
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



8 

Intelligent Photonic Sensors for Application in 
Decentralized Wastewater Systems 

Michal Borecki1, Michael L. Korwin-Pawlowski2, Maria Beblowska1, 
Jan Szmidt1, Maciej Szmidt3, Mariusz Duk4,  

Kaja Urbańska3 and Andrzej Jakubowski1 
 1Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 

2Département d’informatique et d’ingénierie, Université du Québec en Outaouais, 
3Warsaw University of Life Sciences, 

 4Lublin University of Technology, 
 1,3,4Poland 

 2Canada 

1. Introduction 

The generation and treatment of wastewater is considered a serious ecological, economical 
and technical problem (Bourgois et al., 2001); (Richardson, 2003); (Richardson, 2004); 
(Savage & Diallo, 2005); (Bartrand et al., 2007). There have been several reviews published 
concerning the instruments and methods of monitoring the contamination of water and 
detection of contaminants in water samples (Moorcroft et al., 2001); (Nakamura & Karube, 
2003); (Dabek-Zlotorzynska & Cello, 2006); (Dabek-Zlotorzynska et al. 2008). 
Recent publications on detection of nitrate and nitric oxides in water include (Cho et al., 
2001); (Ensafi & Kazemzadeh, 2002); (Sun et al., 2003); (Wen & Kang, 2004); (Bates & 
Hansell, 2004); (Biswas et al., 2004); (Palaniappan et al., 2008); (Sivret et al., 2008). A method 
of detecting sulphide in water was presented (Ferrer et al., 2004), as well as one for chlorite 
(Praus, 2004), other inorganics (Hua & Reckhow, 2006); (Masar et al., 2009) and acidic drugs 
(Basheer et al., 2007). The sensors of metallic contaminants in water and their performance 
have been reported for the case of iron (Pons et al., 2005), arsenic (Toda & Ohba, 2005), 
chromium (Tao & Sarma, 2006) and other metals (Masàr et al. 2009). 
New organic contamination detection methods and instruments have been widely reported 
in recent literature (Lucklum et al., 1996); (Bürck et al., 1998); (Rössler et al., 1998); (Yang et 
al., 1999); (Scharring, 2002); (Yang & Chen, 2002); (Yang & Lee, 2002); (De Melas et al.,2003); 
(Fernàndez-Sànchez et al., 2004); (Kamikawachi et al., 2004); (Sluszny et al., 2004); (Falate et 
al., 2005); (Pons et al., 2005); (Mauriz et al., 2006); (Rodriguez et al., 2006); (Tao & Sarma, 
2006); (Jeon et al., 2009). Optical sensors for bacteria detection and quantification in water 
have been reported (Ji et al., 2004); (Zourob et al., 2005); (Nakamura et al. 2008).  

1.1 The configuration of wastewater treatment systems  

The major sources of wastewater can be classified as municipal, industrial and agricultural. 
Wastewater can be treated in wastewater treatment plants (WATP) or in decentralized 

www.intechopen.com



 Waste Water - Evaluation and Management 

 

182 

wastewater treatment systems (DEWATS) (Jo & Mok, 2009). Wastewater can be described 
using physical properties and by a list of chemical and biological constituents which should 
be precisely specified (Muttamara, 1996). The physical properties of wastewater are 
commonly listed as color, odor, turbidity, solids content and temperature. The wastewater 
treatment and disposal commonly depends on water contamination with suspended solids, 
biodegradable organics, pathogens, nutrients, refractory organics, dissolved inorganic solids 
and heavy metals. The heavy metals are particularly present in industrial wastes. The 
typical examples of refractory organics are surfactants, phenols and pesticides. While 
phenols are present in industrial wastes, pesticides in agricultural wastes, surfactants are 
common in households’ wastes. The surfactants (Abdel-Shafy et al., 1988) and oils tend to 
resist conventional methods of wastewater treatment.  
The properties of wastewater in the treatment process have to be monitored, particularly 

before the effluent water is discharged to the environment. The commonly examined 

parameters of wastewater before, during and after treatment in WATP are: pH, electric 

conductivity (EC in µS), chemical oxygen demand (COD), biochemical oxygen demand 

(BOD), total kjeldahl nitrogen (TKN mg/l), total organic carbon (TOC), total suspended 

solids (TSS), and also bacteria presence (E. Coli- number/100ml) (Thomas et al., 1997). Users 

of WATP run regular tests for those parameters.  

