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1. Introduction 

The changing composition of the earth’s atmosphere is a matter of intense scientific research 
as we strive to understand details of the physical and chemical mechanisms that control our 
climate. Fourier transform spectroscopy has been applied very successfully to the study of 
trace gases in the atmosphere by examining terrestrial atmospheric absorption lines in the 
infrared spectrum from the Sun. In fact many gases were first discovered in the atmosphere 
during the 1940’s from their absorption features in the infrared solar spectrum. These early 
optical absorption measurements of the atmosphere using the Sun as a source were made 
with grating spectrometers and examples of atmospheric gases first detected this way 
include methane and carbon monoxide (Migeotte, 1948; 1949).  
Continuous or semi-continuous records of infrared solar atmospheric absorption spectra 
have been made from ground-based Fourier transform spectrometers (FTS) since the late 
1970s and early 1980s, when the first ground-based solar-tracking FTS systems were 
installed at Kitt Peak National observatory in the USA and at the Jungfraujoch Observatory 
in Switzerland (Goldman et al., 1979; Murcray et al., 1978; Zander et al., 1977). Initially interest 
was focused on the detection and quantification of stratospheric trace gases (Rinsland et al., 
1986; Zander et al., 1986). The discovery of the Antarctic ozone hole (Farman et al., 1985) 
intensified interest in stratospheric chemistry and helped support the establishment of the 
Network for Detection of Stratospheric Change (NDSC). This global network of instrument 
sites became operational in 1991 with ground-based FTS amongst the suite of primary 
techniques being used. Photographs of the instrument at the NDSC site at Wollongong, 
Australia are shown for illustrative purposes in figure 1 below. Other NDSC instruments are 
lidars for ozone, temperature, water and aerosols; microwave instruments for ozone, water 
and chlorine monoxide; UV/Visible spectrographs for ozone and nitrogen dioxide; 
Dobson/Brewer spectrophotometers for total column ozone and regular ozone sondes. The 
establishment of the NDSC resulted in a huge increase in the number of infrared solar 
absorption measurements being made around the globe during the next few years. 
More recently interest in atmospheric chemistry has been focused on tropospheric pollution 
and anthropogenic emissions of greenhouse gases (Barret et al., 2003; Jones et al., 2009; Mahieu 
et al., 1995; Nagahama and Suzuki, 2007; Paton-Walsh et al., 2008; Rinsland et al., 2000; Rinsland 
et al., 2001; Rinsland et al., 2002; Rinsland et al., 2008; Warneke et al., 2006; Zhao et al., 2000; Zhao  
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Fig. 1. The ground-based solar Fourier Transform infrared spectrometer at Wollongong, 
Australia. The sun’s radiation is captured by the solar tracker (shown above) and sent to the 
entrance optics of the high resolution Fourier transform spectrometer   in the laboratory 
below (shown right). (Photography by R Macatangay) 

et al., 2002). As a result, the NDSC has changed its emphasis and name to the Network for 

Detection of Atmospheric Composition and Change (NDACC) – see 

http://www.ndacc.org/. As well as an ever increasing number of sites in the global 

network the new millennium has seen an expansion into the near infrared spectra region in 
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an effort to provide extremely accurate and precise measurements of carbon dioxide and 

other greenhouse gases. The Total Column Carbon Observing Network (TCCON) was 

established to help characterise biogenic and oceanic sources and sinks of greenhouse gases 

to and from the atmosphere and to validate current and future satellite based measurements 

(http://www.tccon.caltech.edu/ ). 

2. Atmospheric solar infrared Fourier transform transmission spectra  

Fourier transform infrared spectroscopy is a powerful tool for monitoring the changing 
composition of the atmosphere because it can measure so many different gases 
simultaneously. The ability to measure atmospheric trace gases in the infrared is enhanced 
by the fact that the major components of the atmosphere (nitrogen, oxygen and argon) have 
no dipole moment and thus are infrared inactive. 
 

