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1. Introduction  

Since their discovery by Bangham (Bangham, 1965), liposomes have become paradigms for 

biomembranes, models of self-assembling colloids as well as vehicle for pharmaceutical, 

diagnostic and cosmetic agents. The word ‘liposome’ was coined by Weissmann (Sessa, 

1968) according to Bangham’s expression (Bangham, 1995) and is derived from the Greek: 

‘lipo’ referring to their fatty constitution and ‘soma’ referring to their structure. Liposomes 

are constituted by phospholid bilayer (s) surrounding an inner aqueous volume. Due to this 

constitution, they are used as drug-carrier for hydrophilic, lipophilic or amphiphilic 

molecules (Gregoriadis, 1976). Depending on the method of preparation (Vemuri, 1995), 

liposomes can vary widely in term of size (0.02–10 mm) and number of lamellae (uni or 

multi lamellae). Usually, liposomes are classified into three categories on the basis of their 

size and lamellarity (number of bilayers): small unilamellar vesicles (SUVs) or oligolamellar 

(OLVs), large unilamellar vesicles (LUVs) and multilamellar vesicles (MLVs). Interest in 

liposomes results from this vesicular structure limited by one or more outer bilayer lipid 

and an inner water pool. The application of liposomes was first an artificial model for the 

biological membrane (Chapman, 1984). Forming lipid bilayers through hydrophobic 

interaction, liposomes are then considered as excellent platforms for the delivery of 

hydrophobic and hydrophilic drugs. These phospholipid dispersions in water solutions 

were able to trap and release solutes, to which they were selectively permeable. Then, active 

compounds have been loaded either in the aqueous volume, if they were water-soluble, or 

in the lipid membrane, if they were lipid soluble. Liposomes have been administered in a 

variety of ways but intravenous injection is the most practical route because liposomes 

present considerable persistence in the blood. This feature facilitates efficient drug delivery 

to target tissues. Lipids are characterized by different fatty acid chain lengths, different head 

groups, and different melting temperatures. Consequently, temperature (Jeong, 2009) or pH 

sensitive (Obata, 2010) liposomes can be assembled by manipulating the formulation. The 

effectiveness of 1-methylxanthine (1MTX) as a radiosensitizer and the in vivo efficiency of 

the temperature sensitive liposomal 1-methylxanthine (tslMTX) were evaluated when 

combined with regional hyperthermia and ionizing radiation (Jeong, 2009). Intraperitoneal 

injection of the tslMTX inhibited tumor growth in the mouse xenograft tumor model. 
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Moreover, the combination of tslMTX with regional hyperthermia and ionizing radiation 

clearly inhibited tumor growth. Most recently, to target leukemic cells, pH sensitive 

immunoliposomes including a terminally alkylated N-isopropylacrylamide (NIPAM) in the 

bilayer, were coupled with the anti-CD33 monoclonal antibody (Simard et al., 2009). The pH 

sensitive immunoliposomes exhibited high cytotoxicity against HL60 cells, suggesting that 

these immunoliposomes could be active in acute myeloid leukemia therapy. Commercial 

liposomes have already gained approval from US Food and Drug Administration (FDA). 

The typical examples are doxorubicin encapsulating liposomes (Doxil® ALZA Corporation), 

which has shown a strong antitumor activity against a wide range of cancers and 

amphotericin B encapsulating liposomes (AmBisome®, Nexstar Pharmaceuticals, Inc) for 

the treatment of fungal infections refractory to amphotericin B. 

Despite all the work done, liposomes still have not attained their full potential as drug and 

gene delivery vehicles (Guo et al., 2003) and their use was mostly limited to pH close to 

neutrality and above, due to their destabilization in acidic media. 

Recently, the self-assembly of organized nanoscopic structures has been the subject of a 

strong interest in both colloidal and materials science. Vesicle templating presents an unique 

opportunity to obtain hollow submicrometer particles (Hubert et al., 2000; Hentze et al., 

2003). Templating agents used in the synthesis of organized materials range from lyotropic 

lamellar phases of non-ionic and ionic surfactants, micro-emulsions, phospholipid tubules 

to polymer particles. Among recent examples, one may cite novel vesicular particles 

described by Katagiri (Katagiri et al., 2003). The walls of these hybrid particles consist of a 

bilayer built from dialkyl amphiphiles modified by alkoxysilanes. Cha et al. used 

polyelectrolyte homopolymers to spontaneously obtain micron size vesicles using citrate 

stabilized quantum dots as a template (Cha et al., 2003). A careful balance between charge 

control and hydrogen bond leads to the self-assembly.  

