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On the Transport Phenomena in Composite 
Materials using the Fractal Space-Time Theory 

Vizureanu Petrică and Agop Maricel 
The “Gheorghe Asachi” Technical University from Iasi 

Romania 

1. Introduction 

A new way to analyze the dynamics of the physical systems is to consider that the particle 

movements take place on continuous but non-differentiable curves, i.e. on fractals. Then, the 

complexity of these dynamics is substituted by fractality. There are some fundamental 

arguments which can justify such hypothesis: i) by interaction, the trajectory is no longer 

everywhere differentiable. The “uncertainty” in tracking the particle is eliminated by means 

of the fractal approximation of motion; ii) the complex dynamical systems, which display 

chaotic behavior, are recognized to acquire self-similarity and manifest strong fluctuations 

at all possible scales. Every type of “elementary” process of motion induces both spatio-

temporal scales and the associated fractals. Moreover, the movement complexity is directly 

related to the fractal dimension: the fractal dimension increases as the movement becomes 

more complex. Different definitions were given for the fractal dimension (Kolmogorov 

dimension, Hausdorff dimension, etc.), but once we choose the fractal-type dimension in the 

study of motion we must work with it until the end.  

Therefore, considering that the complexity of the physical processes (from the system’s 

interactions) is replaced by fractality (situation in which the particle movements take place 

on fractal curves), it is no longer necessary to use notions as collision time, mean free path, 

etc., i.e., the whole classical “arsenal” of quantities from the dynamics of physical systems. 

Then, the physical systems will behave as a special interaction-less “fluid” by means of 

geodesics in a fractal space-time. The theory which treats the interactions in the previously 

mentioned manner is the Scale Relativity (SR).  

The SR is based on a generalization of Einstein’s principle of relativity to scale 

transformations. Namely, ”one redefines space-time resolutions as characterizing the state 

of reference systems scale, in the same way as speed characterizes their state of motion. 

Then one requires that the laws of physics apply whatever the state of the reference system, 

of motion (principle of motion-relativity) and of scale (principle of SR). The principle of SR 

is mathematically achieved by the principle of scale-covariance, requiring that the equations 

of physics keep their simplest form under transformations of resolution”. 

Another way of analyzing the system dynamics by means of the “fractals” is given by the 

Transfinite Physics (TP). The Transfinite Physics theory uses the Cantorian geometry as a 

working method. This geometry is a compromise between the discrete and the continuum. It 

is not simply discrete. It is transfinite discrete and has the cardinality of the continuum 
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although it is not continuous. Seen from a far it looks as if it were continuous. The result was 

startling because it is possible to simulate four dimensionality using infinitely many 

weighted Cantor sets. This created a geometry and topology for space-time that is similar to 

that of radiation and obeys the same statistical distribution, namely a discrete gamma 

distribution which is known in physics as Planck distribution. El Naschie defined this space-

time as ( )∞ε space-time.  

Many applications of the fractal space-time and particularly of ( )∞ε space-timewere given in 

references.  In the present paper, using the extended model of the Scale Relativity theory, 

the transport phenomena (speed and temperature fields) in composite materials are 

analyzed.  

2. A short reminder of the Nottale’s scale relativity theory in correspondence 
with Cresson’s mathematical procedures 

Let us suppose that the motion of particles take place on continuous but non-differentiable 

curves (fractal curves). The non-differentiability, according with Cresson’s mathematical 

procedures and Nottale’s physical principles, implies the followings: 

i. a continuous and a non-differentiable curve (or almost nowhere differentiable) is 
explicitly scale dependent, and its length tends to infinity, when the scale interval tends 
to zero. In other words, a continuous and non-differentiable space is fractal, in the 
general meaning given by Mandelbrot to this concept; 

ii. there is an infinity of fractals curves (geodesics) relating any couple of its points (or 
starting from any point), and this is valid for all scales; 

iii. the breaking of local differential time reflection invariance. The time-derivative of a 

function F can be written two-fold: 

 
0 0→ →

+ − − −
= =

dt dt

dF F(t dt) F(t ) F(t ) F(t dt)
lim lim

dt dt dt
  (1) 

Both definitions are equivalent in the differentiable case. In the non-differentiable situation 

these definitions fail, since the limits are no longer defined. “In the framework of scale 

relativity, the physics is related to the behavior of the function during the “zoom” operation 

on the time resolutionδ t , here identified with the differential element dt (substitution 

principle), which is considered as an independent variable. The standard function F(t) is 

therefore replaced by a fractal function F(t ,dt) , explicitly dependent on the time resolution 

interval, whose derivative is undefined only at the unobservable limit 0→dt ”. As a 

consequence, this lead us to define the two derivatives of the fractal function as explicit 

functions of the two variables t and dt, 

 
0

0

+

−

+

→

−

→

+ −
=

− −
=

dt

dt

d F F(t dt ,dt ) F(t ,dt )
lim

dt dt

d F F(t ,dt ) F(t dt ,dt )
lim

dt dt

 (2a,b) 

The sign, +, corresponds to the forward process and, -, to the backward process; 
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iv. the differential of a fractal function F(t ,dt ) can be expressed as the sum of two  

differentials, one which is not scale-dependent, 'dF (t) , and the other dependent on it, 
''dF (t ,dt ) , therefore 

 = +dF(t ,dt) dF'(t ) dF''(t ,dt )   (3) 

Particularly, the differential of the generalized coordinates, ±X(d t ,dt) , can be decomposed 

as follows 

 ± ± ±= +X x ξd (t ,dt ) d (t ) d (t ,dt)  (4a,b) 

where ±xd (t )  is the “classical part” and ±ξd (t ,dt)  is the “fractal part”. Starting from here, 

multiplying by 1−dt and using the substitutions  

 ±
± =

X
V

d

dt
, ±

± =
x

v
d

dt
 , ±

± =
ξ

u
d

dt
  (5a-c) 

we obtain the velocity field 

 ± ± ±= +V v u ; (6a,b) 

v. the fractal part of F , i.e. F'' , satisfies the relation 

 − ≈ − δ
F''(t) F''(t') t t'   (7) 

where δ  depends on the fractal dimension FD ( for detail see references). 

