
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Atalla F. Sayda
University of New Brunswick

Canada

1. Introduction

Complex industrial facilities are characterized by their large size, complexity of the constituent
sub-processes and their dynamics, and the massive information overload. For example,
the maintenance and management of complex process equipment and processes, and
their integrated operation, play a crucial role in ensuring the safety of plant personnel
and the environment as well as the timely delivery of quality products. Given the
size, scope and complexity of the systems and interactions, it is becoming difficult for
plant personnel to anticipate, diagnose and control serious abnormal events in a timely
manner (Venkatasubramanian et al., 2003).
This lays huge challenges on the design, development and deployment of a system to manage
such facilities in different operating conditions. Multi-agent systems (MAS) and artificial
intelligence (AI) are the corner-stone frameworks to design an intelligent real-time system
for complex industrial facility management and control. This chapter addresses the different
aspects of designing a multi agent system to manage and control complex industrial facilities
from conceptualization to deployment. A thorough literature survey is done to give a big
picture of what has been accomplished in academia and industry for this topic primarily. The
design of an industrial MAS system will be discussed from conceptualization to validation in
the following sections.

2. Challenges in developing industrial multi-agent systems

Although industrial multi-agent systems have great impact on complex process plants in
terms of higher profitability and better management, the development of such systems is very
difficult and exhibits many challenges (Mark et al., 1995; Mylaraswamy, 1996; Mylaraswamy
& Venkatasubramanian, 1997; Vedam, 1999; Vedam et al., 1999; Venkatasubramanian, 2005;
Venkatasubramanian et al., 2003):

• Diversity of solution techniques, where several approaches are available to perform the
main tasks of an industrial facility management system: For example, fault detection and
isolation can be performed using model-based quantitative and qualitative fault diagnosis
techniques as well as non-model-based methods. Similarly, supervisory control can be
performed using several AI techniques such as rule-based expert systems and case-based
reasoning. These techniques are diverse in nature and use certain assumptions about
the process and performance requirements. Hence, determining the best approaches for

Multi-agent Systems for Industrial Applications:
Design, Development, and Challenges

23

www.intechopen.com

performing the individual tasks of industrial facility management is difficult. Moreover,
the chosen approaches may not meet the goals of the overall system. Having these
techniques integrated in one intelligent system may seem the only solution. However,
the analysis of the accuracy, consistency and stability of such integrated systems is even
more difficult.

• Diverse sources of knowledge, which stems from the incomplete and scattered nature of
process knowledge such as process manuals, operational expertise, process models, and
historical data: Techniques to integrate the knowledge sources into a form that can be used
effectively in an intelligent system are of a great necessity. The ontology based knowledge
organization approach is an example of such techniques.

• Uncertainty in process models and measurements, which may affect the performance of a
complex industrial facility system: Most of the system’s tasks depend on accurate process
measurement and models. Noisy sensor measurements, process disturbances, and the
highly non-linear dynamics of chemical processes in general can be a significant source of
the failure of the entire system. Systematic analysis of such uncertainties and their effect
on the system performance is required.

• Widely varying time scales of the different system tasks and the operating situations which
may happen in the plant: Some operating situations might develop over a few minutes,
while others might develop over hours and days. Likewise some tasks of the system
might execute in few milli-seconds, while other tasks may take minutes and hours to make
decisions such as the supervisory control task.

• Implementation for large scale industrial plants, which has effect on the system software
architecture, real-time hardware, field testing and validation, user interface and operator
training and acceptance.

3. Survey of industrial multi-agent systems (MAS)

The automation of industrial facility management has been recognized by academia and
industry as a vital research area, which many research programs and industrial projects
were initiated to investigate. Some projects focused on managing the process during normal
operation while others gave abnormal situation management a higher priority. In the late
1980’s, the European Commission funded a major research project called ARCHON, which
was focused on the problem of getting a number of distinct expert systems to pool their
expertise in solving problems and diagnosing faults in several industrial domains. ARCHON
was recognized as one of the first real industrial applications of MAS (Jennings & Mamdani,
1996). In this section, an indepth survey of research and industrial projects will be presented.
The early projects did not exploit the MAS approach, yet they gave an insight for later research
projects, which benefited from the MAS approach. Here eight of the most relevant projects are
reviewed.

