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1. Introduction

This work deals with the problem of estimating the statistical object called " mean" concerning
a situation where one observe noisy images which are also corrupted through a deformation
process. The difficulty of this statistical problem arises from the nature of the space in which
the object to estimate are living. A popular approach in image processing is Grenander’s
pattern theory described in Grenander (1993) and Grenander & Miller (2007) where natural
images are viewed as points in an infinite dimensional manifold and the variations of the
images are modelled by the action of deformation groups on the manifold.
In the last decade, the construction of deformation groups to model the geometric variability
of images, and the study of the properties of such deformation groups has been an active field
of research: one may refer for instance to the works of Beg et al. (2005), Joshi et al (2004), Miller
& Younes (2001) or Trouvé & Younes (2005b). But to the best of our knowledge, few results
on statistical estimation using such deformations groups are available. In this setting, there
has been recently a growing interest on the problem of defining an empirical mean of a set
of random images using deformation groups and non-Euclidean distances. A first attempt in
this direction is the statistical framework based on penalized maximum likelihood proposed
in Glasbey & Mardia (2001). Computation of empirical Fréchet mean of biomedical images
is discussed in Joshi et al (2004). More recently, Allassonière et al. (2007), Allassonière et al.
(2009) and Ma et al. (2008) have proposed a statistical approach using Bayesian modelling

and random deformation models to approximate the mean and main geometric modes of
variations of 2D or 3D images in the framework of small deformations.
Starting from Bigot et al. (2009), we focus in this text on the problem of estimating a mean
pattern in shape invariant models for images using random diffeomorphic deformations in
two-dimensions. The main goal of this paper is to show that the framework proposed in
Bigot et al. (2009) leads to the definition of an empirical Fréchet mean associated to a new
dissimilarity measure between images. We study both theoretical and numerical aspects of
such an empirical mean pattern. In this extended abstract, we present the main ideas of such
an approach. We also give a numerical example of mean pattern estimation from a set of faces
to illustrate the methodology.
Our work will be organised as follows. We first define the mathematical objects used and then
model our situation of noisy and warped images with random large deformations. We aim
to solve theoretically the problem of estimating the mean pattern of a set of images and state
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some convergence results among some general assumptions. At last, we propose an algorithm
to approach the theoretical estimator and illustrate our method on real datasets.

2. Statistical deformable framework and statement of the mean pattern estimation

problem

We first describe our random model of deformations on 2-dimensional images but note that
this model can be extended to higher dimensions with very minor modifications. Thus, the
following paragraphs are organised as follow, we first recall in paragraph 2.1.1 the classical
model of large deformation introduced in the works of Younes, (2004). Next, we describe
precisely the parametric decomposition of our diffeomorphism (paragraph 2.1.3) and then
explain how one can use our method to generate random large deformations with localised
effects.
At last, this section ends with the paragraph 2.2 and the description of the statistical model
we consider for randomly warped image corrupted by additive noise.

2.1 Mathematical model of large deformation

2.1.1 Definition

For sake of simplicity, images are considered to be functions from a compact set denoted Ω

which will be set equal to Ω in the sequel. Moreover, we deal in this work with grey levelled
thus the generic notation for images I will be I : Ω �→ R. The first task is to define a suitable
notion of deformation of the domain Ω. For this, we will adopt the large deformation model
governed by diffeomorphic flows of differential equation introduced in Trouvé & Younes
(2005a). These deformations denoted Φ will later be combined with some pattern of reference
I⋆ to produce our noisy and wrapped images I⋆ ◦ Φ + ǫ.
Let us first describe precisely our model to generate diffeomorphisms Φ of Ω.
We first consider any smooth vector field v from Ω to R

2 with a vanishing assumption on the
boundary of Ω:

∀x ∈ ∂Ω v(x) = 0. (1)

Now, we consider the set of applications (Φt
v)t∈[0;1] from Ω to Ω, solution of the ordinary

differential equation
{

∀x ∈ Ω Φ0
v(x) = x,

∀x ∈ Ω ∀t ∈ [0; 1] dΦt
v(x)
dt = v(Φt

v(x)).
(2)