Particularly, the differential of the ”fractal part” of ±Xd , becomes 

 

1

±ξ FD
id ~ dt  (8a,b) 

or more, as an equality relation (fractal equation): 

 

1

±⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ξ
λ τ

FD
id dt

     (9a,b) 

Written as 

 

1
1

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
±

⎛ ⎞= ⎜ ⎟
⎝ ⎠

λξ
τ τ

FD

i

dt
d dt  (10a,b) 

equations (9a,b) imply the temporal scales δ t  and τ , and the length scale λ , respectively. 

The significances of the time dt  and τ  result from the Random Walk (Brownian motion) or 
its generalization, Levy motion. The differential time dt is identified with the resolution time 
(“substitution principle”), ≡δ t dt , whileτ corresponds to the fractal – non-fractal transition 

time. λ  is a characteristic length, for example of Planck’s or de Broglie’s type (for details see 
references); 
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vi. by the relation (10 a, b) the velocity field ±
iV  becomes  

 

1
1

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

± ± ± ±
⎛ ⎞= + = + ⎜ ⎟
⎝ ⎠

λ τ
τ

FDi i i iV v u v
dt

 (11a,b) 

 

The transition scale τ  yields two distinct behaviors of the speed, depending on the 

resolution at which it is considered, since ± ±→i iV v  when >>τdt , and ± ±→i iV u , when 

<<τdt ; 
vii. the local differential time reflection invariance is recovered by combining the two 

derivatives, +d / dt and −d / dt , in the complex operator 

 
1

2 2
+ − + −∂ + −⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

ˆ d d i d d

t dt dt
  (12) 

We call this procedure “an extension by differentiability” (Cresson’s extension). 

Applying this operator to the “position vector” yields a complex speed 

 

( ) ( ) ( ) ( )

1

2 2 2 2

1

2 2

+ − + − + − + −

+ − + − + − + −

∂ + − + −⎛ ⎞ ⎛ ⎞= = − = − =⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

= + + + − − + − = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

X X X X X V V V V
V

                       v v u u v v u u v u

ˆ d d i d d
i

t dt dt

i
i

   (13) 

with 

 
( ) ( )

( ) ( )

1

2 2
1

2 2

+ −
+ − + −

+ −
+ − + −

+
= = + + +⎡ ⎤⎣ ⎦

−
= = − + −⎡ ⎤⎣ ⎦

V V
v v v u u

V V
v v u uu

 (14a,b) 

 

The real part, v, of the complex speed represents the standard classical speed which is 

differentiable and independent of resolution, while the imaginary part, u, is a new quantity 

arising from fractality, which is non-differentiable and resolution-dependent. In the usual 

classical limit, >>τdt , 

 + −= =v v v , 0+ −= =u u  (15a,b) 

so that 

 =V v , 0=u  (16) 

In the limit, <<τdt ,  

 0+ −= =v v , + −= =u u u    (17a,b) 

and 

 =V u ,   0=u ;  (18) 

www.intechopen.com



On the Transport Phenomena in Composite Materials using the Fractal Space-Time Theory 

 

481 

viii.  “in order to account for the infinity of geodesics in the bundle, for their fractality and 
for the two valuedness of the derivative which all come from the non-differentiable 
geometry of the space-time continuum, one therefore adopts a generalized statistical 
fluid like description, where instead of a classical deterministic speed or of a classical 
fluid speed field, one uses a doublet of fractal functions of spaces coordinates and time 
which are also explicit functions of resolution time”. Thus, the average values of the 
quantities must be considered in the previously mentioned sense. Particularly, the 

average of ±Xd  is 

 ± ±=X xd d   (19) 

with 

 0± =ξd   (20a,b) 

ix. in such an interpretation, the “particles”, are identified with the geodesics themselves. 
As a consequence, any measurement is interpreted as a sorting out (or selection) of the 
geodesics by the measuring device. 

3. Extended model of the scale relativity 

Let us now assume that the curves describing the movement (continuous but non-

differentiable) is immersed in a 3-dimensional space, and that X of components iX (i = 1 3, ) 

is the position vector of a point on the curve. Let us also consider a function Xf ( ,t )  and 

expand its total differential up to the third order: 

 
2 31 1

2 6
± ± ± ± ± ± ±

∂ ∂ ∂
= +∇ ⋅ + +
∂ ∂ ∂ ∂ ∂ ∂

j ji i k

j ji i k

f f f
d f dt f d d X d X d X d X d X

t X X X X X
X  (21a,b) 

 

where only the first three terms were used in the Nottale’s theory (i.e. second order terms in 
the equation of motion). 
The relations (21a,b) are valid in any point of the space manifold and also for the points X on 
the fractal curve which we have selected in relations (21a,b). 

From here, the forward and backward average values of this relation, using the 

notations ± ±= iidX d X  , take the form: 

 
2 31 1

2 6
± ± ± ± ± ± ±

∂ ∂ ∂
= + ∇ ⋅ + +

∂ ∂ ∂ ∂ ∂ ∂
j ji i k

j ji i k

f f f
d f dt f d d X d X d X d X d X

t X X X X X
X  (22a,b) 

 

We make the following stipulations: the mean values of the function f and its derivates 

coincide with themselves, and the differentials ±
id X  and dt are independent, therefore the 

averages of their products coincide with the product of average. Thus equations (22a,b) 
become: 

 
2 31 1

2 6
± ± ± ± ± ± ±

∂ ∂ ∂
= +∇ + +
∂ ∂ ∂ ∂ ∂ ∂

X j ji i k

j ji i k

f f f
d f dt f d d X d X d X d X d X

t X X X X X
  (23a,b) 
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or more, using equations (4a,b) with the property (20a,b),  

 
( )

( )