3.1 The FORMENTOR research project

FORMENTOR, which is a joint venture of major European companies, is supported by the
EUREKA program of cooperative international R&D projects with a budget of 33.4 million
Euros. The research program, which lasted from 1986 to 1996, “aimed to develop real-time
plant supervision software systems to support operators in their decision-making process by
enabling them to make effective use of all this information, and avoid disturbances and any

470 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

loss of production” (Kim & Modarres, 1987; Wilikens & Burton, 1996). The main technical
features of the system are (Wilikens & Burton, 1996):

1. A goal tree-success tree (GTST), which is a representation of the functional model of the
process.

2. The multi-layer model (MLM) used to represent the functional components of the plant in
a hierarchical way to provide a global overview of the plant state and to guide the action
planning process.

3. Two distinct but complementary reasoning modules for diagnosis, both based on this
multi-layer structure.

In FORMENTOR the object oriented approach was used to implement the system, which in
turn consisted of a collection of modules to perform the different tasks, a communication
system, and a global controller to control the activities of the modules. The disadvantages of
such a system can be summarized as follows:

1. The use of simple mathematical formulas to represent the behavioral models of the plant
components, where the complex interactions among the plant variables are not captured.

2. The absence of a model identification module to address the dynamic and varying nature
of chemical plants.

3. Fault diagnosis is largely qualitative, which leads to lack of resolution.

4. Fault mitigation is also qualitative and based on the current state of the system, making
the system only reactive.

3.2 Advanced process analysis and control system (APACS)

The APACS project was designed to introduce intelligent agents into a modern nuclear
operating environment. APACS was a PRECARN project supported by the Canadian
government and several Canadian universities and companies, and developed by a team of
more than 10 software designers and engineers. The 9.7 million-Canadian-dollars, five-year
project began in the fall of 1990 and was completed in the fall of 1995 (Mylopoulos et al., 1992;
Wang & Wang, 1997). “The goal of the APACS project was to develop a generic framework for
building an intelligent system that assists human operators of power plants in noticing and
diagnosing failures in continuous processes” (Wang & Wang, 1996).
The APACS system consists of three layers: the agent layer which implements the system
functionality; the knowledge broker layer which manages communication between the
agents; and the information repository layer which stores the system common knowledge.
The agents of the APACS system perform the following tasks (Wang & Wang, 1997):

1. The data acquisition agent receives data from the plant’s main control computer.

2. The tracking agent continuously updates the data links between the agent system
and the actual plant sensor positions.

3. The monitoring agent analyzes the feedwater sensor values and feedwater alarms
and then produces symbolic descriptions of the plant’s behavior.

4. The human-computer interface (HCI) agent displays the APACS status to the plant
operators and serves as the user interface.

5. The diagnostic agent takes the output from the monitoring agent and attempts to
generate a qualitative causal explanation that will eventually be useful to the human
operators.

471Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

6. The verification agent operates a faster-than-realtime numerical, model-driven
simulator to measure the correlation of the diagnostic agent’s output against the
simulator’s ideal values.

The entire APACS system was implemented in C++ using Expersoft’s XShell (an extended
C++ syntax for declaring distributed objects) as its communication environment and CLIPS
(a rules-based inferencing environment constructed by NASA) (Wang & Wang, 1997). The
APACS project had some of the FORMENTOR project disadvantages such as the absence of a
model identification agent, the qualitative nature of the fault diagnosis task, and the absence
of a fault mitigation (i.e., accommodation) agent.

