frequencies (Hz) of the aluminium free-free beam with two 
cracks in Sinha et al.(2002) 
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