2

3

1

2

1

6

± ± ± ± ± ±

± ± ± ± ± ±

∂ ∂
= +∇ + +
∂ ∂ ∂

∂
+ +

∂ ∂ ∂

x

                      

ξ ξ

ξ ξ ξ

j ji i

ji

j ji k i k

ji k

f f
d f dt fd d x d x d d

t X X

f
d x d x d x d d d

X X X

 (24a,b) 

Even the average value of the fractal coordinate, ±ξ
id , is null (see (20a,b)), for the higher 

order of the fractal coordinate average the situation can be different. First, let us focus on the 

mean ± ±ξ ξ jid d . If ≠i j  this average is zero due the independence of ξ id  and ξ jd . So, using 

(10a,b) we can write: 

 
( )2 12 −

± ±
⎛ ⎞= ± ⎜ ⎟
⎝ ⎠

λξ ξ δ
τ τ

FD
j iji dt

d d dt   (25a,b) 

with 

if

if

1

0

=⎧
= ⎨ ≠⎩

δ ij
, i j

, i j
 

and we had considered that:  

and

and

0 0

0 0

+ +

− −

⎧ > >⎪
⎨

> <⎪⎩

ξ ξ

ξ ξ

ji

ji

d d dt

d d dt
 

Then, let us consider the mean ± ± ±ξ ξ ξji kd d d . If ≠ ≠i j k  this average is zero due the 

independence of ξ id  on ξ jd  and ξ kd . Now, using equation (10a,b), we can write: 

 
( )3 13 −

± ± ±
⎛ ⎞= ⎜ ⎟
⎝ ⎠

λξ ξ ξ δ
τ τ

FD
j ijki k dt

d d d dt  (26a,b) 

with 

if

if

1

0

= =⎧
= ⎨ ≠ ≠⎩

δ ijk
, i j k

, i j k
 

and we considered that: 

0 0

0 0

+ + +

− − −

⎧ > >⎪
⎨

> <⎪⎩

ξ ξ ξ

ξ ξ ξ

ji k

ji k

d d d and dt

d d d and dt
 

Then equations (24a,b) may be written under the form: 

 

( )

( )

2 12 2 2

3 13 3 3

1

2 2

1

6 6

−

± ± ± ±

−

± ± ±

∂ ∂ ∂ ⎛ ⎞= +∇ + ± +⎜ ⎟∂ ∂ ∂ ∂ ∂ ⎝ ⎠

∂ ∂ ⎛ ⎞+ + ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ⎝ ⎠

x

                            

λδ
τ τ

λδ
τ τ

F

F

D
j iji

j ji i

D
j ijki k

j ji k i k

f f f dt
d f dt fd d x d x dt

t X X X X

f f dt
d x d x d x dt

X X X X X X

  (27a,b) 
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If we divide by dt and neglect the terms which contain differential factors, equations (27a,b) 

are reduced to: 

 
( ) ( )32 1 12 3

3

2 6

− −
±

±
∂ ⎛ ⎞ ⎛ ⎞= + ∇ ± Δ + ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

v
λ λ
τ τ τ τ

F FD Dd f f dt dt
f f f

dt t
 (28a,b) 

with 2 2Δ = ∂ ∂∑ i
i

/ X  and 3 3 3∇ = ∂ ∂∑ i
i

/ X . These relations also allows us to define of the 

operator, 

 
( ) ( )32 1 12 3

3

2 6

− −
±

±
∂ ⎛ ⎞ ⎛ ⎞= + ∇ ± Δ + ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

v
λ λ
τ τ τ τ

F FD Dd dt dt

dt t
 (29a,b) 

Under the circumstances, let us calculate ∂ ∂f/ t)ˆ( . Taking into account equations (29a,b), (12) 

and (13), we obtain: 

( ) ( )32 1 12 3
31

2 2 6

− −
+ − + −∂ ∂⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − − = + ⋅∇ − Δ + ∇⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

  V
λ λ
τ τ τ τ

F FD Dˆ f d f d f d f d f f dt dt
i f i f f

t dt dt dt dt t
  (30) 

 

This relation also allows us to define the fractal operator: 

 
( ) ( )32 1 12 3

3

2 6

− −∂ ∂ ⎛ ⎞ ⎛ ⎞= + ⋅∇ − Δ + ∇⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠
V

λ λ
τ τ τ τ

F FD Dˆ dt dt
i

t t
 (31) 

We now apply the principle of scale covariance, and postulate that the passage from 

classical (differentiable) mechanics to the ”fractal” mechanics which is considered here can 

be implemented by replacing the standard time derivative d/dt by the complex operator 

∂ ∂ˆ / t  (this results is a generalization of the principle of scale covariance given by Nottale). 

As a consequence, we are now able to write the equation of geodesics (a generalization of 

the first Newton’s principle) in a fractal space-time under its covariant form: 

 
( ) ( )32 1 12 3

3 0
2 6

− −∂ ∂ ⎛ ⎞ ⎛ ⎞= + ⋅∇ − Δ + ∇ =⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠
V V

V V V V
λ λ
τ τ τ τ

F FD Dˆ dt dt
i

t t
 (32) 

This means that the global complex acceleration field, ∂ ∂V tˆ , depends on the local complex 

acceleration field, ∂ Vt , on the non-linearity (convective) term, ⋅∇V V , on the dissipative 

term, ΔV , and on the dispersive one, 3∇ V . 