A remarkable mathematical point for the ordinary differential equation (2) is that it builds a
set of diffeomorphisms on Ω, Φt

v for any t ∈ [0; 1].
As we want to have a deformation which remains in Ω, we have imposed that Φ1

v|∂Ω
= Id,

meaning that our diffeomorphism is the identity at the boundaries of Ω. Note that in the above
definition, v is an homogeneous vector field (it does not depend on time t) which means that
the differential equation is time-homogeneous and v is also a smooth ( C∞(Ω)) function.
The solution at time t = 1 denoted by Φ1

v of the above ordinary differential equation is a
diffeomorphic transformation of Ω generated by the vector field v, which will be used to
model image deformations. One can easily check that the vanishing conditions (1) on the
vector field v imply that Φ1

v(Ω) = Ω and that Φt
v is a diffeomorphism for all time t ∈ [0, 1].

Thus Φ1
v is a convenient object to generate diffeomorphisms. Indeed, to compute the inverse

diffeomorphisms of Φt
v, it is enough to revert the time in equation (2). One may refer to

Younes, (2004) for further details on this construction.
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Mean Pattern Estimation of Images Using Large Diffeomorphic Deformations 3

2.1.2 One dimensional example

To illustrate the simple construction based on the choice of the vector field v and the obtained
diffeomorphism Φ1

v, we consider a first simple example in one-dimension (i.e. for v : [0, 1] →
R which generates a diffeomorphism of the interval [0, 1]). In Figure 1, we display two
vector fields that have the same support on [0, 1] but different amplitudes, and we plot the
corresponding deformation Φ1

v.
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(a) First choice of vector field v
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(b) Second choice of vector field v
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(c) Diffeomorphism Φ1
v obtained with

blue vector field v
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(d) Diffeomorphism Φ1
v obtained with

red vector field v

Fig. 1. Some numerical examples of two choices for the vector field v and the obtained
diffeomophisms through ordinary differential equation (2).

Note that the deformations require the prior choice of a vector field v. One can see that the
amount of deformations, measured as the local distance between Φ1

v and the identity, depends
on the amplitude of the vector field. In the intervals where v is zero, then the deformation is
locally equals to the identity as pointed in Figure 1. Hence, this simple remark asserts that
local deformations will be generated by choosing compactly supported vector fields which
will be decomposed in localized basis functions.

2.1.3 Building the vector field v in 2D
Parametric decomposition

Consider an integer K and some linearly independent functions ek : R
2 → R

2 whose choices
will be discussed later on. We have chosen to use vector fields v that can be decomposed
on the family of functions ek = (e1

k , e2
k). The deformations are generated as follows. Let
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(a1
k , a2

k), k = 1, . . . , K be coefficients in [−A, A] for a given real A > 0. Then, we define a vector
field va as

∀x ∈ Ω va(x) =

(

∑
K
k=1 a1

ke1
k(x)

∑
K
k=1 a2

ke2
k(x)

)

. (3)

Finally, one has just to run the previously defined O.D.E (2) to produce a deformation, Φva

with a parametric representation.

Choice of ek and numerical example

The amount of variability for diffeomorphisms Φva is thus related to the choice of K and basis
functions ek used to decompose the vector field v. In order to get a smooth bijection of Ω, the
ek should be at least differentiable. Such functions are built as follows. First, we choose a set
of one-dimensional B-splines functions (of degree at least 2) whose supports are included in
[0; 1]. To form two-dimensional B-splines, the common way is to use tensor products for each
dimension. Recall that to define B-splines, one has to fix a set of control points and to define
their degree. Further details are provided in de Boor (1978) and we will fix these parameters
in the section dealing with experiments. B-splines functions are compactly supported with
a local effect on the knots positions. This local influence is very useful for some problems
in image warping where the deformation must be the identity on large parts of the images
together with a very local and sharp effect at some other locations. The choice of the knots
and the B-spline functions allows one to control the support of the vector field and therefore
to define a priori the areas of the images that should be transformed.
In Figure 2, we display an example of a basis e1

k = e2
k , k = 1, . . . , K for vector fields generated by

the tensor product of 2 one-dimensional B-splines (hence K = 4). An example of deformation
of the classical Lena image is shown in Figure 2 with two different sets coefficients ak sampled
from a uniform distribution on [−A, A] (corresponding to different values for the amplitude
A, a small and a large one). The amount of deformation depends on the amplitude of A, while
the choice of the B-spline functions allows one to localize the deformation.