3.3 The pilot’s associate (PA) program

The first research program to address the intelligent facility management problem in the
US was the Pilot’s Associate (PA) program, which is a joint effort of the Defense Advanced
Research Projects Agency and the US Air Force, managed by the Air Force’s Wright
Laboratory. The program began in February 1986 as an application demonstration for
DARPA’s Strategic Computing Initiative. A primary goal of the PA program was to enhance
combat fighter pilot effectiveness by increasing situational awareness and decreasing their
workload. DARPA wanted to advance the program’s technology base, principally in the area
of real-time, cooperating knowledge-based systems. The Air Force wanted to explore the
potential of intelligent systems applications to improve the effectiveness and survivability of
post-1995 fighter aircraft (Banks & Lizza, 1991; Small & Howard, 1991).
“The Pilot’s Associate concept developed as a set of cooperating, knowledge-based
subsystems: two assessor and two planning subsystems, and a pilot interface. The two
assessors, Situation Assessment and System Status, determine the state of the outside world
and the aircraft systems, respectively. The two planners, Tactics Planner and Mission Planner,
react to the dynamic environment by responding to immediate threats and their effects on
the pre-briefed mission plan. The Pilot-Vehicle Interface subsystem provides the critical
connection between the pilot and the rest of the system” (Banks & Lizza, 1991). Another
project, which followed the PA program to address the facility management problem in attack
helicopters, is the Rotorcraft Pilot’s Associate (RPA) program. The goal of the US Army
funded RPA program was to develop and demonstrate in flight an advanced, intelligent
“associat” system in a next-generation attack/scout helicopter (Miller & Hannen, 1999).

3.4 Abnormal situation management (ASM)

The PA and RPA projects paved the way for other projects to develop and automate
the industrial facility management process for the process industry in the United States.
AEGIS (Abnormal Event Guidance and Information System), which was developed by the
Honeywell led Abnormal Situation Management (ASM) Consortium in the United States, is
a very important project (Cochran et al., 1997). The AEGIS project proposes a comprehensive
facility management framework from an industrial view point. AEGIS built on the experience
of military aviation research projects, especially the Pilot’s Associate (PA) and the Rotorcraft
Pilot’s Associate (RPA) (Cochran et al., 1996). It is really worth considering the project and its
current status, since it is supported by major oil and gas companies allied with Honeywell and
other automation industry key leaders. Furthermore, it is considered a research imperative to
learn from it, in terms of experience, stages being successfully accomplished, limitations, and
failures incurred during the course of the project. The research program life span started
from 1994 and ended in 2008, where the program was funded by the National Institute of

472 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

Standards and Technology (NIST). The program focused on the development of a proof of
concept system called AEGIS (Abnormal Event Guidance and Information System), which
have gone through different development stages.

3.4.1 Hybrid distributed multiple expert framework (DKIT)

The diagnostic toolkit (DKIT) project was initiated as the first step in the design
and development of the AEGIS system. The DKIT hybrid framework addressed
the use and integration of multiple fault diagnosis techniques to meet the challenges
of complex, industrial-scale diagnostic problems (Mylaraswamy, 1996; Mylaraswamy &
Venkatasubramanian, 1997). The principle of DKIT is black-board collective problem solving,
in which several modules are integrated (Mylaraswamy, 1996):

• Diagnostic experts: a collection of one or more fault diagnostic modules including
a signed directed graph (SDG) technique, qualitative trend analysis (QTA), and
probability density function based statistical classifier.

• A blackboard: a placeholder for various process states. This is implemented as
pigeon holes, each of which corresponds to a well defined process state.

• A scheduler, which consists of a monitor that keeps track of new events or states
that are posted on the blackboard; a switchboard which directs the information to
relevant subscribers, and a mechanism for conflict resolution between the different
diagnostic modules.

• A plant Input-Output Interface, which acts as a channel for all diagnostic modules
to receive relevant process measurements.

• An operator interface for presenting diagnostic results to the operator.

• A process equipment library to represent the external process.

The DKIT system was fully implemented in the G2 expert system shell, and was validated on a
simulation model of fluid catalyst cracking unit (FCCU). The DKIT framework demonstrated
the feasibility of a complex fault diagnosis system, and was further enhanced through the
development of the OP-AIDE system, which will be discussed in the next section.