DEWATS are intended for recycling domestic wastewater from individual households, 

community plants and small industrial type systems producing effluent with similar 

characteristics to domestic wastewater (Qadir et al., 2010). The objective of their operation is 

efficient removal or conversion of the various types of pollutants that are present in 

wastewater (Shirish et al., 2009). A typical DEWATS configuration is presented in Table 1. 

 

Treatment Device Function 

Settling tank 

Septic tank 

Primary 

Anaerobic baffled reactor 

Initial separation solids and liquid. 
Solid matter or sewage disintegration 
by bacteria. 

Mechanical filter for example: 
sand or membrane. 

Secondary 

Horizontal planted filter: 

• filter media: pebbles with 
top layer of sand, 

• plant cover: Canna Indica 
and Arundo Donax. 

Filtration of wastewater to the 
acceptable discharge standard. 

UV electrically powered filter  Reduction of bacteria and virus count. 

Open collection tank 

Finish 

Open polishing tank 

In the regions with high solarization the 
collected water is naturally UV-filtered. 

Table 1. Example of typical configuration of DEWATS 

Domestic wastewater can be divided into grey and black wastewater. The grey wastewater 
may be used directly for undersurface irrigation, when the irrigation does not cause 
formation of ponds. It is recommended however that grey water should be treated before 
use and that its contamination by surfactants should be tested. When the level of surfactants 
in grey wastewater is high the discharge should be directed to sewage. The oil presented in 
grey wastewater can block up the filters, so their condition also should be tested. The 
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common way of treatment of grey and in some cases black wastewater is sedimentation 
with microbiological disintegration in compact devices and mechanical filtration. Planted 
vegetation is used sometimes for additional filtration. The UV light disintegration of 
pathogens is also recommended as finishing treatment. 

1.2 Sensors of parameters of liquids  

There are many types of sensors that can be used for water and liquid monitoring, including 

a wide range of fiber optic sensors with chemical or biological sensitive layers, and 

electrochemical sensors that use fuel cells (Cusano et al., 2008).  Under development are 

sensor devices that could be used for wastewater monitoring: pH meters, conductivity 

meters (EC), sensors for selected metal ion concentration, turbidity, liquid and sludge level 

meters, flow meters, sensors of particle presence in flowing liquid and biosensors of aerobic 

activated sludge organisms (Fazalul Rahiman & Abdul Rahim 2010) (Holtmann & Sell, 

2002). The suspended solids concentrations and size distribution and particle weight can be 

determined from turbidity measurements. The metal ion concentrations of dissolved oxygen 

and carbon dioxide can be measured by using sensitive layers deposited on fiber tips or 

inside of capillaries where they are optically monitored. The wastewater contamination with 

toxic colony of micro organisms and BOD can be detected using fluorescence methods that 

include adding a sensitive fluorescent liquid to the examined sample or by the 

immobilization of a microbial layer on an amperometric oxygen electrode. The composition 

of wastewater can be also monitored using near-infra-red (NIR) spectroscopy, but this 

technique requires a laboratory setup and the set of reagents. Water contamination can be 

also analyzed indirectly in the form of gas with the use of a chemical nose which is a matrix 

sensor with integrated signal processing. There are sensors array systems intended for 

monitoring volatile components of wastewater. In more advanced chemical noses the 

wastewater sample is turned into vapor phase before the measurement is performed 

(Bourgeois et al., 2003). In such systems the detector of the principal contaminating 

component is used as the classifier of wastewater pollutants. The problem of 

implementation of sensors in wastewater monitoring is mainly the cost of keeping the 

sensor running or the time needed for examination and calibration. 