 

Fig. 2. An example spectrum recorded by a ground-based solar Fourier transform 
spectrometer 

In ground-based solar Fourier transform spectroscopy, the Sun acts as the radiation source 
and the sample is the atmosphere. The shape of the resulting spectrum depends upon the 
solar radiation reaching the top of the Earth’s atmosphere, absorption by the atmosphere 
and the optical properties of instrument recording the radiation. The solar radiation 
reaching the top of the Earth’s atmosphere is in essence a blackbody curve at 5800K with 
emission and absorption lines of gases in the solar atmosphere imposed. Terrestrial 
atmospheric absorption lines contain information about the species of trace gases present in 
the atmosphere (line positions), the amounts of each gas present (line depths/areas) and 
some information about the altitude distribution of each gas (line shapes).  In reality there is 
also a component of radiation as a result of atmospheric emission, but this is so small in 
comparison to the radiation from the sun that its effects are negligible.  
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3. Calculating synthetic solar atmospheric transmission spectra 

Clearly it is not possible to measure a background spectrum or a set of calibration spectra 
when the atmosphere is the sample. For this reason the analysis of these spectra requires the 
calculation of a synthetic spectrum using a database of absorption line parameters such as 
the HITRAN database (Rothman et al., 1998; Rothman et al., 2003; Rothman et al., 2005) and a 
model of the atmospheric conditions such as pressure, temperature and gas concentrations 
that all vary with altitude. The calculation must also take into account instrumental effects 
such as line shape and resolution. 
The HITRAN (HIgh resolution TRANsmission) database contains calculated quantum 
mechanical parameters that describe the vibrational-rotational transitions of the most 
common atmospheric molecules. Parameters include the line positions (frequencies of 
absorption lines), line strengths at a reference temperature and pressure, lower state energy 
and pressure broadening and shift parameters. 

3.1 Atmospheric absorption line positions 

The characteristic absorption features seen in Figure 2 are caused by molecules absorbing 
radiation at frequencies that correspond to the allowed transitions between different 
vibrational and rotational states.  The frequencies at which molecules absorb are determined 
by the allowed transitions between energy levels of the molecule and provide a unique 
identifier of trace gases in the atmosphere. Vibrational energy states are much more widely 
spaced than rotational energy states and so the line position is determined mainly by the 
change in vibrational state with small frequency differences depending on the 
accompanying change in rotational energy. 
The energy of allowed states of a simple diatomic molecule can be approximated by 
Equation 1: 

 1( ) ( 1)
2

k
E v BJ J= + + +¥

μ
  (1) 

(if it is assumed that molecule behaves like a simple harmonic oscillator and a rigid rotor) 
and where: 

•  ¥  is Planck’s constant divided by 2π,  

• k  and μ  are the force constant and the reduced mass of the molecule respectively,  

• B is the rotational constant (B= ¥ /2I, where I is the moment of inertia, the product of 
the reduced mass and the square of the radius of rotation) 

• and v and J are the vibrational quantum number and rotational quantum number of the 
state respectively. 

For diatomics the allowed transitions between states are Δv = ±1,±2,±3, . . and  ΔJ = ±1. 
A vibration-rotation transition with Δv= -1 results in an emission spectrum and a transition 
with Δv= +1 an absorption spectrum, and both types of spectra may be accompanied by 
either a gain in rotational energy ΔJ=+1 or a loss in rotational energy ΔJ= -1. This produces a 
spectrum with two branches, one either side of the pure vibrational frequency, v0.  The R 
branch corresponds to a vibrational transition accompanied by a gain in rotational energy 
ΔJ= +1 and consists of a set of lines spaced approximately 2B apart to the high frequency 
side of the pure vibrational frequency, v0, becoming more closely packed as the rotational 
energy increases further from the band centre, (assuming B1 < B0). The P branch corresponds 
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to a vibrational transition accompanied by a loss in rotational energy ΔJ= -1 and consists of a 
set of lines spaced approximately 2B apart to the low frequency side of the pure vibrational 
frequency, v0, becoming more widely spaced as the rotational energy increases away from 
the band centre. Linear polyatomic molecules can also vibrate in a manner such that the 
dipole moment is changed perpendicular to the principal axis of rotational symmetry and in 
this case the selection rules also allow ΔJ = 0, i.e. the vibrational energy change can occur 
without an accompanying change in rotational energy. In such spectra the Q-branch appears 
at the band centre between the P and R branches (at the pure vibrational frequency, v0). The 
Q-branch is a relatively intense feature because the vibrational transitions occur from all 
existing rotational states with approximately the same energy change and hence the same 
frequency. 