2.1.4 Random generation of large diffeomorphisms

Given any ek and following our last construction, one can remark that it is enough to consider a
random distribution on coefficients a to generate a large class of random diffeomorphisms. In
our simulations, we take for PA the uniform distribution on [−A, A] i.e. ai

k ∼ U[−A,A], i = 1, 2.
However, it should mentioned that in the sequel, PA can be any distribution on R provided
it has a compact support. The compact support assumption for PA is mainly used to simplify
the theoretical proofs for the consistency of our estimator.

2.2 Random image warping model with additive noise

We fix discretization of Ω as a square grid of N = N1 × N2 pixels. Given any image of reference
I⋆ and a vector field v defined on Ω, we generate a diffeomorphism through or ordinary
differential equation and we can define the general warping model by:

Definition 1 (Noisy random deformation of image). Fix an integer K and a real A > 0, we define
a noisy random deformation of the mean template I⋆ as

Iε,a(p) = I⋆ ◦ Φ1
va
(p) + ε(p), p ∈ Ω,

where a is sampled from a distribution P⊗2K
A and ε is an additive noise independent from the coefficients

a. The new image Iε,a is generated by deforming the template I⋆ (using the composition rule ◦) and by
adding a white noise at each pixel of the image.
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(a) Choice of 1D B-splines (b) Original image of Lena

(c) Small deformation of
Lena with a random uniform
sampling of coefficients a (small
value of A)

(d) Small deformation of
Lena with a random uniform
sampling of coefficients a (large
value of A)

Fig. 2. Some numerical examples of two choices for the vector field v and the obtained
diffeomophisms through ordinary differential equation (2).

Remark 1. In our theoretical approach, we consider the pixels p as a discretization of the set Ω since
our applications will be set up in this framework. However, it may be possible to handle this model in a
continuous setting using the continuous white noise model. This model involves the use of an measure
integration over Ω instead of sums over the pixels p of the image and we refer to Candes & Donoho
(2000) for further details. Finally, remark that the image I⋆ is considered as a function of the whole

square Ω, giving sense to I⋆ ◦ Φ1
u(p), ∀p ∈ Ω.

For notation convenience, we will denote Φa the diffeomorphism obtained at time t = 1 with
the ordinary differential equation (2) based on the vector field va, Φa = Φ1

va
.

2.3 Statement of the problem and mathematical assumption

Using this definition of randomly warped image with additive noise, we consider now a set
of n noisy images that are random deformations of the same unknown template I⋆ as follows:

∀p ∈ Ω Iai,εi(p) = I⋆ ◦ Φ1
ai(p) + εi(p), i = 1, . . . , n. (4)

where εi are i.i.d unknown observation noise and ai are i.i.d unknown coefficients sampled as

P⊗K×n
A . Our goal is as well to estimate the mean template image I⋆ as to infer some several

173Mean Pattern Estimation of Images Using Large Diffeomorphic Deformations
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applications of this estimation to image processing.

One may directly realize that this problem is not so easy since the space where the
denoised versions of Iai,εi are leaving is not a classical euclidean space such as R

d since the
diffeomorphisms that generate the image changes from one sample i to another one i′. For
instance, consider 10 handwritten realisations of the digit "two", a simple arithmetic mean
does not yield satisfactory results as pointed in Figure 3.

Fig. 3. Naive mean (two first rows) of a set of 10 images (Mnist database, 28 × 28 pixels
images, see LeCun et al. (1998) for more details on this data set) and naive arithmetic mean of
these images.

For our theoretical study, we will need some mathematical assumptions:

A1 There exists a constant C such that
|ε| < C.

A2
I⋆is L-Lipschitz.

Assumption A1 means that the level of noise is bounded which seems reasonable since we
generally observe gray-level images which take values on a finite discrete set.