1.3 The design objectives of DEWATS  

Apart from technical aspects, the efficiency and the costs of the purification of wastewater, 

which include the cost of wastewater examination, require serious consideration (Rulkens, 

2008). The simple DEWATS configuration does not include sensors for discharge 

monitoring, but as mentioned, the surfactants contamination and oil disintegration should 

be tested. The operation of DEWATS should not require constant samples examination in a 

laboratory. Therefore, DEWATS users need simple in use, low cost and fast sensing methods 

for in-situ initial qualification of water treatment and discharge (Vanrolleghem & Lee, 2003). 

Such methods would use sensors operating in a continuous mode without use of reagents, 

and would feature simple or automatic head cleaning and regeneration. The sensors for 

DEWATS have to be low cost in construction and operation and they have to enable 

monitoring of surfactants presence and give a clear answer if the discharged water is 

acceptable from environmental control point of view. Such requirements can be met by 

physical methods of measurement using light or the electric current. 
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2. Intelligent photonic sensors for wastewater treatment monitoring 

In this work we present intelligent photonic sensors that can be used for monitoring of 
wastewater treatment. These sensors work on the principle of optical intensity changes that 
take place in dynamically forced measurement cycles. The sensors examine simultaneously 
many liquid parameters which are processed in artificial neural networks (Borecki et al., 
2008a). The first type of sensors monitors signals from a drop forming during emerging and 
after emergence of an optical fiber from the examined medium (Borecki, 2007). The second 
type of sensors uses a fiber optical capillary in which the phase change from liquid to gas 
and again to liquid is forced by local heating while the propagation of light across the 
capillary where the liquid changes phase is monitored (Borecki et al., 2008b).   

2.1 The examined liquids 

To evaluate the proposed systems we used several liquids: still water, sparkling water, fresh 
edible oil, spoiled edible oil and grey wastewater including in its composition commonly 
present domestic discharge contaminants. We examined the still and sparkling waters 
coming from this same source and producers. The sparkling water was saturated with 
carbon dioxide. The detection of dissolved CO2 is based on the measurements of differences 
of the solubility of gases in water. Values of gas solubility in water are presented in Table 2.  
 

Gas Solubility (ml/L) 

Nitrogen 16.9 

Oxygen 34.1 

Methane CH4 35 

Carbon Dioxide CO2 1019  

Table 2. Examples of gas solubility in the water at 20°C 

To simulate domestic grey wastewater with controllable composition we used water with 
suspended solids (carbon powder), biodegradable organics (rapeseed oil, milk, fats), 
nutrients (sugar, starch), and refractory organics (surfactants) and also dissolved inorganic 
solids (some components of powder milk). We did not include in the composition heavy 
metals and pathogens, but the pathogens can arise in the presence of milk, yogurt and 
sugar, Table 3.  
 

Type of contaminants Concentration of contaminant 

Carbon powder 75 mg/l 

Biodegradable surfactant 5ml/l 

Rapeseed oil 10ml/l 

Proteins with milk acid bacteria (Actimel) 1.25 ml/l 

Proteins with fat (Powder milk 3.2% of fat) 1g/l 

Starch (Flour) 1g/l 

Sugar 1g/l 

Table 3. Composition of the examined grey wastewater 

The composition was treated for a few days in a still tank with a biological activator. We 
used as activator a 1ml/l solution of 0.5 tablet which includes 4*108cfu of nonpathogenic 
bacteria and enzymes that can disintegrate proteins, starch, oils, fats, papers and surfactants. 
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After dissolving, the tablet works like a mixture of soda and vinegar. Our still tank was kept 

at 26°C and had a volume of 5 liters and a height of 30cm. The sample for examination was 
probed from the middle part of tank using a pipette. The changes in the liquid in 4 days of 
probing in terms of pH and capillary action, which was measured in a glass capillary with a 

diameter of 536μm, are presented in Table 4. The visualization of bacteria growth during the 
treatment is presented in Fig. 1.  
 