3.4.2 Integrated operator decision support system (Op-Aide)

To address the qualitative fault analysis of previous projects (i.e., the FORMENTOR and
APACS systems), an integrated operator decision support system, called Op-Aide, was
developed based on the DKIT system architecture to assist the operator in quantitative
diagnosis and assessment of abnormal situations (Vedam, 1999; Vedam et al., 1999). Op-Aide
consists of six modules (or knowledge sources) and an Op-Scheduler that coordinates them. It
provides the interface between different modules in the system and functions as a centralized
data base for all the modules. The results of these modules are posted onto it, where they can
be accessed by the other modules in the system (Vedam et al., 1999):

• Data Acquisition Module, which acquires on-line data from the plant and makes them
available to other modules.

• Monitoring Module: This module monitors the process data for the presence of
abnormalities using a principal component analysis (PCA) model of the process.

• Diagnosis Module, which identifies the root causes for the abnormalities. Multiple
diagnosis methods are combined in a blackboard architecture.

473Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

• Fault Parameter Magnitude Estimation (FRAME) Module, which estimates the magnitude
and rate of change of the root causes.

• Simulation Module, which performs a simulation to predict future values of the process
outputs.

• Operator Interface Module, where the status of the process and the results of the different
modules are constantly communicated to the operator through this module.

Op-Aide has been implemented using blackboard-based architecture in Gensym’s expert
system shell G2, MATLAB and C. The Op-Scheduler coordinates the functioning of other
modules using event and time driven rules and procedures. The results of these modules
are represented as objects that are pushed back onto specified slots in the OP-Scheduler. Most
of the modules are implemented in G2 except for the FRAME and simulation modules, which
are implemented in MATLAB and C respectively.
Although the OP-Aide project came to address the qualitative fault diagnosis disadvantage
in the FORMENTOR and APACS systems by introducing two complementary quantitative
fault diagnosis modules, it did not address the dynamic nature of the chemical process by
embedding a model ID module. Furthermore, operating the situation assessment, which is
achieved through the FRAME and simulation modules, is a semi-automatic process done at
the request of the operator. OP-Aide did not address the whole performance aspect when it
comes to managing large scale plants.

3.4.3 Abnormal Event Guidance and Information System (AEGIS)

The Honeywell ASM Consortium adopted the Dkit architecture as its AEGIS prototype, a
next-generation intelligent control system for operator support (Venkatasubramanian et al.,
2003). The AEGIS program successfully demonstrated the feasibility of collaborative decision
support technologies in the lab test environment, with a high fidelity simulation model of
an industrial manufacturing plant. As far as industrial environment testing is concerned,
the focus was on abnormality diagnosis and early warning, and assessing and learning from
experience, which resulted in effective operations practices and supporting services.
The AEGIS research program team has achieved several goals and developed a well
established abnormal situation management awareness and culture through massive
consultation, research, and collaboration with oil and gas industry key leaders. Achievements
can be summarized in the following points as presented by the director of advanced
development at Honeywell, Mr. A. Ogden-Swift, during the 2005 advanced process control
applications for industry workshop (APC 2005) (Ogden-Swift, 2005):

• significant user interface (UI) improvements,

• 35% reduction in alarm flooding by introducing a new alarm reconfiguration philosophy,

• integration of operation procedures,

• equipment monitoring through intelligent sensor integration,

• fuzzy/PCA early error detection, and

• improved operator training.

Such achievements were deployed in the new generation of Honeywell’s Experion distributed
control system. Although the 12 year old AEGIS research program has resulted in a well
defined abnormal situation management problem in terms of best practices, goals, and
limitations, it did not address the following points, which aim to minimize the workload on
process operators:

474 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

• full automation of massive process data interpretation,

• full automation of process fault diagnosis and accommodation,

• incorporation of state of the art fault diagnosis techniques which were developed during
the past 25 years of academic research,

• reduced manual system configuration by process operators (for example, the operator has
to choose the appropriate dataset for process model identification), and

• intelligent techniques such as expert systems to assist operators in the decision making
process.