Assumption A2 is more questionable since a direct consequence is that I⋆ is continuous, which
seems impossible for natural models of images with structural discontinuities (think of the
space of bounded variation (BV) functions for instance). However, one can view I⋆ as a map
from all points in Ω rather than just a function defined on the pixels. On Ω, it is more likely to
suppose that I⋆ is the result of the convolution of C∞-filters with captors measurements, which
yields a smooth differentiable map on Ω. One may see for instance the work of Faugeras &
Hermosillo (2002) for further comments on this assumption.

3. Statistical estimation of a mean pattern

3.1 The statistical problem

Consider a set of n noisy images I1, . . . In that are independent realizations from the model
(4) with the same original pattern I⋆. We first aim at constructing an estimate of this pattern
of reference I⋆. We are looking at an algorithm that becomes sharper and sharper around
the true pattern I⋆ when the number of observations n goes to +∞. Without any convex
structure on the images, averaging directly the observations is likely to blur the n images
without yielding a sharp "mean shape". Indeed, computing the arithmetic mean of a set of
images to estimate the mean pattern does not make sense as the space of deformed images I∗ ◦
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Φ1
v and the space of diffeomorphisms are not vectorial spaces. This is illustrated in the former

paragraph in Figure 3. To have a consistent estimation of I⋆, one needs to solve an inverse
problem as stated in the works of Biscay & Mora (2001) and Huilling (1998) derived from the
random deformable model (4) since it is needed to remove the random warping effect (and
consequently invert each diffeomorphism Φ1

ai which are unknown) before removing the noise

εi on each image. Thus, recovering I⋆ is not an obvious task which requires some sophisticated
statistical tools. A short description is provided in the next paragraph.

3.2 Presentation of M-estimation techniques

We will consider an optimisation problem (minimize an energy in our case) whose solution is
the pattern I⋆ we are looking for and we will use some classical M-estimation techniques.
Intuitively the ideas underlying M-estimation in statistics (see van der Waart (1998))
can be understood by considering the following simple example provided for a better
understanding.

Example 1. Let X1, . . . Xn ∼i.i.d. P and α∗ = EP[X1]. The simplest way to estimate α∗ is α̂n =
1
n (X1 + · · ·+ Xn). If for some real α, we define Fn and F the functions as

Fn(α) =
n

∑
i=1

(Xi − α)2 and F(α) = EP [(X − α)2],

then one can easily check that α̂n is the minimum of Fn and that α⋆ is the minimum of F. Of course,
F is unknown since it depends on the unknown law P, but a stochastic approximation of F is provided
by Fn as soon as one observe X1, . . . Xn. Moreover, one can remark that Fn(α) → F(α) almost surely
(a.s.) as n → ∞.
Thus, a simple way to obtain an estimate of α⋆ = arg min F is to remark that the minimum of Fn should
concentrates itself around the minimum of F as n is going to +∞. Mathematically, this is equivalent
to establish some results like:

Fn �−→n→∞ F =⇒ arg min Fn �−→n→∞ arg min F.

In our framework, estimating the pattern I∗ involves finding a best image that minimizes
an energy for the best transformation which aligns the observations onto the candidate. So
we will therefore define an estimator of I⋆ as a minimum of an empirical contrast function
Fn (based on the observations I1, . . . In) which converges, under mild assumptions, toward a
minimum of some contrast F.

3.3 A new contrast function for estimating a mean pattern

We start this paragraph with some notations.

Definition 2 (Contrast function). Denote by Z = {Z : Ω → R} a set of images uniformly bounded
(e.g. by the maximum gray-level). Then, define VA as the set of vector fields given by (3). An element
va in V can thus be written as

va =

(

K

∑
k=1

a1
ke1

k ,
K

∑
k=1

a2
ke2

k

)

, for some ai
k ∈ [−A, A].

If we denote N the number of pixels, we define the function f as

f (a, ε, Z) = min
v∈VA

N

∑
p=1

(

Ia,ε(p)− Z ◦ Φ1
v(p)

)2
, (5)

175Mean Pattern Estimation of Images Using Large Diffeomorphic Deformations
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where I is a given image of Z , the vector field va ∈ VA.
In the expression of f , one can remark that a varies in a compact set (finite number of bounded
coefficients) and consequently the definition of f makes sense. Intuitively, f must be understood as
the optimal (minimum) cost to align the image Z onto the noisy randomly warped image Ia,ε using a
diffeomorphic transformation.
For sake of simplicity, we introduce a notation that corresponds to a discretize semi-norm over the
pixels:

∣

∣

∣
Ia,ε − Z ◦ Φ1

v

∣

∣

∣

2

P̧
=

N

∑
p=1

(

Ia,ε(p)− Z ◦ Φ1
v(p)

)2
.