Treatment [day] pH Capillary action in [mm] 

0 6.908 25.6 

1 7.925 25.3 

2 7.912 27.0 

3 8.168 26.6 
 

Table 4. pH and capillary action of grey wastewater in the function of treatment holding 
time 

The measured pH of the sample 1 day after preparation was about 8 and remained stable 
during the following days, while initially the pH of the water was 7.0. The capillary action 
remained stable at the average level of 26mm, while the capillary action of clear water was 
about 39mm  
 

  
0 days treatment 1 day treatment 

  
2 days treatment 3 days treatment 

 

Fig. 1. Visualization of bacteria growth as function of treatment holding time 

The microscopic examination in the following days showed that our gray wastewater has 
slightly increased number of bacteria. Therefore, we see that after 3 days of treatment our 
gray wastewater which sediments in tank quite effectively, was not fresh drinkable water.  

www.intechopen.com



 Waste Water - Evaluation and Management 

 

186 

2.2 Experimental setup 
2.2.1 General description  

We used two experimental setups, both with intelligent optoelectronic multi-parametric 

signal detection (Borecki et al., 2008a). Both examined sensors used light intensity 

measurements in forced measuring cycles and they used electrically controlled actuation to 

generate time-dependant information (Borecki et al., 2010). In their construction we used to 

the extent possible commercially available components.  

The light source, and detection hardware were the same in both constructions. The heads 

were optically connected using large core SMA optical connectors. As light source we used a 

fiber coupled laser source S1FC635 from THORLABS that was coupled to the sensing head 

with a multi-mode optical path-cord finished with FC connectors and FC to SMA mating 

sleeves. The S1FC635 enabled light power stabilization and adjustments of power in the 

range from 0.01mW to 2mW. We eliminated the effect of the ambient light by modulating 

the probing light with 1kHz by connecting electrically a DG2021A function generator to the 

modulation input of S1FC635. The scheme of the light source is presented in Fig. 2.  
 

Fiber coupled laser source
S1FC635

 Electrical socket  BNC

 Optical socket  FC

Function generator
DG 2021A

 Electrical socket  BNC

FC/SMA
Pathcord FC

Fiber 
to head 

connection

 

Fig. 2. The light source used in experiments 

In our experiments we used the optical signal from a S1FC635 LD at a level from 0.01 to 

0.2mW. The signal was transmitted almost without losses to the head by a SMA socket. The 

presented light power coupled into large core fibers could be also realized using properly 

selected LED diodes powered from an electric driver which consisted of a laboratory power 

supply that had precise output current settings and a transistor switch connected to the 

generator.  

The detection hardware consisted of an optoelectronic interface, a data acquisition system, 

an electric actuation system and a PC with software, as shown on Fig. 3. 
 

Optoelectronic
interface

 Electrical output  BNC
SMA  Optical input socket

Data acquisition system
Personal Daq/3001

Data exange   USB 
Digital output  Screw
Analog input  S crew

PC with software:
- DASYLab 10 (data asquisition)
- Qnet (artificial neural network)

USB   Data exange   

Electric actuation system

Screw  Digital input
Screw  Electric power output 

Optical fiber 
from head

Electric connection
to actuation  

Fig. 3. Scheme of the detection hardware  
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The optoelectronic interface converted the intensity of amplitude modulated light into an 
electric signal. First the light was converted to the electric signal by a photodiode that was 
integrated in a trans-impedance circuit OP301. Then, all the components of the electric 
spectrum that were not in the modulated band were filtered with the UAF42 circuit. Next, 
the sensed changes of the modulated light intensity were demodulated with an AD536 true 
RMS detector. The interface was sensitive for the changes of the modulated signal slower 
that 5V/0.01s. The most expensive elements of the optoelectronic interface were the SMA 
socket (about 16EUR distributor’s price) that was positioned mechanically directly above the 
OP301 (50EUR). 
The signal from the optoelectronic interface was fed to the data acquisition system that read 
analog signals and converted them to the digital form proper for processing in the data 
acquisition software. We used DASYLab software with two scripts. The first DASYLab 
script was developed for data acquisition and the second was aimed for data classification. 
The data were analyzed with 0.1second time base and were observed and converted to the 
form required in the artificial neural network (ANN) Qnet microcontroller with embedded 
software. We used ANN that was in the form of multilayer perceptron, because this 
configuration showed its high usability in signal classification in sensors technique, (Borecki 
& Korwin-Pawlowski, 2010). 