3.2 Line broadening and line shapes 

As a consequence of Heisenberg’s uncertainty principle, absorption lines are never infinitely 
narrow. The uncertainty in the energy of a state multiplied by the uncertainty in time (the 
lifetime of a state) must be greater or equal to ħ, (ΔEΔt > ħ). So the shorter the lifetime, the 
larger the uncertainty in a state’s energy and the broader the absorption or emission line (as 
the energy uncertainty manifests itself as an uncertainty in the frequency of the line). 
Uncertainty broadening due to the radiative or intra-molecular lifetime of the state in 
isolation is always present but for vibrational-rotational states is usually very small (< 10-6 
cm-1). Another form of uncertainty broadening, which dominates at atmospheric pressures, 
is collisional broadening (also called pressure broadening) and occurs when the collisions of 
atoms, ions or gas molecules shorten the lifetime of states. In gases it is proportional to 
pressure and this means that absorption lines from spectra taken through the whole 
atmosphere will have different shapes depending upon the distribution of the absorbing gas 
in the atmosphere. A gas that is mainly located in the troposphere (such as methanol) will 
display broad absorption lines because of the high pressure whilst predominantly 
stratospheric gases (like ozone) will produce much narrower lines since the pressure is low.  
Uncertainty broadening leads to a Lorentzian line shape contribution at a given 
wavenumber ǖ: 

 
2 2

0

/
( )

( )

L

L

L

f v
v v

=
− +

α π
α

 (2) 

where: 

• v0 is the absorption line frequency in wavenumbers, and  

• αL is the Lorentzian half-width at half height, which is proportional to the total 
pressure. 

Absorption lines due to atmospheric gases are also subject to Doppler broadening. Doppler 
broadening occurs because molecules that travel with different velocities with respect to the 
light source, absorb at different wavelengths, just as light from stars accelerating away from 
the Earth is red-shifted. Doppler broadening produces a Gaussian line shape due to the 
Gaussian distribution of molecular velocities: 

 
2

0
2

1 ( )
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v v
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where  

• αG is the Gaussian half-width at half height and is given by: 

 
2l

G

v kT

c m
=α  (4) 

where  

• k is the Boltzman constant,  

• T is the Kelvin temperature and  

• m is the molecular mass. 
Pressure broadening (with Lorentzian lineshape) dominates in the troposphere1, but its 
effects drop off rapidly with altitude as the pressure drops. Doppler broadening (with 
Gausssian line shape) is temperature dependent but its variation through the atmosphere is 
much smaller than pressure broadening. Stratospheric gas lines are primarily Doppler 
broadened and the two types of broadening become equally significant at around 25 km. 
The convolution of Lorentzian and Gaussian line shapes produces a Voigt line shape. This 
variation of the shape and width of absorption lines with the pressure of the absorbing gas 
means that spectra of atmospheric gases contain information about the altitude of the 
absorbing gas as well as the total number of absorbing molecules in the path.  

3.3 Atmospheric absorption line intensities  

The integrated line strength of each absorption line of each molecule is determined by the 
transition probability, the population and degeneracy of the initial state and the number of 
absorbing molecules in the path. In local thermodynamic equilibrium the population of 
states is determined by the Boltzmann distribution, which is dependent upon the 
temperature of the absorbing molecules and for this reason line strengths are temperature 
dependent.  
At a given wavenumber (v), the intensity of radiation (the radiative power) that reaches the 
ground I(v), is related to the radiative power at the top of the atmosphere I0(v) by Equation 5: 

 ( )
0( ) ( ) m vI v I v e−= τ  (5) 

where  

• Ǖ(v) is the optical depth of the atmosphere and  

• m is the airmass factor - a geometrical factor accounting for the slant path through the 
atmosphere. 

In order to calculate a synthetic spectrum all molecules that absorb in the spectral region 
being simulated must be considered together. At any given wavenumber (v), the 
contribution to the optical depth (τ) for every absorption line k of each molecule i, is given 
by  

 ( ) ( ).k k
i i ia=τ ν σ ν  (6) 

where  

• k
iσ (ǖ) is the absorption coefficient or cross section at  

                                                 
1 Typical values for a mid-size molecule are αL ~ 0.15 cm-1 atm-1 and αG ~ 0.004 cm-1. 
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• ǖ,  for each absorption line k of each molecule i, (typically in units cm2 molec-1)  

• ia  is the amount of molecule i, in units of molec cm-2.  