Other spherical particles made from various materials have been obtained, some being 

multilamellar (El Rassy et al., 2005). Some of them were used to encapsulate fluorescent 

dyes, enzymes, polymer particles (Schmidt & Ostafin, 2002). In a different approach, the 

polymerization of trialkoxysilane bearing a double alkyl chain lead directly to hybrid 

analogs of liposomes, named “cerasomes” (Katagiri et al., 2003). Liposomes were also 

trapped into sol–gel silica materials and loaded with a fluorescent probe to build a pH 

sensor (Besanger et al., 2002), with proteins (Li & Tip, 2005) or with a transmembrane 

peptide ion channel (gramicidin A) to control ion diffusion in sensors or in drug screening 

devices (Besanger & Brennan, 2003). The stability of supramolecular structures such as 

vesicles and microemulsions depends on pH, ionic strength and on the presence of organic 

solvents in the reaction mixture, and as such, they were often affected by the reaction 

conditions. 
In our work, we have shown that nanoscale liposomes could be used as templates for the 
deposition of silica to create hollow silica nano-shell systems called “liposils” (Bégu et al., 
2003) in which the trapped unilamellar liposomes maintained their fundamental properties. 
The conditions for the template directed assembly were fulfilled due to electrostatic charge 
density matching or hydrogen bonding between template and inorganic precursor. The 
silica walls being non-porous, the dried silica spheres retained the inner aqueous pool. The 
use of zwitterionic phospholipids (non toxic) as templates required a modified approach 
since the liposome structure was sensitive to low pH and high ionic strength and organic 
solvents were not allowed for pharmaceutical applications. 
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The non-porous and amorphous silica shell of liposils protected the trapped liposomes from 
pH and temperature variations and maintained the specific properties of the phospholipid 
bilayer. Furthermore, the synthesis of these hybrid nanoparticles allowed loading the 
liposomes with hydrophilic or lipophilic drug (Bégu et al., 2004). 
The stability of drug-loaded liposils was tested at two different pH (1.2 and 7.4), in a flow 
cell according to the USP 28 norm. Characterizations of liposils were done at various steps 
of the kinetics. The stability observed for liposils make them good starting material for drug 
storage and release schemes. For instance, functionalization of their external surface should 
improve their capture by cells whereby drug release could then be induced by a pH 
variation after endocytosis. In these conditions, the stability observed made them potential 
candidates for various drug storage and release schemes. Another release process was 
developed using triggered release of the content by either low-frequency ultrasound or by 
microwave treatments (Steinberg et al., 2007). The bursting of a capsule by using an external 
signal has considerable potential applications, wherever remote activation of content-release 
is needed. This concept has been also demonstrated for polymeric capsules (Radziuk et al., 
2007) and for soft liposomes (Schroeder et al., 2007) and micelles, (Husseini et al., 2000) 
leaving the idea of external triggered release from rigid ceramic capsules relatively 
unexplored. 
The objective of the present chapter aimed at the study (i) of the morphological 
characterization of the hybrid material (ii) of the behaviour of the liposome phospholipids 
and (iii) of the ability of liposils to act as drug delivery system. The morphological 
characterization, which was expected to reveal the presence of the silica coating, was 
provided by different methods such as electron microscopy (TEM and SEM), FTIR 
measurements and nitrogen adsorption. The presence of the entrapped materials 
(phospholipids) was studied by FTIR, elemental analysis and fluorescence anisotropy 
measurements. 
Keywords: Liposomes; Liposils; Silica nanospheres; Drug delivery 