2.2.2 Fiber optic setup for fiber drop analysis (FDA) 

The first sensing setup consisted of a mini-lift holding an optical fiber optic with a bare tip 
as a measuring head. This setup is presented in Fig. 4 and we used it for intelligent fiber 
drop analysis.  
 

Linear
guideway

Fiber holder

Step motor
and controler

Signal from
electric actuation system

Moving sample
shelf

2cm bare fiber tip

Sample in vessel

TOSLink
2*1 coupler

SMA

SMA

TOSLink fiber with 
SMA / TOSLink 
connectorsTo optoelectronic 

interface

From
light source

Polymer optical fiber
in coating (TOSLink)

 

Fig. 4. Scheme of mini-lift sensing setup used for fiber drop analysis 

In this setup we used a linear guideway type MLA0373-5HK1SKK from Wobit with a length 
of 50cm powered by a 10W step motor 57BYGH804. The guideway and optical fiber of the 
head were mounted on the wall for stability. On the guideway we fixed a vessel with a 
sample of a volume of 100ml. We controlled the movement of the liquid sample in the 
directions up and down with a tolerance of 0.1mm by using a data acquisition system and 
software. This construction provided a stable optical path that resulted in a more repeatable 
signal than the configuration with a moving fiber and a fixed vessel. We configured the 
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optical path using slightly modified TOSLink standard elements. We found that present 
polymer optical fibers can have their coating stripped easily from the fiber without damage 
being inflicted to the cladding or to the core. The sensing arm was one half of TOSLink 
pathcord type T-T from Vitalco PRC cut in half with stripped coating tip on 2cm length. The 
connections from light source and to the optoelectronic interface were made from HC302-
200 Clicktronic pathcord cut in a half with mounted SMA connectors on the cut tips.  
We have also considered using pathcords from different producers and found them 

working not as well with TOSLink coupler, but we found only one type of TOSLink coupler 

available on the market. Inside the coupler there were four fibers with slightly smaller 

diameter than ½ of the TOSLink fiber which we put together on our head arm and each two 

fibers were connected with the input and output arms as is presented in Fig. 5. Therefore, 

the coupler was in fact a divider and gave us the coefficient of light coupling from the 

source to the detection lower than 25%. We also evaluated the SMA BFL48-600 pathcord 

from Thorlab which had a core diameter 600μm, cladding diameter 630μm, coating diameter 

1040μm and numerical aperture (NA): 0.48 ± 0.02 and a multimode FC pathcord with core 

62.5mm for making the asymmetrical coupler presented in Fig. 5. 
 

A) TOSLink                                 B) Home-made asymmetrical

Connector 
to head

Connector 
to light 
source

Connector 
to optoel.
interface

Casing

4 fibers

BFL48-600 fiber

SMA connector
to optoel. interface

Direct path to head 

   φ=0.6mm

FC connector
direct to 
laser S1FC635

MM fiber62.5mm 

1
m

m

  

Fig. 5. The two variants of couplers: A) – TOSLink, B) – Asymmetrical 

The asymmetrical coupler had a coefficient of light coupling from the source to the detection 
equal 43%, which was much higher than in the TOSLink construction, but the construction 
with only TOSLink elements had still sufficient light power output and, moreover, the light 
power balance in TOSLink did not decrease unacceptably when the LED light source was 
tested. With the LED light source the asymmetrical coupler made from polymer fiber 
presented in (Borecki, 2007) is recommended. 