If the motions of the fractal fluid are irrotational, i.e. 0= ∇× =Ω V  we can choose V  of the 

form: 

 φ= ∇V  (33) 

with φ  a complex speed potential. Then, equation (32) becomes: 
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( ) ( )32 1 12 3

3 0
2 2 6

− −⎛ ⎞∂ ⎛ ⎞ ⎛ ⎞+ ∇ − Δ + ∇ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠
V V

λ λ
τ τ τ τ

F FD Ddt dt
i

t

2
V V

 (34) 

and more, by substituting equation (33) in equation (34), we have by integration, 

 ( )
( ) ( )32 1 12 3

21

2 2 6

− −∂ ⎛ ⎞ ⎛ ⎞+ ∇ − Δ + ∇ =⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠
3ϕ λ λφ φ φ

τ τ τ τ

F FD Ddt dt
i F(t )

t
 (35) 

with ( )F t  a function of time only. We note that equation (34) has been reduced to a single 

scalar relation (35), i.e. a generalized Bernoulli (GB) type equation. 
Let us choose the complex speed potential in the form: 

 
( )2 12 −

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

λφ ψ
τ τ

FDdt
i ln  (36) 

where ψ  behaves both as speed potential and wave function. Then, ψ  by means of 

equation (35) satisfies a generalized Schrödinger (GS) type equation: 

 
( ) ( ) ( )54 22 1 24 2 5

3

2 2
0

4 2 12 2

− − −⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟Δ + ∂ + ∇ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

λ λ λψ ψ ψ ψ
τ τ τ τ τ τ

F F FD D D

t

dt dt dt F(t)
i i ( ln )  (37)  

When the transport phenomenon in a fractal space-time implies the temperature fields, T , 
the heat transfer equation has the form   

 

( ) ( )32 1 12 3
3

ˆ

0
2 6

V
F FD DT T dt dt

T i T T
t t

λ λ
τ τ τ τ

− −∂ ∂ ⎛ ⎞ ⎛ ⎞= + ⋅∇ − Δ + ∇ =⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠
   (37a) 

4. The dissipative approximation of transport phenomenon in fractal 
structures and some applications. Extended fractal hydrodynamic model 

Let us consider that the dissipative and convective effects are dominant in comparison with 
the dispersive ones. Consequently, the covariant form of the first Newton’s principle in the 
fractal space-time is reduced to equation 

 

2
12

0
2

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠∂ ∂ ⎛ ⎞= + ⋅∇ − Δ =⎜ ⎟∂ ∂ ⎝ ⎠
V V

V V V
λ
τ τ

FDˆ dt
i

t t
.  (38) 

For V  of the form (see relation (33) with (36)) 

 

2
12

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞= − ∇⎜ ⎟
⎝ ⎠

V
λ ψ
τ τ

FDdt
i ln  (39) 
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equation (38) becomes a Navier-Stokes type equation,  

 

2
12 2

0
2 2

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞∂ ∂ ⎛ ⎞= + ∇ − Δ =⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠

V V V
V

λ
τ τ

FDˆ dt
i

t t
  (40) 

with an imaginary viscosity coefficient, ν  

 

2
12

2

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞= ⎜ ⎟
⎝ ⎠

λν
τ τ

FDdt
i  (41) 

while in terms of the ψ  function, up to an arbitrary phase factor which may be set to zero 

by a suitable choice of the phase, a “Schrödinger” type equation results 

 

4 2
2 14 2

2
0

4 2

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ∂⎛ ⎞ ⎛ ⎞Δ + =⎜ ⎟ ⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠
λ λ ψψ
τ τ τ τ

F FD Ddt dt
i

t
.  (42) 

The presence of an imaginary viscosity coefficient specifies the followings: i) at macroscopic 
scale, the behavior of the fractal fluids is of viscoelastic type or hysteretic type. Such a result 
is in agreement with the opinions given in references: the fractal fluid can be described by 
Kelvin-Voight or Maxwell rheological model with complex structure coefficients 
(particularly, the imaginary viscosity coefficient (41)). Thus, such “materials” are endowed 
with “memory”; ii) at microscopic scale, the scalar field of the complex velocity has a 

stochastic behavior. Particularly, at Compton scale ( 2
02 2= = ¥λ τD m , with ¥  the reduced 

Planck constant and m0 the rest mass of the microparticle) and in the fractal dimension DF 
=2 (the microparticle motion take place on Peano`s curves), the scalar field of the complex 
velocity is also a wave function such that, equation (42) takes the form of the “standard” 
Schrödinger equation: 

  
2

0

0
2

∂
Δ + =

∂
¥ ¥ ψψ i
m t

  (43) 

This means that, the Schrödinger equation results from a Navier-Stokes type equation with 
the imaginary viscosity coefficient, 02= ¥ν i m , for irrotational movements of a fractal fluid 

at Compton scale. 

Let us choose the scalar function ψ  in the form =ψ ρ iSe , with ρ  being amplitude and 

S  phase. Thus, the complex speed field (13), has the components 

 

2 2
1 12 2

2

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞= ∇ = ∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

v       u
λ λ ρ
τ τ τ τ

F FD Ddt dt
S, ln . (44a,b) 

where v is the real (differentiable) part and u  is the imaginary (non-differentiable or 

fractal) part. 
The equations (44a, b) which define the components of the complex speed field of the fractal 
fluid are more general than those from Nottale’s SR model. For the fractal dimension 

2=FD , the Nottale’s results are obtained: 
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2 2

v u
2

= ∇ = ∇      
λ λ ρ
τ τ

S, ln  (45a,b) 

Introducing (13) with (44a,b) in (40) and separating the real and imaginary parts, i.e. 
through the separation of the movements at differentiable scale from those at non-
differentiable scale, we obtain 

 

2
12 2 2

2
12

0
2 2 2

0
2

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
∂ ⎛ ⎞⎜ ⎟+ ∇ − − ∇ ⋅ =⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎜ ⎟

⎝ ⎠
⎛ ⎞

∂ ⎛ ⎞⎜ ⎟+ ∇ ⋅ + ∇ ⋅ =⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎜ ⎟
⎝ ⎠

v v u
u

u
v u v

λ
τ τ

λ
τ τ

F

F

D

D

dt

t

dt

t

   (46a,b) 

With equation (45a,b), equation (46b) takes the form  

  v v 0
∂⎛ ⎞∇ + ⋅∇ +∇ ⋅ =⎜ ⎟∂⎝ ⎠

ρ ρln
ln

t
   (47) 

or, by integration with 0≠ρ  

 
∂

+∇ =
∂

v
ρ ρ.( ) T(t )
t

  (48) 

with T(t) a function which depends only an time. In these condition, the equations (46a) and 
(48) with T(t)=0 become: 