The absorption coefficient k
iσ (ǖ) is the convolution (⊗ ) of the integrated line strength,  k

iS  

and the pressure broadening and Doppler broadening line-shapes: 

 ( ) ( ) ( )
k kk k

i i L Gi i
S f v f v= ⊗ ⊗⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦σ ν   (7) 

The HITRAN 2004 database contains line parameters for 39 atmospheric gases including the 
wavenumber of each absorption line, the integrated line strengths at 296K, the lower state 
energy E0, the air-broadened Lorentzian half-width at atmospheric pressure and its 
temperature dependence. 
The integrated line strength is temperature dependent because of the temperature 
dependence of the population of the lower-state energy and a small contribution from the 
spontaneous emission. The integrated line strength at any given temperature (ST) may be 
calculated using the integrated line strengths at 296K and other parameters given in 
HITRAN with Equation 8: 

 

2 0 2 0

2 0 2 0

exp( ) (1 exp( ))
(296)

( ) (296) . .
( ) exp( ) (1 exp( ))

296 296

c E c v
Q T TS T S

c E c vQ T

− − −
=

− − −
 (8) 

where  

• Q(296) and Q(T) are the partition functions at these temperatures and  

• c2 is the second radiation constant, (c2=hc/k = 1.439 cm K) (Griffith, 1996).  

3.4 Calculating synthetic solar atmospheric transmission spectra 

The dry atmosphere is composed of mainly nitrogen (78%) and oxygen (21%) with minor 
and trace gases making up the other 1%. The normal modes of vibration of nitrogen and 
oxygen are infrared inactive because the symmetry of the molecules is such that vibrations 
do not cause a change in the dipole moment, so there is nothing for incoming infra-red 
radiation to interact with. Thus the main constituents of the atmosphere transmit infra-red 
radiation and the infrared spectrum of the atmosphere as shown in Figure 2 is dominated by 
minor constituents and trace gases such as water, carbon dioxide and methane. This is the 
reason that these species are important greenhouse gases. 
The temperature, pressure and concentrations of trace gases in the atmosphere change 
continuously with altitude. In order to calculate a synthetic spectrum the atmosphere is 
modelled as a series of homogeneous layers each with a defined temperature, pressure and 
gas composition2. To model the radiative transfer through the atmosphere the path length of 
radiation from the sun through each layer of the modelled atmosphere must be calculated 
using a ray-tracing algorithm that takes into account the solar zenith angle at the time of the 

                                                 
2 The amounts of atmospheric trace gases are often measured in mole ratios, defined as the number of 
moles of the substance of interest per mole of air. For trace gases the usual units are micro moles per 
mole (μmol.mol-1) – sometimes expressed as parts per million (ppm), e.g. 5 ppm CO means 5 molecules 
of carbon monoxide per million molecules of air). For ultra-trace gases the units often used are nano 
moles per mole (nmol.mol-1) or picomoles per mole (pmol.mol-1). 
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measurement and the effects of atmospheric curvature and refraction. At least thirty 
different atmospheric layers are required in order to do the radiative transfer calculation 
without errors in this calculation becoming a dominant  uncertainty (Meier et al., 2003). 
 

 

 

 

Fig. 3. The infrared transmission spectrum of water (top panel), carbon dioxide (middle 
panel) and methane (bottom panel) in the atmosphere from 500 cm-1 to 4400 cm-1 as 
simulated using the HITRAN 2000 database for a solar zenith angle of 70° and concentration 
profiles taken from US standard atmosphere (Meier et al, 2004) 
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Following on from Equation 6, when all the absorption lines of all molecules are considered, 
the total optical depth at any given frequency, Ǖ(v), is the sum of the contribution of all the 
absorption lines of all molecules, for all homogeneous layers: 

 ( ) ( )k
i

layers i k

v v= ∑ ∑∑τ τ  (9) 

The true atmospheric transmittance spectrum, T(v) is the ratio of the intensity at the ground, 
I(v), and the intensity at the top of the atmosphere, I0(v): 

 
0

( )
( ) exp( ( ))

( )

I v
T v v

I v
= = −τ  (10) 

The calculation of the synthetic spectrum must also include the effects of instrumental 
parameters such as the resolution and instrumental line-shape including phase error and 
wavelength shift. The spectrum that will actually be measured is a convolution of the 
intensity at the ground, I(v) and the instrumental line-shape. The instrumental line-shape 
(ILS) may be derived using measurements of low-pressure gas cells (Hase et al., 1999), or a 
theoretical ideal ILS can be calculated from the instrument’s field of view, resolution and the 
apodisation function3.  
Example simulations calculated in this manner are shown in Figure 3 (Meier et al., 2004). In 
these cases the infrared transmission spectra that result from just one component 
atmospheric gas at a time are given, namely water, carbon dioxide and methane. The spectra 
are simulated from 500 cm-1 to 4400 cm-1 using the HITRAN 2000 database for a solar zenith 
angle of 70° and concentration profiles taken from US standard atmosphere. 
 