At last, we define the mean contrast function F given by

F(Z) =
∫

[−A;A]2K×RN
f (a, ε, Z)dP(a, ε) = E f (a, ε, Z)

where dP(a, ε) is the tensorial product measure on a and ε.

F(Z) must be understood as follows: it measures "on average" how far an image Z is from
the image Ia,ε generated from our random warping model using an optimal alignment of Z
onto Ia,ε. Note that we only observe realizations I1, . . . In that have been generated with the
parameters a1, . . . an and ε1, . . . εn.
However, our goal is to estimate a mean pattern image Z⋆ (possibly not unique) which
corresponds to the minimum of the contrast function F when I⋆ (and of course dP(a, ε)) is
unknown. As pointed before, M-estimation will enable is to replace virtually the EP(a,ε) by a

finite sum ∑
n
i=1 which depends on the observations and that mimic the former expectation.

To estimate Z⋆, it is therefore natural to define the following empirical mean contrast:

Definition 3 (Empirical mean contrast). We define the measure Pn and the empirical contrast Fn

as

Pn(a, ε) =
1

n

n

∑
i=1

δai,εi and Fn(Z) =
∫

f (a, ε, Z)dPn(a, ε).

Note that even if we do not observe the deformation parameters ai and the noise εi, it is
nevertheless possible to optimize Fn(Z) with respect to Z since it can be written as:

Fn(Z) =
1

n

n

∑
i=1

min
vi∈VA

∣

∣

∣
Ii − Z ◦ Φ1

vi

∣

∣

∣

2

P̧
.

Moreover, note that in the above equation it is not required to specify the law PA or the law
of the additive noise to compute the criterion Fn(Z). We then introduce quite naturally a
sequence of sets of estimators

Q̂n = arg min
Z∈Z

Fn(Z) (6)

and we will theoretically compare the asymptotic behavior of these sets with the deterministic
one

Q0 = arg min
Z∈Z

F(Z). (7)

In a second time, we will infer in section 3.5 an algorithm to estimate a mean pattern in the set
Q̂n. This algorithm consists in a recursive procedure to solve (6). Note that both sets Q̂n and
Q0 are not necessarily restricted to a singleton.
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3.4 Convergence of the estimator

We first state a useful theoretical tool of M-estimation that can be found in Theorem 6.3 of
Biscay & Mora (2001). We will use this result to establish the convergence of (6) toward (7).
For each integer n, we denote Ẑn any sequence of images belonging to Q̂n.

Proposition 1. For any image Z, assume that Fn(Z) → F(Z) a.s. and that the following two
conditions hold

(C1)the set { f (·, ·, Z) : Z ∈ Z} is an equicontinuous family of functions at each point of X =
[−A; A]2K × R

N .

(C2)there is a continuous function φ : X → R
+ such that

∫

X φ(a, ε)dP(a, ε) < +∞, and for all
(a, ε) ∈ X and Z ∈ Z , | f (a, ε, Z)| ≤ φ(a, ε).

Then
Q̂∞ ⊂ Q0 a.s., (8)

where Q̂∞ is defined as the set of accumulation points of the Ẑn, i.e the limits of convergent
subsequences Ẑnk

of minimizers Ẑn ∈ Q̂n.

The following theorem whose proof can be found in Bigot et al. (2009) gives sufficient
conditions to ensure the convergence of the M-estimator in the sense of equation (8).

Theorem 1. Assume that conditions A1 and A2 hold, then the M-estimator defined through Q̂n is
consistent: any accumulation point of Q̂n converges to Q0 almost surely.