 

( )0

0

∂⎛ ⎞+ ⋅∇ = −∇⎜ ⎟∂⎝ ⎠
∂

+ ∇ ⋅ =
∂

v
v v

v
ρ ρ

m Q
t

( )
t

 ,   (49a,b) 

with Q  the fractal potential, 

 

4 2
2 14 2 2

0
0 022 2 2

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠Δ⎛ ⎞ ⎛ ⎞= − = − − ∇ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

u
u

ρλ λ
τ τ τ τρ

F FD Ddt m dt
Q m m .   (50) 

The fractal potential depends only on the imaginary part u  of the complex speed field, V , 

and it comes from the non-differentiability of the fractal space-time. Equation (49a), i.e. the 
momentum conservation law, and equation (49b), i.e. the probability density conservation 
law, form the fractal hydrodynamic model. 

The wave function of ( )rψ ,t  is invariant when its phase changes by an integer multiple of 

2π. Indeed, equation (44a) gives: 

 

2 22 21 1

0 0 02 0 1 2
− −

= = = ± ±∫ ∫v r       ¶ ¶λ λπ
τ τ τ τ

F F
( ) ( )

D Ddt dt
m d m ( ) dS nm ( ) , n , , , ...  (51) 
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a condition of compatibility between the extended SR hydrodynamic model and the wave 

mechanics. Particularly, at Compton scalar 2

0
= ¥λ τ m and for DF=2 equation (51) takes the 

standard form 

 =∫ p r¶ ·d nh   (52) 

i.e. the Ehrenfest relation. 
The set of equations (49a,b) represents a complete system of differential equations for the 

fields ( )rρ ,t  and ( )v r ,t ; relation (51) relates each fractal hydrodynamic solution 

( )vρ
n

, with the wave solution ψ  in a unique way. 

The field ( )rρ ,t  is a probability distribution, namely the probability of finding the particle 

in the vicinity rd  of the point r  at time t, 

 1= =∫∫∫r    ρ ρdP d , dr ,   (53a,b) 

the space integral being extended over the entire area of the system. Any time variation of 

the probability density ( )rρ ,t  is accompanied by a probability current vρ  pointing 

towards or outwards, the corresponding field point r  (equation (49b)). 

The real velocity field ( )v r ,t  (equation (49a)), varies with space and time similar to a 

hydrodynamic fluid placed in a fractal potential (50). The fractal fluid (in the sense of a 

statistical particles ensemble) exhibits, however, an essential difference compared to an 

ordinary fluid: in a rotation motion ( )v r ,t  increases (decreases) with the distance from the 

center r  decreasing (increasing) (equation (51)). 

The expectation values for the real velocity field and the velocity operator 

( )
2

1
2

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠= − ∇v λ τ τ FDˆ i (dt )  of wave mechanics are equal, 

 ∗= = Ψ Ψ =∫∫∫ ∫∫∫v v r v r vρ
WM

ˆ ˆd d   (54) 

but in the higher-order, ⎜n⎮>2, similar identities are invalid, namely ≠v vn n

WM
. The 

expectation value for the ‘fractal force’ vanishes at all times (theorem of Ehrenfest), i.e. 

 ( ) 0−∇ = −∇ =∫∫∫ rρQ Q d   (55) 

since 

 ( )
4 424 42 2

0 02 2
0

2 4

− −⎛ ⎞∇
∇ = ∇∇ ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠

∫∫∫ ∫r σ¶
ρλ λρ ρ ρ

τ τ τ τρ
F F

( ) ( )
D Ddt dt

m ( ) d m ( ) ln d  (56) 

Two types of stationary states are distinguished: 

i.  Dynamic states. For 0∂ ∂ =/ t  and 0≠v , i.e. at the differentiable scale, equations 

(49a,b) give 
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2
12 2 2

0 0
0 0

2 2 2

0

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

⎛ ⎞⎜ ⎟∇ − − ∇ ⋅ =⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎝ ⎠

∇ ⋅ =

v u
u

v

λ
τ τ

ρ

FDm m dt
m

( )

  (57a,b) 

namely, 

 .
v u

u

v F

FDm m dt
m E

λ
τ τ

ρ

−
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎛ ⎞− − ⋅∇ ⋅ =⎜ ⎟

⎝ ⎠
= ∇×

1
2

2 2 2
0 0

0
2 2 2

  (58a,b) 

Consequently, the non-fractal inertia, 0 ⋅∇v vm , and the fractal force, −∇Q , are in balance at 

every field point - equation (57a). The sum of the non-fractal kinetic energy, 2 2vm , and 

fractal potential, Q , is invariant, i.e., equal to the integration constant ( )≠ rE E  - equation 

(58a). ≡< >E E  represents the total energy of the dynamic system. The probability flow 
density vρ  has no sources - equation (57b), i.e., its streamlines are closed - equation (58b). 

In an external potential U the equation (58a) becomes: 

    

2
12 2 2

0 0
0

2 2 2

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞− − ∇ ⋅ + =⎜ ⎟
⎝ ⎠

U
λ
τ τ

FDm m dt
m E

v u
u      (59) 

ii. Static states. For 0∂ ∂ =t  and 0=v , i.e. at the non-differentiable scale, equations 

(49a,b) give 

 

2
12 2

0
0 0

2 2

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

⎛ ⎞⎜ ⎟∇ − − ∇ ⋅ =⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎝ ⎠

u
u

λ
τ τ

FDm dt
m ,  (60) 

i.e. 

 

2
12 2

0
0

2 2

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞− − ∇ ⋅ =⎜ ⎟
⎝ ⎠

u
u

λ
τ τ

FDm dt
m E .  (61) 

Thus, the fractal force, −∇Q   has the zero value - equation (60). The fractal potential, Q , is 

invariant, i.e. equal to the integration constant ( )≠ rE E  - equation (61). ≡< >E E  represents 

the total energy of the static system. Equation (49b) is identically satisfied.  