4. Theoretical basis for the retrieval of trace gas amounts from atmospheric 
solar infrared Fourier transform transmission spectra 

4.1 Development of analysis algorithms 

Over the years several different analysis algorithms have been developed to perform the 
retrieval of trace gas amounts from solar FTIR spectra. All the techniques calculate a 
synthetic spectrum using a “forward model” as described above, that includes a model of 
the instrumental effects and a layered model of the atmosphere with assumptions about 
environmental parameters such as the pressure, temperature and composition of each layer. 
The synthetic spectrum is compared to the measured spectrum and adjustments made to the 
forward model until a best fit with the measured spectrum is obtained. 
Different analysis algorithms allow different adjustments to the forward model in order to 
achieve the best fit to the measurement. 

• “SFIT1” (Rinsland et al., 1982; Rinsland et al., 1984) and “GFIT” (Washenfelder et al., 2006) 

allow only a scaling of the a priori concentration profile of the absorbing gases to 

achieve best fit. This means that the distribution of the absorbing gas is defined entirely 

                                                 
3 An apodisation function is a mathematical function that is applied to the interferogram that may give 
greater weight to the information around zero path difference compared to information at greater 
optical path differences. In the analyses presented in this thesis a boxcar apodisation function was used 
that gives equal weight to the information throughout the interferogram. 
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by the a priori assumptions – the fitting process for example cannot put more gas in the 

troposphere and less in the stratosphere but must multiply the concentration in each of 

the modelled layers by the same multiplicative factor. 

• Later development “SFIT2” (Pougatchev et al., 1995) using optimal estimation techniques 

(Rodgers, 1990) aimed to extract the limited spectral information on the vertical 

distribution of the target gas, which is contained in the shape of the absorption features 

as a result of pressure broadening by the surrounding atmospheric gases (Hase et al., 

2004; Rinsland et al., 1998).  

• More recently another analysis code (“PROFITT”) has been developed using optimal 

estimation techniques that allows the temperature profile and concentration profiles to 

be adjusted (Hase et al., 2004). 

4.2 Inverse modelling and optimal estimation  

In contrast to GFIT, SFIT2 allows the volume mixing ratio profile of the absorbing gas in the 

simulated spectrum to be adjusted so that the shape of the absorption line can best fit the 

measured spectrum. The principle difficulty in this technique is that the radiative transfer 

model requires at least thirty atmospheric layers to achieve a reasonable model of the 

transmission of solar radiation through the atmosphere, but the shape of an absorption 

feature typically contains between one and five independent pieces of information. Thus the 

problem is mathematically underdetermined and much of the information must still be 

provided by the a priori concentration profile in the forward model.  

SFIT2 uses an inverse modeling technique (Rodgers, 1990; Rodgers, 2000) to extract the 

volume mixing ratio profile of the gases of interest from the measured spectrum. The 

volume mixing ratios of the gas of interest at each of the modeled layers are the variables of 

interest (called state variables or together the state vector x, with n elements). The measured 

spectrum (a series of observed radiances at different frequencies) is represented by the 

observation vector y (with m elements), and the forward model, F, describes the relationship 

between the observation vector y (the spectrum) and the state vector x, (the volume mixing 

ratios of the gases of interest). 

 ( , )y F x b= + ε  (11) 

where b is a parameter vector including all model variables that are not to be optimized (also 

called the model parameters), and ε is the error vector including errors in the observations, in 

the forward model, and in the model parameters. 

Inverting Equation 11, x may be obtained given y, but due to the error term ε the best that 

can be achieved is a statistical estimate. As stated before the problem is mathematically 

underdetermined and in optimal estimation x is weighted by our prior (a priori) knowledge 

of the state vector xa (the a priori volume mixing ratio profile). The optimal solution of x 

including this a priori knowledge is called the “optimal estimate” or the ‘retrieval’ (also 

sometimes called the “a posteriori solution”).  

The a priori estimate has its own error:  xa=x + εa and the key to solving the optimal 

estimation problem is weighting the error statistics of ε and εa (Rodgers, 2000). 