This theorem ensures that the M-estimator, when constrained to live in a fixed compact set of
images, converges to a minimizer Z⋆ of the limit contrast function F(Z).
Remark that Theorem 1 only proves the consistency of our estimator when the observed
images comes from the distribution defined through Ia,ε, (a, ε) ∼ dP(a, ε). This assumption
is obviously quite unrealistic, since in practice the observed images generally come from a
distribution that is different from the model (4). In Section 4, we therefore address the problem
of studying the consistency of our procedure when the observed images Ii, i = 1, . . . , n are an
i.i.d. sample from an unknown distribution on R

N (see Theorem 2).

3.5 Robustness and penalized estimation

Penalized approach

First, remark that the limite of Ẑn denoted Z⋆ may be equal to the correct pattern I⋆ if the
observations are generated following the distribution Ia,ε, (a, ε) ∼ dP(a, ε). We address in this
paragraph what happens when observations do not follow the law of Ia,ε.
In such situation, the minimum Z∗ may be very different from the original image I∗, leading
to unconsistant estimate as n → ∞. This behaviour is well known in statistics (one may
refer to van de Geer (2000) for instance for further details). The loss function has often to
be balanced by a penalty which regularizes the matching criterion. In a Bayesian framework,
this penalized point of view can be interpreted as a special choice of a prior distribution, e.g
Allassonière et al. (2007). In nonparametric statistics, this regularization often takes the form
of a penalized criterion which enforces the estimator to belong to a specific space satisfying
appropriate regularity conditions.
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Image decomposition

It may not be a good thing to just minimize L2 distance between image and the true warped
pattern as the L2 norm on the euclidean space may not traduce the variability between all
the images. Thus, it may be a good point to use another space for images than the set of
real vector of size N since this canonical space may not traduce important features of image
analysis (edges, textures, etc.) .
In our framework, we point out that choosing to expand the images Z ∈ Z into a set of basis
functions (ψλ)λ∈Λ, that are well suited for image processing (e.g. a wavelet basis), is by itself
a way to incorporate regularization on Ẑn. Here, the set Λ can be finite or not. More precisely,
any image Z can be parametrized by Z = Zθ = ∑λ∈Λ θλψλ. The estimation of a mean pattern
involves the estimation of the coefficients of this image in the basis ψl , λ ∈ Λ. Thus, the
penalization term on the image will involve the parameter θ since the basis (ψλ)λ will remain
fixed. This yield the definition of pen1 as

pen1(θ) = ∑
λ∈Λ

|θλ|.

Cost of diffeomorphism

Indeed, the variability may be described in a different way due to the action of the
deformations for instance. Thus, in our setting, we may be interested in defining a distance
between images that mostly depends on the amount of deformation required to transform
the first one to the second with a regular deformation action. A good way to set up such

distance is certainly to penalize the energy F with a term |D(m)Φ1
v| where m is a derivative of

the diffeomorphism. Since each diffeomorphism is parametrized by a finite set of coefficients
(ai

k)i,k, the second penalization term of the deformation will concern the unknown a.
Further, we impose regularity on the transformations by adding a penalty term to the
matching criterion to exclude unlikely large deformations. The penalty must control both
the deformations to avoid too large deformations (see for instance Amit et al. (1991)) and also
the images to add a smoothness constraint for the reference image. For this, for Γ a symetric
positive definite matrix, define the penalization of the deformation as:

pen2(v) =
2

∑
i=1

K

∑
k,k′=1

ai
kΓk,k′a

i
k′ .

Comments on pen1 and pen2

The first penalization term is somewhat classical and corresponds to soft-thresholding
estimators, it has been widely used in various context, see for instance the work of Antoniadis
& Fan (2001) , and it enables to incorportate some sparsity constraint on the set Z .
For the deformation parameters, the choice pen2(va) means that we incorporate spatial
dependencies using a given matrix Γ. We thus do not assume anymore that all deformations
have the same weight, as it was done in the original definition of Fn(Z). Obviously, other
choices of penalty can be studied for practical applications and we provide in the sequel
consistency results for general penalties. Two parameters λ1 and λ2 balance the contribution
of the loss function and the penalties. High values of these parameters stress the regularity
constraint for the estimator and the deformations.
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Finally, we obtain the following estimator Ẑn = ∑λ∈Λ θ̂λψλ, with

θ̂n = arg min
θ∈RΛ

1

n

n

∑
i=1

min
vi∈VA

(

∣

∣

∣
Ii − Zθ ◦ Φ1

vi

∣

∣

∣

2

P̧
+ λ1pen1(vi)

)

+λ2pen2(θ).