2. Methods and tools 

1. Liposils synthesis 
Liposils synthesis involved two steps. Large unilamellar liposomes were prepared first and 
then the silica spheres enclosing these liposomes were formed (Rapuano & Carmona-Ribero, 
2000). Two liposome samples were prepared according to the method described by 
Bangham (Bangham et al., 1995). For the first one, a suitable amount of L-alpha-dipalmitoyl 
phosphatidylcholine, DPPC (phase transition temperature = 41°C), was dissolved in 
chloroform. Small amounts of cholesterol were added to DPPC for the second sample, 
leading to a liposome composition with a DPPC:cholesterol molar ratio of 7:3. After 
complete removal of the chloroform (at 40°C under reduced pressure), a 5,6-
carboxyfluoresceine (CF) solution (100mM in PBS, 50 mM, pH 7.4) was added to both dry 
phospholipid films in order to obtain a 10 mg/ml lipid suspension in the form of large 
multilamellar vesicles loaded with the water soluble label in their aqueous core. 
These suspensions of multilamellar vesicles were then extruded using an extruder (Lipex 
Biomembranes Inc.) equipped with polycarbonate membranes (mean size diameter: 400, 200 
and finally 100 nm, Nucleopore) in order to reduce and homogenize the liposomes size 
distribution. The extrusion of the lipids was done above their respective transition 
temperature, 41°C for DPPC and 45°C for the DPPC:chol mixture (Hamilton,  1980).  

www.intechopen.com



 Advances in Composite Materials for Medicine and Nanotechnology 

 

104 

After extrusion, the external aqueous phase still contained the fluorescent label. So the 
liposomes were dialyzed in cylindrical membranes (12,000 Da, SpectraPor) for 1 day with 
PBS (150 mM, pH 7.4) in order to eliminate any 5,6-CF present in the external aqueous 
phase. After the dialysis step, 5,6-CF was only present in the internal aqueous core of the 
liposomes.  
To determine the phase transition temperature of both types of liposomes, the hydrophobic 

fluorescent probe diphenylhexatriene (DPH) was loaded in the phospholipid bilayer instead 

of 5,6-CF to prepare two new sets of liposomes (DPH added in tetrahydrofuran to obtain a 

1:200 DPH:lipid ratio) (Bégu et al., 2004). The protocol was then the same as described 

above. For these experiments, and for each of the two samples, a small amount of DPH 

loaded liposomes suspension was diluted in PBS (150mM) and the resulting suspension was 

placed in a thermostated spectrofluorimeter cell. The cell temperature was slowly increased 

from 20°C to 60°C (1°C/min) while monitoring the fluorescence intensity (λex = 360 nm and 

λem = 430 nm). 

The last step of the synthesis consisted in the silica shell formation. To that aim, the 

inorganic precursor tetraethoxysilane (TEOS, Fluka) was first hydrolyzed in the PBS buffer 

(150mM, pH 7.4) for 2 days at 40°C under stirring. The silicate solution was added drop 

wise to the liposome suspensions (DPPC or DPPC:chol, with a TEOS:DPPC molar ratio 8:1) 

at room temperature (20°C) under stirring. The final mixture was gently stirred for 1 day. 

Sodium fluoride (NaF, Sigma Aldrich) at a 4% molar ratio with respect to TEOS was then 

added to both samples, and the reaction medium was stirred at room temperature (48 h), 

protected from light.  

The resulting samples were then controlled by dynamic light scattering (DLS), filtered (pore 

size 200 nm) and the residual solid was dried at 40°C for 24 h to give free flowing silica 

coated particles .  

Two silica hybrid samples were prepared: the first referred to as sample 1 contains DPPC 

liposomes and the second, sample 2, contained DPPC:chol 7:3 liposomes. Both solid 

samples, loaded with 5,6-CF in the liposomes aqueous core, were washed twice with water 

and then with an isopropanol/acetic acid (0.1 M) solution. This washing was a 

precautionary step done in case some 5,6-CF and phospholipid were freed after disruption 

of some of the liposomes during the silica condensation step and could adsorb onto the 

external surface of the silica shell. The same experimental conditions, including the washing 

step, were followed to prepare the two sets of DPH loaded liposils used to determine the 

phase transition temperature of the trapped bilayer.  