The inverse problem lends itself to the use of matrix algebra, and the Jacobian matrix, K, is a 

linearization of the forward model that represents the sensitivity of the observation 

variables y to the state variables x, assembled in matrix form (Jacob, 2007):  
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 x

y
K F

x

∂
= ∇ =

∂
 (12) 

K changes with x and so it is calculated initially for the a priori value xa and then re-

calculated iteratively until the solution converges. The algorithm iterates until the cost 

function J(x) is minimised by solving for ( ) 0x J x∇ =  as shown in Equation 13: 

 1 1( ) 2 ( ) 2 ( ) 0T
x a aJ x S x x K S Kx y− −∇ = − + − =ε  (13) 

where Sa and Sε are the a priori error and observational error covariance matrices 
respectively (the matrix equivalents of εa and ε ). Note that observational error includes 
errors in the forward model as well as spectral noise and that in many instances it is the 
forward model error that dominates the Sε matrix. 

The solution to Equation 13 yields the optimal estimate or retrieval x̂  and is given by Equation 14: 

 ˆ ( )a ax x G y Kx= + −  (14) 

where G is known as the gain matrix and describes the sensitivity of the retrieval to the 

observations, i.e. 
x̂

G
y

∂
=
∂

, and is given by Equation 15: 

 1 1 1 1( )T T
aG K S K S K S− − − −= +ε ε  (15) 

4.3 Uncertainties in retrieved trace gas amounts and the “averaging kernel”  

The ability of the measured spectrum to constrain the volume mixing ratio profile of the gas 

of interest, (the state vector, x) is given by the averaging kernel matrix 
x̂

A
x

∂
=
∂

, which 

represents the sensitivity of the retrieval x̂  to the true state vector x.  

The averaging kernel matrix, A=GK, i.e. it is the product of the gain matrix 
x̂

G
y

∂
=
∂

and the 

Jacobian matrix 
y

K
x

∂
=
∂

.  

The information content may be defined in terms of the degrees of freedom for signal which 
is the trace of the averaging kernel. Mathematically this is the sum of the diagonal elements 
of the averaging kernel matrix (Rodgers, 2000). 

Using the averaging kernel matrix leads to an alternative expression for the optimal estimate 

or retrieval x̂ : 

 ˆ ( )n ax Ax I A x G= + − + ε  (16) 

where In  is the identity matrix of dimension n. There are three terms on the right hand side 
of Equation 16. The first term, Ax represents the contribution of the true state x to the 
solution. The second term (In – A)xa represents the contribution of the a priori assumptions. 
The third term Gε is the contribution from random observational error. An ideal 
measurement would have an averaging kernel matrix that was an n dimensional identity 
matrix, A = In  in which case the 2nd term is zero (Jacob, 2007; Rodgers, 2000). 
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The second term in Equation 16, [(In – A)xa] is called the smoothing uncertainty (since it 
results in a smoothing of the retrieval towards the a priori values). The third term, Gε, is 
known as the retrieval uncertainty (or signal-to-noise uncertainty) but again it should be noted 
that this includes not only measurement noise but also errors in the forward model such as 
errors in the HITRAN database and that these factors often dominate the spectral noise. 
There may also be errors in the forward model that are correlated with one another and are 
therefore not random, potentially leading to uncharacterised biases in the retrievals. One 
other error that can be estimated is the temperature uncertainty, due to errors in the assumed 
temperature profile in the forward model. These lead to errors in the line strengths and 
resulting retrieved trace gas amounts that may be calculate using Equation 8.  

5. A summary of past successes for ground-based solar Fourier transform 
infrared spectroscopy of atmospheric composition 