2.2.3 The setup for liquid-gas phase change measurements 

The second sensing setup consisted of a head base, optical fibers, a miniature heater and a 

disposable capillary. This setup is presented in Fig. 6 and we used it for intelligent liquid-

gas phase change capillary measurements. 
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To electric
actuation system

To light source

V-grooves for

fibers
capillary
or

Capillary 
base 

Heater

Thermoelectric
temperature

controller
at the bottom 

surface of plate

Aluminum
plate

Capillary optrode 
with one end closed

Magnetic
tape

Optical 
fiber

 

Optical 
fiber

Cover

To opto-el. interface

 

Fig. 6. Scheme of capillary liquid-gas phase change sensing setup  

In this setup we used capillaries TSP700850 from Polymicro Inc. and BFL48-600 optical 

fibers with outer diameters of cladding similar. An important feature of the capillary probe 

was that the top end of the capillary was blocked with the operator’s finger after the sample 

was drawn and the bottom end contacted with liquid was blocked with modeling clay. This 

prevented any sample spilling and ensured a safe transfer from the place of sample drawing 

to the point of examination. The capillary had the length of 6cm and after introducing the 

sampled liquid by capillary force to the length of about 20mm, modeling clay was inserted 

to a length of a few millimeters to act as a stopper. 

We used a SMA BFL48-600 fiber-tipped pathcord cut in a half. The stripped ends of the 

fibers were mounted with mechanical clamps on the capillary base that was made from steel 

with the tolerance of 2μm. The base was mounted on top of an aluminum plate. A 

replaceable cover was put over the plate to prevent changes of heat transfer due to 

uncontrolled air movement. On the bottom of the plate a thermoelectric temperature 

controller was mounted to stabilize the temperature of the plate with an accuracy of 0.5°C.  

The heater was made in thick film technology. The heating area was 1mm×3mm and the 

heater could dissipate 10W in 60 second without degradation, with 6 minutes of 

stabilization time required between temperature steps. The heater could generate a bubble 

in the liquid filling the capillary above the middle or the edges of the heating area with the 

bubble always moving towards the open end of capillary. Therefore, to avoid false 

measurement results the observations were done above the edge of the heater closer to the 

open tip of capillary. 

2.3 Experimental results of fiber drop analysis (FDA) 

The scheme with a mini-lift and a head with a bare POF fiber generated repeatable time-

domain signal waveforms. For example, during the examination of still water repeated 10 

times it gave signals presented in Fig. 7. The signal can be analyzed considering two 
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dynamic phases of the sensing head moving down (submerging) and up (emerging). When 

the head during submerging crosses the liquid level the reflected signal decreases. The 

signal drop depends on the indexes of refraction of the liquid and the fiber and on the 

turbidity of the liquid. The signal decreases during first part of head emerging cycle. When 

the head comes out of the liquid it takes with it a drop of the liquid. The signal behavior 

next depends on the liquid’s parameters as: density, viscosity and surface tension related to 

the fiber material which in this case should be not wetting. Probing of still water results in 

formation of a drop that increases in volume and lasts for about 3 minutes when it comes 

off. After that the signal returns to its initial level. 
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Fig. 7. Signal collected in FDA for still water samples 

In Fig. 8 is presented the signal collected from the solution of milk power in water at the 

concentration of 500mg/l.  
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Fig. 8. Signals collected in FDA for samples of milk powder in still water at the 
concentration of TSS = 500mg/l 

Clearly, the signals presented in Fig. 7. and in Fig. 8. do not differ significantly. To simulate 

closer the grey wastewater we added out-of-date edible refined rapeseed oil (without 

chemical modifications) to the examined solution. We observed a 1mm thick coat of oil 

forming on the water surface. The collected signals are presented in Fig. 9. 
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Fig. 9. Signal collected in FDA for samples prepared of still water with milk powder in 
concentration of TSS = 500mg/l and covered with 1mm out of date oil coat  

The modification of the liquid sample with out of date oil introduces big differences 
between the collected signals. The signals collected for liquid covered with 1mm thick coat 
of fresh refined rapeseed oil are presented in Fig. 10.  
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Fig. 10. Signal collected in FDA for samples prepared of fresh refined rapeseed oil 

The comparison of the characteristics from Fig. 9 and Fig. 10 leads us to the conclusion that 
the signals from FDA for the samples of liquid with layer of fresh refined rapeseed oil are 
repeatable, contrary to the signals collected from the layer of out-of-date oil on the surface of 
water. We evaluated also the influence of a surfactant as water pollution agent. The 
characteristics collected for a 5ml/l solution of biodegradable kitchen surfactant are 
presented in Fig. 11.  
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Fig. 11. Signal collected in FDA for water with biodegradable kitchen surfactant 5ml/l 
solution 