2. Characterization of the hybrid material 
a. Dynamic light scattering (DLS) 

Liposomes and liposils size measurements were performed by DLS at a 90° angle, using a 
spectrogoniometer equipped with a He/Ne laser and a photon correlator (Sematech, 
SM633/RTG). In DLS, nanometric particles diffuse in the small volume of a sample hit by a 
laser beam and scatter the laser light. The movement of the particles across that volume is 
due to thermal activation (Brownian diffusion) which is such that the probability of a 

translation step of amplitude ΔR at time t (ΔR=R(0)−R(t)) is described by a gaussian 

distribution. It results that the square of the average displacement ΔR2 is given by the 
following (Eq. (1)): 

 ΔR2(t) = 6D0t (1) 
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D0 is the diffusion coefficient that is used in turn to define a relaxation time for the diffusion. 
In short, DLS theory shows that the latter was quantified by an experimental autocorrelation 
function. So an analysis of the correlogram of scattered light will give access to relaxation 
times, hence to a diffusion coefficient, from which the hydrodynamic diameter Rh is 
deduced using the Stokes–Einstein relationship (Eq. (2)) : 

 0 hD T /6 R= κ πη  (2) 

b. TEM and SEM 
The morphological characterization was done on the samples by conventional transmission 

(JEOL 1200 EXII) and scanning electron microscopy (Hitachi S 4500) following standard 

preparation. The samples were first washed with an isopropanol acetic acid mixture and 

then dried. 

c. TGA DSC  
The experiments were done on as-synthesized and on isopropanol/acetic acid washed 

liposil (Perkin Elmer, DSC 111). The temperature was increased from 50 to 550°C at 

5°C/min for washed and unwashed material. 

d. DPPC determination (enzymatic).  
After crushing the sample, the concentration of DPPC in the suspension was quantified by 

an enzymatic determination of phospholipids (PAP 150, Biomerieux, France). Phospholipids 

are hydrolized by phospholipase D and the liberated choline is measured by the Trinder 

reaction (Takayama et al. 1977).  

e. Elemental analysis.  
For the determination of the liposils composition, liposomes were prepared according to the 

method described above using NaCl 9% solution instead of the phosphate buffer solution 

and the C, P, N, Si and O analysis have been done. 

f. Nitrogen adsorption 
For liposil sample 1 and sample 2, the characterization of the material was carried out on the 
as-synthesized material immediately after synthesis, then after a drying step at 40°C, and 
finally after the stability test at the two different pH values after a drying step. The specific 
surface area of the samples was assessed by nitrogen adsorption measurements according to 
the Brunauer–Emmett–Teller standard method (Brunauer et al., 1938). Measurements were 
carried out at 35°C during 12 h under 10−2 Torr using an ASAP 2010 adsorption analyzer 
from Micromeritics.  

g. Fluorescence anisotropy measurements  
A fully equipped spectrofluorimeter (Shimadzu RF 5310), was used for the steady state 
fluorescence depolarization experiments. A sample of liposil loaded with DPH was specially 
prepared to that effect. The excitation and emission wavelength were set to 360 nm and 430 
nm respectively and the relative intensities for the four combinations of vertically and 
horizontally polarized excitation and emission beams were recorded in the ratio mode in 
order to eliminate source intensity fluctuations. The steady state emission anisotropy was 
calculated as: 

 r = 2p/(3-p) (1) 

with 

 r = (I//-I⊥ .G)/( I//+2I⊥.G) (2) 
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The transmission factor G was taken into account by the method of Azumi and McGlynn, as 

usual. This factor took care of all polarization effects due to the optical components in the 

excitation path, including those due to the grating (Azumi & McGlynn, 1962). The 

experiment was done after the treatment in the acidic medium. No contribution due to light 

scattering was present since a dilution of the vesicles labelled with DPH had no effect on the 

measured fluorescence anisotropy. 

h. Dissolution kinetics 
The tests were done in a flow-through dissolution cell (USP apparatus 4, Sotax; the norm 

chosen was USP 28-NF-23 (2005)) which was a dissolution testing unit for solid or powder 

dosage form, using the USP/EP flow-through method. 

The cell was used in the experiments with a thermostated bath, and may be described as 

having 3 parts: an inverted cone at the bottom, the cylindrical portion of the cell in the 

middle and the filter holding head, on top (Fig.1).  