In the late 1970’s there were two groups of researchers actively engaged in making solar 
infrared measurements of atmospheric composition from the ground. The scientific focus at 
the time was on understanding the chemistry of the stratosphere and many measurements 
were made using balloon-borne grating spectrometers (Murcray et al., 1975; Zander, 1976). 
Bradford et al (1976) outlined the feasibility of monitoring atmospheric trace gases using 
ground-based high resolution infrared spectroscopy. Within a couple of years the first 
scientific results from ground-based stations had been published, confirming the presence of 
hydrogen fluoride in the stratosphere from ground-based measurements from the 
Jungfraujoch in Switzerland, (47°N, 8.0°E) (Zander et al., 1977) and identifying atmospheric 
absorption features of ammonia in spectra from Kitt peak in the USA, (32°N, 112°W) 
(Murcray et al., 1978). In 1979 Goldman et al, published their “New Atlas of Infrared Solar 
Spectra” which included telluric absorption features of carbon dioxide, water, methane, 
carbon monoxide, nitrous oxide, ozone, carbonyl fluoride, chlorine nitrate, 
difluorochloromethane (CFC-22), dichlorodifluoromethane (CFC-12), sulphur hexafluoride 
and nitric acid as well as a number of absorption features from carbon monoxide and 
hydroxyl radicals in the solar atmosphere.  
As the capabilities increased more trace gases were added to the list of measureable species 
including hydrogen cyanide (Rinsland et al., 1982),  nitric oxide (Rinsland et al., 1984) and 
chlorine nitrate (Zander et al., 1986). After the  discovery of the Antarctic ozone hole (Farman 
et al., 1985) and the establishment of the Network for Detection of Stratospheric Change 
(NDSC), the number of ground-based Fourier transform spectrometers making solar 
atmospheric absorption measurements increased dramatically. During the first half of the 
1990’s Fourier transform solar remote sensing spectrometers were installed at a number of 
new sites including Lauder, New Zealand (45°S, 170°E) in 1990 (Jones et al., 1994); Mauna 
Loa, Hawaii (20°N, 156°W)(David et al., 1993) & Arrival Heights, Antarctica (78°S, 
167°E)(Kreher et al., 1996; Wood et al., 2004) in 1991, Ny Alesund, Spitzbergen (79°N, 12°E) in 
1992 (Notholt and Schrems, 1994) and Harestua, Norway (60°N, 11°E) in 1994 (Mellqvist et al., 
2002). In 1994 the first measurements using the moon as a light source were reported from 
Spitzbergen, enabling measurements of the Arctic atmosphere during polar night (Notholt, 
1994). 
In 1995 three additional sites were added to the network at Zugspitze, Germany (47°N, 
11°E) (Sussmann and Schafer, 1997), Rikubetsu, Japan (44°N, 144°E)(Zhao et al., 2000)  and 
Wollongong, Australia (34°S, 151°E) (Rinsland et al., 2001). The following year saw a further 
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three sites established at Kiruna, Sweden, (68°N, 20°E) (Blumenstock et al., 1997), Eureka, 
Nunavit (80°N, 86°W) (Batchelor et al., 2009; Donovan et al., 1997) and Moshiri, Japan (44°N, 
142°E) (Zhao et al., 2000). Measurements at Tsukuba, Japan (36°N, 140°E) started in 1998, 
followed by Thule, Greenland (77°N, 69°W), Poker Flat, Alaska (65°N, 147°W) and Izana, 
Tenerife Island (28°N, 16°W) all in 1999.  
In the meanwhile there were a number of mobile instruments operating.  The Jet Propulsion 
Laboratory’s “Mark IV” instrument was making regular balloon flights from Alaska 
interspersed with ground-based measurements from Esrange (68°N, 21°E), Fairbanks (65°N, 
148°W), Mount Barcroft (38°N, 118°W) or Table Mountain (34°N, 118°W) (Toon et al., 1999b). 
The Alfred Wegner Institute had a ship-borne spectrometer onboard the Polarstern (Notholt 
et al., 1995; Notholt et al., 2000), and the National Physical Laboratory had a mobile 
instrument that made a series of side-by-side instrument intercomparisons  with a number 
of other spectrometers in the network as well as a number of campaign measurements at 
Are, Sweden, Aberdeen, Scotland and Calar Alto, Spain (Bell et al., 1994; Bell et al., 1998; 
Paton-Walsh et al., 1997). In addition to instrument intercomparisons, there were a number of 
algorithm intercomparison exercises and a standard procedure for characterising the 
instrument line-shape was developed (Hase et al., 1999; Hase et al., 2004). Apriori profiles 
were most commonly based upon measurements from the balloon-based MarkIV 
instrument (Toon et al., 1999a) or from the ATMOS instrument that was flown on the Space 
Shuttle (Gunson et al., 1996). 
Early in the new millennium the NDSC changed its name to the Network for Detection of 
Atmospheric Composition Change (NDACC) to highlight the change in scientific focus from 
stratospheric chemistry to changing tropospheric composition and greenhouse gases. The 