The effects of adding such extra terms can also be studied from a theoretical point of view.
If the smoothing parameters λ1 and λ2 are held fixed (they do not depend on n) then it is
possible to study the converge of θ̂n as n grows to infinity under appropriate conditions on
the penalty terms and the set Λ.
More precisely, we address now the problem of studying the consistency of our M-estimator
when the observed images (viewed as random vectors in R

N) come from an unknown
distribution P, that does not necessarily correspond to the model (4). For sake of simplicity
we use the notation f̃ introduced in Equation (5), but within a penalized framework with
unknown P, the dependency on ε disappears, and f̃ is now defined as

f̃ (I, Zθ) = min
v∈VA

[

‖I − Zθ ◦ Φ1
v‖

2
P + λ1pen1(v)

]

+ λ2pen2(θ), (9)

where λ1, λ2 ∈ R
+, pen1(v) := pen1(a) : R

2K → R
+, and pen2(θ) : R

Λ → R
+. For any θ that

“parametrizes” the image Zθ in the basis (ψλ)λ∈Λ, let F̃ denote the general contrast function

F̃(Zθ) =
∫

f̃ (I, Zθ)dP(I), (10)

and F̃n the empirical one defined as

F̃n(Zθ) =
1

n

n

∑
i=1

f̃ (Ii, Zθ).

The following theorem, whose proof is deferred to the Appendix, provides sufficient
conditions to ensure the consistency of our estimator in the simple case when F̃(Zθ) has a
unique minimum at Zθ∗ for θ ∈ Θ, where Θ ⊂ R

Λ is a compact set, and Λ is finite.

Theorem 2. Assume that Λ is finite, that the set of vector fields v = va ∈ V is indexed by parameters
a which belong to a compact subset of R

2K, that a �→ pen1(va) and θ �→ pen2(θ) are continuous.

Moreover, assume that F̃(Zθ) has a unique minimum at Zθ∗ for θ ∈ Θ, where Θ ⊂ R
Λ is a compact

set. Finally, assume that the basis (ψλ)λ∈Λ and the set Θ are such that there exists two positive
constants M1 and M2 which satisfy for any θ ∈ Θ

M1 sup
λ∈Λ

|θλ| ≤ sup
x∈[0,1]2

|Zθ(x)| ≤ M2 sup
λ∈Λ

|θλ|. (11)

Then, if P satisfies the following moment condition,
∫

‖I‖2
∞,NdP(I) < ∞,

where ‖I‖∞,N = maxp=1,...,N |I(p)|, the M-estimator defined by Ẑn = Zθ̂n
where

θ̂n = arg min
θ∈Θ

F̃n(Zθ)

is consistent for the supremum norm of functions defined on [0, 1]2 i.e.

lim
n→∞

‖Ẑn − Zθ∗‖∞ = 0 a.s.
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4. Experiments and conclusion

4.1 Numerical implementation

Different strategies are discussed in Bigot et al. (2009) to minimize the criterion F̃n(Zθ). In
the numerical experiments proposed in this text, we took the identity matrix for Γ in the
formulation of pen2. We have also chosen to simply expand the images in the pixel basis
and have taken λ1 = 0 (i.e. no penalization on the space of discrete images viewed as vectors
in R

N).
Our estimation procedure obviously depends on the choice of the basis functions ek = (e1

k , e2
k)

that generate the vector fields. In the following, we have chosen to use tensor products of
one-dimensional B-spline organized in a multiscale fashion. Let s = 3 be the order of the
B-spline and and J = 3. For each scale j = 0, . . . , J − 1, we denote by φj,ℓ, ℓ = 0, . . . , 2j − 1

the 2j the B-spline functions obtained by taking 2j + s knots points equispaced on [0, 1] (see
de Boor (1978)). This gives a set of functions organized in a multiscale fashion as shown in
Figure 4. Note that as j increases the support of the B-spline decreases which makes them
more localized.