In an external potential U  the equation (61) becomes: 

     

2
12 2

0
0

2 2

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞− − ∇ ⋅ + =⎜ ⎟
⎝ ⎠

U
λ
τ τ

FDm dt
m E

u
u    (62) 

As an illustration of the fractal hydrodynamic formalism, stationary and time-dependent 
fractal systems are further analyzed. 
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If the transport phenomenon implies temperature fields then, according with the fractal 
operator (31) in which we neglected the dispersive effects, the heat transfer equation 
becomes: 

   
( )2 12

0
2

−∂ ∂ ⎛ ⎞= + ⋅∇ − Δ =⎜ ⎟∂ ∂ ⎝ ⎠
V

λ
τ τ

FDˆ T T dt
T i T

t t
  (63) 

From here, by separating the real and imaginary parts and then by their summing, the usual 
heat transfer equations results: 

    ( )
( )2 12

v u
2

−∂ ⎛ ⎞+ − ⋅∇ = Δ⎜ ⎟∂ ⎝ ⎠
λ
τ τ

FDT dt
T T

t
   (64) 

5. The dispersive approximation of transport phenomenon in fractal 
structures. Some properties of matter 

Let us consider that the dissipate effects can be neglected in comparison with the convective 
and dispersive ones. Then, through the equation (34), the microparticle movements are 
described by a generalized Korteweg-de Vries (GKdV) type equation 

 

3
13

3 0
6 2

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠∂ ⎛ ⎞+ ⋅∇ + ∇ =⎜ ⎟∂ ⎝ ⎠
λ
τ

FDdt

t

V
V V V   (65) 

By substituting (44a,b) in equation (65), and separating the real and the imaginary parts, we 
obtain the following system: 
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3
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3
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∂ ⎛ ⎞+ ∇ ⋅ + ∇ =⎜ ⎟∂ ⎝ ⎠

v
v

u
v u u

λ
τ τ

λ
τ τ

F

F

D

D

dt

t

dt

t

v u

  (66a,b) 

In the one-dimensional differentiable case, u=0 or =ρ const. , using the dimensionless 

parameters,  

 0=φ (v / v ) , 0=τ ω t , 0=ξ k X   (67a-c) 

and the normalizing condition 

  

3
13 3

0 0 0

0 0

1
6 6

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞= =⎜ ⎟
⎝ ⎠

λ
ω ω τ τ

FDv k k dt
 (68) 

the equations (66a,b), takes the standard form of the KdV equation,  

 6 0τ ξ ξξξφ φ φ φ∂ + ∂ + ∂ =   (69) 
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Through the substitutions,  

 = =θ φ ξ τ fw( ) ( , ),  θ ξ - v τ   (70) 

equation (69), by double integration, becomes 

 2 3 21

2 2
= = − − − −fv

w F(w) (w w gw h)   (71) 

with g, h two integration constants. If F(w) has real roots, they are of the form 

 1 2

1
2

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦

E(s)
e w a

K(s) s
, 2 2 1

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦

E(s)
e w a

K(s)
, 3 2= +

E(s)
e w a

K(s)
 (72a-c) 

with 

3 2

2

−
=

e e
a , 2 3 2

3 1

−
=

−
e e

s
e e

, 
2

2 2 1 2

0

1 −= −∫
π

ϕ ϕ
/

/K(s) ( s sin ) d ,  

 
2

2 2 1 2

0

1= −∫
π

ϕ ϕ
/

/E(s) ( s sin ) d    (73a-d) 

w  a reference value, and K(s), E(s) the complete elliptic integrals of s modulus. The 

stationary solution of equation (69) has the expression, 

 
2

2
02

3 1
2 1 2 6 4

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞ +⎪ ⎪= + − − ⋅ − + − +⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
φ ξ τ ξ τ ξE(s) a E(s) s

( , ) w a a cn w a ;s
K(s) s K(s) s

    (74) 

where cn is the Jacobi’s elliptic function of s modulus and 0ξ  an integration constant. As a 

result, the one-dimensional oscillation modes of the speed field are of cnoidal type – and 
have the normalized wave length, 

 ( )2=λ sK s / a      (75) 

- see figure 1a, the normalized phase speed, 

 ( ) ( )( ) ( )2 26 4 3 1⎡ ⎤= + − +⎣ ⎦afv w E s / K s ( s ) / s   (76) 

- see figure 1b, and the normalized group speed, 

 

( )
( )

( )
( )

2 2

2 2 2

2

2 1 11
6 4 3 1 3

2 1

⎡ + − − −
= + − − + +⎢

+ −⎣
− ⎤

+ ⎥+ − ⎦

g

E s E s (s )E(s)K(s) (s )K (s)
v w a

K s s E(s)K s K (s) sK (s)

(s )K(s)

s [E(s) K(s) sK(s)]

   (77) 
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- see figure 1c. 
 

λ 

s 

s 

vf 

s 

A 

(a) 

(b) 

(d) (c) 

vg 

s 

a a 

a 

 

Fig. 1a-d. The dependences on s of the (a) normalized wave length λ, (b) normalized phase 

speed υ f ,  (c) group velocity υg (various values of the parameter a), and (d) of the quantity A 

Then, the followings result: (i) Through the ,λ τ  coefficients, the parameter s becomes a 

‘measure’ of ‘charge’ transport type in the considered matter. Thus, the solution (74), for 
0=s , is reduced to one-dimensional harmonic waves, and for 0→s  to one-dimensional 

waves packet. These two subsequences describe the ‘charge’ transport in a non-quasi-
autonomous regime. For 1=s , the solution (74) becomes an one-dimensional soliton while 

for 1→s  one dimensional solitons packet results. These last two subsequences describe 
‘charge’ transport in a quasi-autonomous regime; (ii) By eliminating the parameter a from 
relations (75) and (76), one obtains, 