 

3

Collection 

Dosage 

 

Fig. 1. Scheme of the flow cell apparatus used for kinetic dissolution tests 

The dissolution medium entered the cone from underneath through a capillary bore and 

flowed upwards through the cell. The cone was separated from the cylindrical section by a 

40-mesh screen holding a glass microfiber filter. The filter head on the top part of the 

cylinder also held a glass microfiber filter. At the bottom of the conical part, a single 6 mm 

diameter glass bead regulated the distribution of the solution jet entering the cell and the 

rest of the cone volume was filled with 1 mm diameter round glass beads. The role of the 

glass microfiber filter placed on the bottom part and on the top part (Whatman GF/B and 

GF/D) of the cylindrical section was to prevent some material particles from being drawn 

outside the cell. This detailed description was necessary since recent publications mentioned 

that the release was affected by the position of the glass beads (Bhattachar et al., 2002). 

The sample to test was deposited in the flow-through cell, between the filters sitting at the 

bottom and top of the cylindrical part (Fig. 2). For each experiment, an amount of about 50 

mg of the sample (the drug was featured here by the test molecule 5,6-CF) was needed. The 

flow rate of the medium, kept at 37 °C, was set at a value close to 4 ml/min. In a first 

experiment, the behaviour of liposil was tested in an acidic medium (pH 1.2) during 30 min. 

In a second independent experiment, a fresh sample was tested in a pH 7.4 medium for 1 h 

and a half. These experiments, done in triplicate, were carried out using a closed loop setup 
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connected in line to a UV–visible spectrophotometer in order to monitor the OD variation at 

λ=430 nm during the kinetics at pH 7.4. 

 

 

Fig. 2. Scheme of the flow-cell used in this study for the stability tests (the specific 
localization of the various glass beads are indicated by arrows) 

3. Results 

The liposomes used for the synthesis of the silica material were constituted by zwitterionic 

phospholipids: dipalmitoylphosphatidylcholine (Fig. 3a) presenting a 16 C long fatty acyl 

chain and a choline head group. The synthesized liposomes have a diameter of 80 nm 

(polydispersity: 0.181) for DPPC and 84 nm (polydispersity: 0.192) for DPPC:chol. They 

correspond to small unilamellar liposomes (Fig. 3b) with a narrow size distribution and a 

DPPC concentration of 9.5 mg/mL. The TEOS:DPPC molar ratio (8:1) was chosen to keep 

the amount of released ethanol under 4% (v/v) during the TEOS hydrolysis. The strong 

electrostatic interaction between the positively charged lipid head groups (quaternary 

ammonium) and the negatively charged silica monomers and oligomers was the driving 

force in the templating. The lateral mobility of the lipids in the outer leaflet of the bilayer 

(Fig. 3b) can explain efficient charge compensation. The resulting silica cladding is dense 

and non-porous. 

The hybrid material was originally mostly obtained as clusters of monodispersed but 
aggregated spheres (Bégu et al., 2003). In the last synthesis process (Bégu et al., 2007), an 
improvement of the former, a pre-hydrolyzed silica precursor was added to the liposomes 
suspension. Improvements have also been done using PEG phospholipid (Avnir et al., 2007). 
From DLS measurements on freshly prepared samples of liposils in suspension (i.e. before 

the drying step), the size distribution of the liposil spheres was found to be centred at 90 nm 

with a low polydispersity index (0.20). DLS measurements done at each individual step of 

the synthesis showed that as long as the liposils remained in suspension in the buffer 

solution, there was no aggregation of the liposil particles. Interestingly, the liposils size 

polydispersity reflected the size distribution of the liposome template. 
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Fig. 3. a: Dipalmitoylphosphatidylcholine structure; b: Schematic representation of an 
unilamellar liposome and the organization of the phospholipid bilayer 

 

 

Fig. 4. SEM micrographs (a) and TEM micrographs (b) of dried DPPC and DPPC:chol 
liposils; schematic representation of a liposil (c) in which the silica shell is figured by the 
outermost thick line 
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After the drying step, these liposils still displayed the presence of spheres mostly grouped in 

clusters, with individual liposils retaining their perfectly spherical shape and wall integrity 

(Fig. 4a). SEM controls were done after the drying step. The reason was that before the latter, 

the presence of amorphous silica in excess of the amount needed for the coating process 

made the observation impossible. Aggregation occurred during the drying step. 