Fig. 4. An example of multiscale B-splines φj,ℓ, ℓ = 0, . . . , 2j − 1 with J = 3 and s = 3,
ordered left to right, j = 0, 1, 2.

For j = 0, . . . , J − 1, we then generate a multiscale basis φj,ℓ1,ℓ2
: [0, 1]2 → R, ℓ1, ℓ2 = 0, . . . , J −

1 by taking tensor products the φj,ℓ’s i.e.

φj,ℓ1,ℓ2
(x1, x2) = φj,ℓ1

(x1)φj,ℓ2
(x2).

Then, we take ek = ej,ℓ1,ℓ2
= (φj,ℓ1,ℓ2

, φj,ℓ1,ℓ2
) : [0, 1]2 → R

2. This makes a total of K =

∑
J−1
j=0 22j = 22J−1

3 = 21.

Following these choices, one can then use the iterative algorithm based on gradient descent
described in Bigot et al. (2009) to find a mean image.

4.2 Mnist database

First we return to the example shown previously in Figure 3 on handwritten digits (Mnist
database). As these images are not very noisy, it is reasonable to set λ1 = 0 and thus to not
use a penalty on the space of images onto which the optimization is done. A value of λ2 = 10
to penalize the deformations gave good results.
In Figure 5, we display the naive arithmetic mean Znaive and the mean Ẑn by minimizing
F̃n(Zθ) obtained from n = 20 images of the digits "2". The result obtained with Ẑn is very
satisfactory and is clearly a better representative of the typical shape of the digits "2" in this
database then the naive arithmetic mean. Indeed, Ẑn has sharper edges than the naive mean
which is very blurred.
In Figure 6 we finally display the comparison between the naive mean and the mean image
Ẑn, for all digits between 0 and 9 with 20 images for each digit. One can see that our approach
yields significant improvements. In particular it gives mean digits with sharp edges.
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Fig. 5. Naive arithmetic mean (lower left image), mean image Ẑn (lower right image) based
on 20 images of the digit "2" (upper rows).

Fig. 6. Naive arithmetic mean (first row), mean image Ẑn (second row) based on 20 images
from the mnist database.

4.3 Olivetti faces database

Let us now consider a problem of faces averaging. These images are taken taken from the
Olivetti face database Samaria & Harter (1994) and their size is N1 = 98 by N2 = 112 pixels.
We consider 8 subjects taken from this database. For each subject, n = 9 images of the same
person have been taken with varying lighting and facial expression. Figure 7 and Figure 8
show the faces used in our simulations.
In Figure 9 and Figure 10 we present the mean images obtained with λ2 = 1000, and compare
them with the corresponding naive mean. Note that these images are not very noisy, so it
is reasonable to set λ1 = 0. Obviously our method clearly improves the results given by
the naive arithmetic mean. It yields satisfactory average faces especially in the middle of the
images.

4.4 Conclusion and perspectives

We have built a very general model of random diffeomorphisms to warp images. This
construction relies mainly on the choice of the basis functions ek for generating the
deformations. The choice of the ek’s is relatively large since one is only restricted to take
functions with a sufficient number of derivatives that vanish at the boundaries of [0, 1]2.
Moreover, our estimation procedure does not require the choice of a priori distributions for
the random coefficients ai

k. Other applications of this approach may be developed to obtain
some clustering algorithms ( K-means adaptation for unsupervised classification) using the
energy introduced in this paper. Hence, this model is very flexible as many parameterizations
can be chosen. We have only focused on the estimation of the mean pattern of a set of
images, but one would like to build other statistics like principal modes of variations of the
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Fig. 7. n = 9 samples of the Olivetti database for 4 subjects.

Fig. 8. n = 9 samples of the Olivetti database for 4 subjects.

learned distribution of the images or the deformations. Building statistics going beyond the
simple mean of set of images within the setting of our model is very challenging for future
investigation.
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Fig. 9. Example of face averaging for 4 subjects from the Olivetti database. First row: naive
arithmetic mean, second row: mean image Ẑn.

Fig. 10. Example of face averaging for 4 subjects from the Olivetti database. First row: naive
arithmetic mean, second row: mean image Ẑn.
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