The last individual agent we examined that could be normally present in the wastewater 
was carbon dioxide in the form of gas saturating bottled sparkling water. The following 
samples were taken from the bottle in specified time in a period of about 6 minutes with the 
time of opening the bottle was labeled 0min, as shown on Fig. 12. 
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Fig. 12. Signal collected in FDA for sparkling water 

An observation can be made that in the presented method the water surfactant solution with 

a concentration of 5ml/l and the sparkling water results in similar signals versus time 

dependences. Similarly, washing objects is more efficient when using water with surfactant 

or sparking water than still water.  

Finally, we did tests with grey wastewater that was stored in a still tank for a few days. The 

collected data are presented in Figs. 13-15. 
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Fig. 13. Signal collected in FDA for grey wastewater just after preparation 

The data collected from raw grey wastewater just after preparation is presented in Fig. 13. 
During that experiment we damaged the fiber head while cleaning it with a piece of tissue. 
The damage was visible in the fiber cladding. The signal collected for next sample has lover 
dynamics and increased level, which can be explained with changes in optical path 
parameters due to fiber damage. The way to restore the head was simply to cut off the 
damaged section, strip another fiber section and re-position the fiber tip. After this 
procedure we collected the signals from the next samples. The signals collected for grey 
wastewater that was treated in still tank for 1 day are presented in Fig. 14. 
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Fig. 14. Signal collected in FDA for grey wastewater that was treated in still tank for 1 day 

The result of two days sample treatments is evident from comparison of data from Fig. 13 to 
Fig. 15. Firstly, the examined wastewater just after preparation is not a homogeneous 
mixture. This mixture stabilizes its parameters, but comparing Fig. 15, Fig. 7 and Fig. 11 
gives us information that the presented treatment does not produce clear water which is in 
accordance in biological examination shown on Fig. 1 and in Table 2.  It is probable that the 
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Fig. 15. Signal collected in FDA for grey wastewater that was treated in still tank for 2 days 

biodegradable surfactant as suggested by its producer is not as quickly biodegradable as we 
may wish. After four days we observed a layer of coat on the surface of the grey water, the 
signals collected during this examination are presented in Fig. 16. 
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Fig. 16. Signal collected in FDA of grey wastewater surface that was treated in still tank for 
4 days 

The coat looked like thin ice surface with slightly yellow color. The exact observing of the 
coat resulted in conclusion that its structure was not uniform and it could be easily break 
into parts.  The signals in measurement cycles were not repeatable in the presence of the 
coat. Sometimes the measurement cycle broke the coat and during the following 
measurements we effectively examined wastewater without coat (samples No. 2, 3, 4, 7, 8, 9, 
10). Interestingly, the signal for sample with coat looked somewhat similar to the signal for 
samples with an oil layer on the water surface (Fig. 9). 
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2.4 Experimental results of capillary liquid-gas phase-change analysis 

The sensing setup enabled the measurement of the reflected and scattered signals, but we 
present and use only the reflected signals. The signals were collected for 120s for liquid 
locally heated with 10W until the gas bubble was created. The signals collected for still 
water are presented in Fig. 17 
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Fig. 17. Signal collected in capillary system for still fresh water sample 

The signal during local heating first decreased slowly, which can be explained by the 
lowering of the refraction index of liquid. Next, we examined the water with the surfactant 
solution in volume concentration of 5ml/l, as shown on Fig. 18. 
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Fig. 18. Signal collected in capillary system for water with surfactant solution of 5ml/l  

The created bubble in the capillary filled with water caused a shot of a drop of water out of 
the capillary; the added surfactant modified the situation significantly causing liquid motion 
slower and vapor phase absorption in the liquid. Also, the time of creation of the bubble 
varied when the surfactant was added to water and the initial signal level changed.  
The last examination we did with the capillary system was of the grey wastewater that had 
been stored in a still tank. The data collected are presented in Figs. 19-21.  