TEM data clearly showed silica walls of even thickness of about 4 nm (Fig. 4b). The increase 

in particle size going from liposomes to liposils occurred during the condensation phase 

after addition of hydrolyzed TEOS, as a consequence of the formation of the silica shell. 

Aggregates formation resulted from interactions occurring between the OH groups of the 

silanols when the individual particles were brought into contact during the drying step 

(Park et al., 2002). 

Here, aggregation generated microparticles which consisted of aggregated but well defined 

nanocapsules, each its own well delimited spherical shell. The improvement was seen first 

in the reduced size polydispersity, the thinner silica shell and a better homogeneity of the 

latter. 

Furthermore, after the drying step, the particles from aggregates did not share a whole 

portion of their surface with their neighbours, but appeared to have only a small contact 

area, maintaining so the individuality of the silica shells. Many techniques, such as spray 

drying (Cheow et al., 2010) or freeze-drying, were tested in our laboratory to limit the 

aggregating effect of this drying step but they ended up with the breaking of a large number 

of the liposils, even if some of them appeared as free particles. SEM micrographs (Fig. 4a) 

showed particles with a size of one to several microns consisting in aggregated spherical 

nanoparticles. TEM results (Fig. 4b) were in agreement with the SEM observations and 

confirmed the presence of hollow nanocapsules with a mean diameter close to that of the 

unilamellar liposomes (80 nm). 

The silica wall of these nanocapsules was thin enough (close to 4 nm) to be partially 

transparent to the electron beam. The material morphology was the same whatever the 

liposome composition used (1 or 2). 

TGA-DSC studies show that between 25 and 150°C a very small amount of adsorbed water 

is desorbed from the surface of unwashed particles compared to the amount seen for 

washed particles. This means that the external surface of the former particles is almost 

totally coated by a single layer of lipid (as 70 percent of the total lipids are found inside the 

liposils), and that the washing step efficiently removes the latter. Between 160 and about 

260°C, under an air flux, the DPPC coating the outer surface of the micro-spheres is burnt 

whereas the mass loss in this region is almost zero for the washed nanospheres (Fig. 5). For 

those, the inner bilayer is shielded from oxygen by the compact silica shell. Above 260°C, 

the particles explode under the pressure from vaporized water trapped in their core. 

Afterwards, the combustion of the now exposed lipid from the templating liposomes can be 

followed up to about 500°C. 

The nanocapsules size was consistent with the liposome diameter augmented by twice the 
silica shell thickness. The synthesis conditions and specially the silicon 
alkoxide/phospholipid ratio (8:1) ensured a homogeneous deposition of the prehydrolyzed 
silica on the vesicle surfaces that were fully covered (refer to the SEM micrograph). During 
the latter process, the phospholipid bilayer integrity as well as the shape of the liposomes 
were maintained. This stability resulted from the choice of a phospholipid with a high phase 
transition temperature (Bégu et al., 2004; Bégu et al., 2007).  
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Fig. 5. TGA/DSC scans of liposils 

 

 

Fig. 6. Nitrogen adsorption isotherms for dried nanoparticles: a) top graph, as synthesized 
material; b) bottom graph, after the kinetics in acidic fluid 
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Elemental analysis carried out on unwashed particles at 200 and 350°C reveals a content of 

carbon of 11.2% and 1.6% respectively. This is in perfect agreement with the previous data 

concerning the early removal of the external lipid layer and the combustion of the inner 

bilayer after rupture of the vesicles. 

Nitrogen adsorption isotherms (Fig. 6, top) showed that the as-synthesized materials had 

neither micro nor mesoporosity (type III isotherm). Further, measurements of the surface 

area of these hybrid solids lead to a small computed BET surface of 100 m2/g (the porosity 

observed was mostly interparticular). These data confirmed the non-porous nature of the 

silica coating of the liposomes.  