NDACC database (see http://www.ndacc.org/) contains standard gases for most stations 
equipped with a remote sensing FTIR spectrometer including ozone, nitric acid, hydrogen 
chloride, chlorine nitrate, hydrogen fluoride, nitrous oxide, carbon dioxide, carbon 
monoxide, methane, ethane and hydrogen cyanide. Many stations also provide other gases 
such as CFCs, nitrogen dioxide, nitrogen oxide and acetylene. Further stations were added 
including Toronto, Canada (44°N, 80°W) in 2002 and Bremen, Germany (53°N, 9°E) in 2004, 
whilst campaign measurements have been made at sites including Reunion Island, (22° S, 
56°E)  (Senten et al., 2008), Paramaribo, Suriname (6°N, 55°W)(Petersen et al., 2010) and Addis 
Ababa (9°N, 39°E). Further gases have also been identified in spectra from solar remote 
sensing Fourier transform spectrometers included chlorine monoxide (Bell et al., 1996),  
formic acid, (Rinsland et al., 2004), ethylene(Rinsland et al., 2005) and methanol (Paton-Walsh 
et al., 2008). In addition there have been a number of studies that examine different isotopes 
(Frankenberg et al., 2009; Goldman et al., 2000; Goldman et al., 2002; Haverd et al., 2005; Irion et 
al., 1996; Meier and Notholt, 1996; Notholt et al., 2010). Trends in both stratospheric gases eg 
(Rinsland et al., 2003) and tropospheric gases eg (Jones et al., 2009) have been established from 
NDACC remote sensing FTIR spectrometers. Recently there has been significant interest in 
the ability of this technique to characterise free tropospheric water vapour and its isotopes 
(Palm et al., 2010; Schneider et al., 2010). The NDACC continues to provide ground-validation 
for a number of retrieved products from several different satellite-based sensors (Dils et al., 
2006; Dupuy et al., 2009; Mahieu et al., 2008; Payan et al., 2009; Strong et al., 2008; Vigouroux et 
al., 2007; Wolff et al., 2008; Yurganov et al., 2008). 
In 2004 the Total Carbon Column Observing Network (TCCON) was established with the 
aim of making very accurate measurements of greenhouse gases in the near-infrared 
spectral region (see https://tccon-wiki.caltech.edu/ ).  The primary function of TCCON was 
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to act as a network of ground-thruthing stations for the Orbiting Carbon Observatory (Crisp 
et al., 2004), however TCCON also had a remit to provide independent constraints to models 
of the carbon cycle and provide validation data to other satellite-based sensors. New sites 
were established at Park Falls, Wisconsin, USA (46°N, 90°W)(Washenfelder et al., 2006) and 
Darwin, Australia (12°S, 131°E) (Deutscher et al., 2009) whilst in a number of existing 
NDACC sites have been upgraded to allow for the extended spectral coverage and 
improved precision demanded for TCCON.  The failure of the launch of the Orbiting 
Carbon Observatory has meant that TCCON has yet to fulfil its primary function however a 
re-launch is now planned and in the meanwhile TCCON has started to elucidate details of 
the carbon cycle itself (Yang et al., 2007). More TCCON stations are being set-up and the data 
is available for the validation of other satellite instruments such as SCIAMACHY, AIRS, 
IASI and GOSAT(Bosch et al., 2006).  

6. Concluding remarks 

Remote sensing of atmospheric trace gases by ground-based solar Fourier transform 
infrared spectroscopy has developed rapidly since its origins in the 1970s. It has had major 
successes in characterising the composition of the atmosphere and trends in both 
stratospheric and tropospheric gases. Whilst the technique has greater uncertainties than 
ground level in situ measurements of atmospheric composition, it characterises the total 
atmospheric column amount. Interpretation of ground level measurements is often 
complicated by the effects of vertical transport and changing boundary layer height, but 
total column measurements are less sensitive to this problem because the measurement is 
integrated over the whole atmosphere. A significant drawback to these remote sensing 
techniques is that they are numerically ill-posed and thus some apriori information is 
required to derive total column amounts from the spectra. In future atmospheric models are 
likely to be constrained by use of combined in situ and remotely sensed data such that the 
total uncertainties are minimised. 
Remote sensing Fourier transform spectrometers play a vital role in our efforts to understand 
the changing composition of the atmosphere. The networks of ground-based instruments are 
continuing to expand, with improving precision & accuracy. These measurements will 
continue to improve our understanding of atmospheric composition and chemistry and 
provide ground validation for a new generation of satellite-based instruments. 
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