www.intechopen.com



 Waste Water - Evaluation and Management 

 

196 

 

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

Time [s]

S
ig

n
a
l
[a

.u
]

1

2

3

4

5

6

7

8

Untreated grey wastewater, sample No:

 
 

Fig. 19. Signal collected in capillary system for untreated grey wastewater  

The time when the bubble formed and when a drop of water shot out of the capillary in the 

case of unprocessed grey wastewater was very repeatable and was one half of the time of 

bubble formation and drop shot-out for the clear water previously examined. 
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Fig. 20. Signal collected in capillary system for grey wastewater treated 1 day 

The signals after one day of treatment, presented in Fig. 20, had lower initial levels than for 

clear water (Fig. 17), but no bubble shoot out was observed.  

The signal from the sample No 10 presented in Fig. 21 has a sudden peak at 270s, the effect 

of local impurities of wastewater. In all other samples on Fig 21 the shape of signals versus 

time is similar to that measured for clear water Fig. 17. 
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Fig. 21. Signal collected in capillary system for grey wastewater treated 2 days 

2.5 Water classification with ANN in photonic systems 

We examined sequentially samples of liquids of the same composition with the fiber optic 

FDA and the capillary system. For both types of the measurement systems our intention was 

to classify the water according to 5 classification states: clear water, water with surfactant 

solution of concentration 5ml/l, grey wastewater without treatment and after 1 and 2 days 

of treatment. The corresponding outputs of the ANN are given in Table 5. 

 

No. of ANN output Water state 

1 2 3 4 5 

Clear water 1 0 0 0 0 

Water with surfactant 0 1 0 0 0 

Grey wastewater – raw  0 0 1 0 0 

Grey wastewater - 1 day treated 0 0 0 1 0 

Grey wastewater - 2 day treated 0 0 0 0 1 

Table 5. The outputs of ANN for FDA water classification 

The inputs of ANN are different for each of the two systems. The data classification in FDA 

system can be correlated with:  

a. initial level (10s),  

b. level during submersion (75s), 

c. peak level of 100s - correlated with drop appearance,  

d. three levels for 125, 150, 200s of measuring cycle time - correlated with drop forming,  

e. final signal level.  

We used a 4 layers perceptron network, with 6 and 5 nodes in hidden layers and sigmoid 

transfer function. This network giving with training the RMS error of 0.017 and the 

correlation coefficient of 0.998. These values and the ANN output results were satisfactory, 

Table 6. 
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No. of ANN output Std Correlation 

1 0.01770 0.99906 

2 0.02971 0.99713 

3 0.02990 0.99730 

4 0.02087 0.99871 

5 0.02413 0.99811 

Table 6. The outputs parameters of trained ANN for FDA water classification 

The data classification in the capillary system can be correlated with:  

a. initial level,  

b. slope before bubble creation, (5s),  

c. time of bubble creation,  

d. time of bubble absorption, or 0 when bubble shoot the liquid,  

e. final signal level.  

In this case we also used a 4 layers perceptron network giving with training the RMS error 

of 0.12 and the correlation coefficient of 0.89. The ANN output test data are presented in 

Table 7. 

 

No. of ANN output Std Correlation 

1 0.17347 0.90426 

2 0.06646 0.98702 

3 0.05557 0.98936 

4 0.22671 0.83018 

5 0.27209 0.74438 

Table 7. The outputs parameters of trained ANN for capillary water classification 

3. Conclusion 

We have shown that intelligent photonic sensors are capable of classifying wastewater 

parameters and can be easy in operation. The proposed sensors work in contact with the 

examined liquid. The proposed construction is based on new sensing ideas. The 

classification of grey wastewater treatment, water with surfactant 5ml/l solution and clear 

water was performed satisfactorily in both systems. The FDA system was superior to the 

capillary system in terms of classification parameters of wastewater, but the capillary system 

is simpler in construction and does not require moving parts. The capillary system does not 

require head cleaning; the capillary optrode is disposable, which is an advantage. The cost 

of the examination is relatively small. Before the systems can be used for practical 

applications further system integration and automation of the measurement process are 

required. 
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