It is interesting to compare experimental data and results from a purely geometrical 

analysis. In a typical preparation, 15.53 mg DPPC are encapsulated in the silica liposil 

material. The total calcination of the latter leaves 22 mg of pure SiO2. With an outer diameter 

of about 110 nm and an estimated shell thickness of 10 nm, the volume of the non-porous 

silica shell amounts to 4 10-16 cm3 and its mass to 8.8 10-16 g based on a value of 2.2 g.cm-3 for 

the density of amorphous silica. The total surface for the two layers of the included liposome 

amounts to 6.3 10-14 m2. 

Considering an accepted area of 0.60 nm2 for the polar head group of the lipid in the film 

(Pidgeon & Hunt, 1981) the number of DPPC molecules and their expected mass (for a 

single particle) should be close to 1.1 105 and 1.3 1016 g respectively. Using the above values, 

22 mg of silica and 15.5 mg of DPPC would correspond to 2.5 1013 and 12 1013 particles 

respectively. The difference between these computed values reflects a number of 

uncertainties, the largest being certainly the shell thickness that results from a visual 

estimation of TEM data. Taking the average of the two values as a reasonable guess, and the 

computed surface of a particle as 3.8 10-16m2, one ends up with a computed surface area of 

about 73 m2/g of the core shell liposil. This is close to the 55 m2 per gram found 

experimentally. The difference cannot be totally attributed to the aggregation of the shells, 

since the shell thickness and amount of aggregation is not precisely known. However these 

results point to the coherence of all the data.  

Slight modifications of the material were observed after the kinetics in acidic fluid. The 

surface area increased from 100 to 140 m2/g as a result of the partial destruction of the 

aggregates and breaking of a small fraction of the liposils induced by the dynamics of the 

flow in the cell (Fig. 3, bottom). This result was in agreement with the SEM and TEM 

micrographs which confirmed the integrity of most of the 1 and 2 liposil nanoparticles after 

the kinetics in acidic medium. 

Liposils may be schematically represented as seen in Figure 4c. However, no particle was 
left intact after the complete kinetics at pH 7.4, and amorphous silica chunks only were seen, 
originating from the broken and partly hydrolyzed silica shells.  
The behaviour of the liposil particles at two different pH values (1.2 and 7.4) was also tested 

using the hydrophilic probe 5,6-CF (Weinstein et al., 1983) expected to diffuse away from 

the aqueous core across the phospholipid bilayer. The integrity of the bilayer of 

encapsulated liposomes was also tested as described in the original synthesis (Bégu et al., 

2004), using the emission polarization of the linear fluorescent probe DPH. This probe was 

only soluble in the inner region of the bilayer and helped monitor the rigidity of the lipids 

alkyl chains. When the temperature of the samples was varied across a region encompassing 

the transition temperature from the solid gel state to the liquid gel state, a typical decrease in 

the polarization of the emission was observed. 
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Fig. 7. Liposomes transition temperature from DPH fluorescence polarization: a) DPPC 
liposomes (�); b) as-synthesized DPPC liposils (▪); c) DPPC liposils after the kinetics in acidic 
fluid (□) 

This effect is clearly seen for free DPPC liposomes for which the transition temperature was 
41°C (Fig. 7a) [14]. In as-synthesized liposils, that transition temperature was shifted 
towards a higher value as the external leaflet of the bilayer interacted with the silica wall in 
a way that increased its cohesion (Fig. 7b). Measurement of the fluorescence anisotropy was 
also carried out on DPH loaded liposil after the 30 min stability step at pH 1.2 and it could 
be seen that the temperature of the phase transition of the template phospholipid bilayer 
was not affected by that treatment (Fig. 7c).  
 