 26− = Aλf(v w) (s) , 2 2 216 3 1⎡ ⎤= − +⎣ ⎦A(s) s E(s)K(s) ( s )K (s)  (78a,b) 

where the quantity A(s) is plotted in figure 1d. We observe that for s = 0 ÷ 0.7, A(s) ≈ const. 

and consequently equation (78a) takes the form, 26− =λf(v w) const. . Therefore, in the 

differentiable case, the ‘charge’ transport is controlled through the flowing regimes of the 
fractal fluid, and the separation between them is given by the 0.7 value of the parameter s; 
(iii) The previous results show through the normalized group speed (77) an increase of the 
‘charge’ transport by means of quasi-autonomous structures. This theoretical result explain 
some “anomalies” that were experimentally observed in composite materials, e.g. the 
increase of the thermal conductance etc. 
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Let us study now the previous phenomenon in the non-differential case. This can be 

achieved by the substitutions, ( ) 24=φ fv f  and ( )1 2

4=η θfi v  in equation (71). Moreover, 

this equation with 0=h , becomes, 3∂ = −ηη f f f ,i.e. a Ginzburg-Landau (GL) type equation. 

The followings result: (i) The η coordinate has dynamic significations and the variable f has 
probabilistic significance. The space-time becomes fractal. (ii) Since the general solution of 
GL equation can be expressed, with an adequate normalization and choice of the integration 

constants, by means of the elliptic function =η ηf ( ) sn( ;s)  , then the ‘charge’ transport is 

controlled by the fractal potential (50) 

 ( )2 2 2 21 1= − = − =η ηQ ( / f )(d f / d ) f cn ( ,s) ,  (79) 

also through cnoidal oscillation modes. Thus, as in the previous differentiable case, 

( 0 0= →s ,s ) implies the non-quasi-autonoumous regime, while (s=1, s→ 1) implies the 

quasi-autonoumous regime; (iii) For 1=s  the general solution of GL equation is the fractal 

kink, ( ) ( )=η ηkf tanh . In this case we can build a field theory with spontaneous symmetry 

breaking. The fractal kink spontaneously breaks the “vacuum” symmetry by tunneling, and 
generates coherent structures. This mechanism is similar with the one of superconductivity 
and can explain the properties of composites through the Cooper type pairs; (iv) The 
normalized fractal potential takes a very simple expression which is directly proportional 
with the density of states of the fractal fluid – see equation (79). When the density of states, 
f2, becomes zero, i.e. in the absence of the vacuum symmetry spontaneous breaking, the 
fractal potential takes a finite value, Q→ 1. The fractal fluid is normal (it works in a non-

quasi-autonomous regime) and there are no coherent structures in it. When f2 becomes 1, i.e. 
in the presence of the vacuum symmetry spontaneous breaking, the fractal potential is zero, 
 

(a) s=0.4 (b) s=1 
 

 

Fig. 2 a-b. The iterative map induced by the elliptic function cn2 for various values of the s 
parameter 
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i.e. the entire quantity of energy of the fractal fluid is transferred to its coherent structures. 
Then the fractal fluid becomes coherent (it works in a quasi-autonomous regime). Therefore, 
one can assume that the energy from the fractal fluid can be stocked by transforming all the 
environment’s entities into coherent structures and then 'freezing' them. The fractal fluid 
acts as an energy accumulator through the fractal potential (79); (v) the correlation between 
the differentiable and the non-differentiable scales implies the equivalence theorem in 
periods of two cn2 elliptic functions. Then, the fractal space-time is of Cantor type. 
Moreover, the ‘charge’ transport implies at any scale a fractal. Such result is obtained 
through the iterative map induced by the elliptic function cn2 for various values of the s 
parameter – Figures 2a-b. For any object given in these figures the Hausdorff-Besicovitch 
theorem is respected. Evidently, all presented conclusions can be extended to the 
temperature field.  

6. References 

Agop, M., G. V. Munceleanu, O. Niculescu, T. Dandu-Bibire, Physica Scripta (in press). 
Agop, M., C. Radu, T. Bontas, Chaos Solitons and Fractals 38, 5, 1243 (2008). 
Agop, M., O. Niculescu, A. Timofte, L. Bibire, A. S. Ghenadi, A. Nicuta, C. Nejneru, G. V. 

Munceleanu, Non-differentiable mechanical model and its implications, 
International Journal of Theoretical Physics, DOI: 10.1007/s10773-010-0330-5, (2008). 

Agop, M., P. E. Nica, P. D. Ioannou, A. Antici, V. P. Paun, Euro Physics Journal D 49, 239 
(2008). 

Agop, M., P. E. Nica, S. Gurlui, C. Focsa, V. P. Paun, M. Colotin, Euro Physics Journal D 
10.11.40/epjd/e2009_00304-5, (2008) 

Agop, M., P. Nica, M. Gartu, Gen. Relativ. Gravit. 401, 35 (2008). 
Argyris, J., C. Ciubotariu, G. Mattutis, Chaos, Solitons and Fractals 12, 1 (2001). 
Bowman F; Introduction to Elliptic Function with Applications; London: English University 

Press, 1955. 
Buzea, C. Gh., I. Rusu, V. Bulancea, Gh. Badarau, V. P. Paun, M. Agop, Physics Letters A (in 

press). 
Buzea, C. Gh., C. Bejinariu, C. Boris, P. V. Vizureanu, M. Agop, International Journal of 

Nonlinear Sciences and Numerical Simulations 10 (11-12), 1399 (2009). 
Célérier, M.N., L. Nottale, J. Phys. A: Math. Gen. 37, 931 (2004). 
Cresson, J., F. Ben Adda, C. R. Acad. Sci. Paris 330, 261 (2000). 
Cresson, J., F. Ben Adda, J. Math. Anal. Appl. 262, 721 (2001). 
Cresson, J., Chaos, Solitons and Fractals, 14, 553 (2002). 
Cresson, J., J. Math. Phys. 44, 4907 (2003). 
Cresson, J., F. Ben Adda, Chaos, Solitons and Fractals, 19, 1323 (2004). 
Cresson, J., J. Math. Anal. Appl. 307, 48 (2005). 
Cresson, J., Int. J. of  Geometric Meth. in Mod. Phys., 3, 1395 (2006). 
Cresson, J., J-N. Denarie, Lect. Notes in Physics, Planat, Paris, 2000. 
Cristescu, C.P.,  Nonlinear Dynamics and Chaos in Science and Engineering, Academy 

Publishing House, Bucharest, 2008.  
Cristescu, C.P., B. Mereu, C. Stan, M. Agop, Chaos Solitons and Fractals 40, 975 (2009). 
Da Rocha, D., L. Nottale, Chaos, Solitons and Fractals 16, 565 (2003). 
El Naschie, M.S., O. E. Roessler, I. Prigogine, Quantum Mechanics, Diffusion and Chaotic 

Fractal, Elsevier, Oxford, 1995. 

www.intechopen.com



 Advances in Composite Materials for Medicine and Nanotechnology 

 

494 

Feder, J., A. Aharony, Fractals in Physics, North Holland, Amsterdam, 1990. 
Ferry, D. K.; Goodnick S. M.; Transport in Nanostructures; Cambridge: Cambridge University 

Press, 1997. 
Gouyet, J.F.,  Physique et Structures Fractals, Masson, Paris, 1992. 
Gurlui, S., M. Agop, M. Strat, G. Strat, S. Bacaita, A. Cerepaniuc, Phys. Plasmas 13, 063503 

(2006). 
Gurlui, S., M. Agop, P. Nica, M. Ziskind, C. Focsa, Phys. Rev. E 78, 026405 (2008). 
Imry, Y.; Introduction to Mesoscopic Physics; Oxford: Oxford University Press,2002. 
Ioannou, P.D., P. Nica, V. Paun, P. Vizureanu, M. Agop, Physica Scripta 78, 6, 065101. 
Jackson, E. A.; Perspectives in Nonlinear Dynamics; Cambridge: Cambridge University Press, 

vol. I+II, 1991. 
Madelbrot, B., The Fractal Geometry of Nature, Freeman, San Francisco, 1982. 
Nelson, E.,  Quantum Fluctuations, Princeton Univ. Press, NY, 1985. 
Nica, P. Vizureanu, M. Agop, S. Gurlui, C. Focsa, N. Forna, P. D. Ioannou, Z. Borsos, 

Japanese Journal of Applied Physics 48, 066001 (2009). 
Niculescu, O., D. G, Dimitriu, V. P. Paun, P. D. Matasaru, D. Scurtu, M. Agop, Phys. Plasmas 

17, 042305 (2010). 
Nottale, L., Chaos, Solitons and Fractals 9, 1051 (1980).  
Nottale, L., Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity, World 

Scientific, Singapore, 1993. 
Nottale, L., L'univers et la lumière, Cosmologie classique et mirages gravitationnels, 

Flammarion, Paris, 1993. 
Nottale, L., La Relativité dans tous ses états : du mouvements aux changements d'échelle, Hachette, 

Paris, 1998.  
Nottale, L., Chaos, Solitons and Fractals 10, 459 (1999). 
Nottale, L., J. Chaline, P. Grou, Les arbres de l'évolution, Hachette, Paris, 2000.  
Nottale, L., Chaos, Solitons and Fractals 16, 539 (2003). 
Nottale, L., Chaos, Solitons and Fractals 25, 797 (2005). 
Nottale, L., M. N. Célérier, T. Lehner, J. Math. Phys. 47, 032303 (2006). 
Nottale, L.,  Ch. Auffray, Progress in Biophysics and Molecular Biology  97, 115 (2008). 
Nottale, L., Scale relativity and fractal space-time: theory and applications, in Proceedings of 

First International Conference on the Evolution and Development of the Universe, Paris, 
France, 2008. 

Nottale, L., J. Phys. A: Mathematical and Theoretical 42, 275306 (2009). 
Poole, C.P.; Farach, H.A.; Creswick, R. J. Superconductivity; San Diego-New York-Boston-

London-Sydney-Tokyo-Toronto: Academic Press, 1995. 
Stan, C. P. Cristescu, D. Alexandroaie, M. Agop, Chaos Solitons and Fractals 41, 727 (2009). 
Weibel, P., G. Ord, G. Rössler (Editors), Space-time Physics and Fractality, Springer, Vienna, 

New York, 2005. 
 

www.intechopen.com



Advances in Composite Materials for Medicine and

Nanotechnology

Edited by Dr. Brahim Attaf

ISBN 978-953-307-235-7

Hard cover, 648 pages

Publisher InTech

Published online 01, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Due to their good mechanical characteristics in terms of stiffness and strength coupled with mass-saving

advantage and other attractive physico-chemical properties, composite materials are successfully used in

medicine and nanotechnology fields. To this end, the chapters composing the book have been divided into the

following sections: medicine, dental and pharmaceutical applications; nanocomposites for energy efficiency;

characterization and fabrication, all of which provide an invaluable overview of this fascinating subject area.

The book presents, in addition, some studies carried out in orthopedic and stomatological applications and

others aiming to design and produce new devices using the latest advances in nanotechnology. This wide

variety of theoretical, numerical and experimental results can help specialists involved in these disciplines to

enhance competitiveness and innovation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Vizureanu Petrica and Agop Maricel (2011). On the Transport Phenomena in Composite Materials using the

Fractal Space-Time Theory, Advances in Composite Materials for Medicine and Nanotechnology, Dr. Brahim

Attaf (Ed.), ISBN: 978-953-307-235-7, InTech, Available from: http://www.intechopen.com/books/advances-in-

composite-materials-for-medicine-and-nanotechnology/on-the-transport-phenomena-in-composite-materials-

using-the-fractal-space-time-theory



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