 

Fig. 8. Kinetics profiles for the release of 5,6-CF from the composite silica nanoparticles in 
suspension at pH 7.4 for 90 min: a) DPPC liposils (–ο–); b) DPPC:chol liposils (–�–) 
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Samples were left for 30 min in contact with the acidic dissolution medium (pH 1.2), in 
order to test the stability of the silica shell in these conditions. At the end of this first step, 
the amount of released 5,6-CF in the medium was measured. That determination was done 
after raising the pH to 7.4 since 5,6-CF, in the form of a lactone at pH 1.2, would have been 
insoluble at that pH. It revealed that at most 5% of the total amount of the fluorescent probe 
associated to the hybrid solid was solubilized. The origin of that 5,6-CF could be due to 
residual adsorbed molecules that resisted the washing step. But it was most probably due to 
some probe molecules being trapped in the few closed inter-grain spaces formed as a result 
of the aggregation of the liposils, that were released in a breakage induced by the shearing 
stress. This was confirmed by the fact that further immersion of the treated particles in 
solution did not release 5,6-CF any more, and by the almost unchanged overall fluorescence 
intensity of the particles. These observations were identical for particles 1 and 2, and 
confirm the non-porous nature of the silica shell. This conclusion was also in agreement 
with the TEM and SEM micrographs results, which revealed at most minor changes in the 
silica shell of the treated liposils nanoparticles. 
In the second part of the test, a kinetics run was done at pH 7.4 (Fig. 8) with another aliquot 
of the same liposil samples. In these conditions, a release of the probe occurs, due to leakage 
from the liposil core towards the pH 7.4 outer medium. To improve the signal value, the 
experiment was done with a closed loop setting; this was possible since any freed 5,6-CF 
was shown not to be readsorbed onto the silica surface. In the 37 °C bath, if the 5,6-CF probe 
could exit the liposomes at pH 7.4, that is, if a disruption of the liposomes had occurred 
concomitantly with the rupture of the silica shell, a burst should have been seen. This 
phenomenon was not observed whether or not the liposomes bilayer included cholesterol. A 
consequence of this observation was that the dissolution of the silica shell should initially 
free intact liposomes. This interesting hypothesis was also supported by the different rates 
of release of 5,6-CF observed for the two types of liposils, as the kinetics corresponding to 
the DPPC:chol templated material is the slowest. This reflects the known relative stability of 
the two different types of liposomes used as templates, the ones with cholesterol being more 
stable. Of course, due to the hydrodynamic shear forces in the flow cell, the liposomes were 
finally destroyed and released their content. The latter event defined the observed release 
kinetics. In physiological conditions, it was shown that liposomes were stable at pH 7.4 over 
a time stretch much longer than the 2h used for the kinetics of the release during which only 
a very limited release of 5,6-CF occurs (Agarwall et al., 1986; Semple et al., 1996). In any 
case, these tests cannot be assimilated to test for the standard release from liposomes. The 
shell was viewed as a protection towards acidic media, temperature and the presence of 
enzymes, all factors susceptible to destabilize bare liposomes. The test of the release of 5,6-
CF in an acidic medium was only a control of the integrity of that silica shell. Later these 
liposil particles will be used for drug release in slightly improved form (functionalized 
external surface of the shell, etc.). 

4. Conclusion 

The stability of liposils, silica-based composites obtained via liposome templating was tested 
at pH 1.2 and pH 7.4 at the constant temperature of 37 °C. Two samples, one with DPPC and 
the second with DPPC and cholesterol, were carefully studied. The non-porous amorphous 
silica cladding of liposils protects the trapped liposomes which retain the fundamental 
properties of their bilayer. Carboxyfluorescein, 5,6-CF, simulating a typical hydrophilic drug 
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was loaded in the liposomes aqueous phase before the templating process. The stability tests 
were done using a flow cell, according to the USP 28 norm. As expected, at the acidic pH 1.2, 
the non-porous silica coating was stable and prevented the rapid degradation generally 
observed for free liposomes in these conditions. At a pH value of 7.4, the silica shell was 
hydrolyzed, and at first the intact liposomes were freed. This interesting feature was revealed 
by the release kinetics and was observed independently of the fact that the bilayer contained 
cholesterol or not. In turn, at that pH, the bilayers are destabilized in these conditions. The 
stability observed for liposils makes them good candidates for drug storage and release 
schemes. Their size and shape should facilitate their capture by cells and the presence of the 
water pool in the trapped liposome should allow for an externally triggered release using 
ultrasonic waves or microwaves. This would provide a fast release, complementing the slow 
release associated to erosion of the liposil particle wall. Further work is in progress to prevent 
the individual liposil nanospheres from aggregating when going to the dry state. Optimizing 
the latter factors will of course lead to a better control of drug release. 
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