Only one technique was used for early fault detection, a statistical technique based on
principal component analysis (PCA). To enable this, the operator has to manually adapt for
operating point change by choosing the appropriate data set.

3.5 Advanced decision support system for chemical/petrochemical manufacturing

processes (CHEM-DSS)

Another promising project is CHEM-DSS (Decision Support System for
Chemical/Petrochemical Manufacturing Processes), which is an initiative of the European
Community (EC) Intelligent Manufacturing Systems consortium in collaboration with
Japan and Korea. ”The aim of the CHEM-DSS project is to develop and implement an
advanced Decision Support System (DSS) for process monitoring, data and event analysis,
and operation support in industrial processes, mainly in refining, chemical and petrochemical
processes” (Cauvin, 2004b).
The CHEM-DSS research project was initiated to compete and build on the two main
initiatives in the United States, namely, the Abnormal Situation Management (ASM)
Consortium led by Honeywell, and the Intelligent Control Program of NIST. However there
was no clear system architecture that demonstrates the behavior of the integrated modules
of the system during the course of the project (1998 - 2004). The research instead focused on
analyzing the properties of the individual techniques of the system such as FDI, planning,
artificial intelligence, signal processing, and scheduling, and twenty-three software toolboxes
were developed during the project (from April 2001 to March 2004) (Matania1, 2005).
The heart of the CHEM-DSS integration platform is G2, which integrates the twenty-three
software toolboxes. All developed software tools were integrated to a communication
manager (CCOM) based on the message-oriented middleware (MOM). In this project the
XMLBlaster open-source MOM was used to manage XML messages between the different
tools. The data management and user interface functionalities were implemented in the G2
environment (Matania1, 2005).
Furthermore, “the toolboxes have been tested at pilot plants and industrial sites. It was
applied to partner facilities to ensure rapid technology transfer. The industrial end-users
provided different kinds of processes including a fluid catalytic cracking pilot plant, a paper
making process, a gasifier pilot plant, a steam generator, a blast furnace and distillation
process. End users can use the developed toolboxes to design their own intelligent diagnostic
system according to their requirements” (Cauvin, 2004a).

3.6 Integrated system health management (ISHM)

The ISHM (Integrated System Health Management) research program, which is developed by
NASA for space applications, “focuses on determining the condition (health) of every element
in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and

475Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

provide data, information, and knowledge to control systems for safe and effective operation.
In the case of NASA, this capability is currently done by large teams of people, primarily from
the ground, but needs to be embedded on-board systems to a higher degree to enable NASA’s
new Exploration Mission (long term travel and stay in space), while increasing safety and
decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground
test, launch, and processing operations)” (Figueroa, Holland & Schmalzel, 2006). The ISHM
research program, whose life span started from 2003 and will end in 2009, was extended
to address several applications including military/civilian space and aircraft systems in
collaboration with several companies such as Boeing and Honeywell (Derriso, 2005; Figueroa,
Holland, Schmalzel & Duncavage, 2006; Garcia-Galan, 2005; Karsai et al., 2005; Maul et al.,
2005; Schmalzel et al., 2005).
The ISHM architecture is based on the open systems architecture for condition-based
maintenance (OSA-CBM), which is an implementation of the ISO standard # 13374.
The ISHM system is deployed as a distributed module system with different functions
including anomalies detection, overall systems state identification, anomaly and failure effects
mitigation, and systems elements condition evaluation. The ISHM research project supported
by NASA used the G2 environment as their intelligent integration framework. In fact, six G2
servers are deployed to monitor International Space Station (ISS) subsystems, including the
mechanical, structural, electrical, environmental and computational systems. The G2 servers
continually inspect and analyze data transmitted from space during missions (Figueroa, 2005;
Maul et al., 2005).

3.7 Distributed architecture for monitoring and diagnosis (DIAMOND)

The DIAMOND project was developed by the University of Karlsruhe in cooperation with
three industrial partners and one research institute within the framework of the EU Esprit
Program with a budget of one million Euros. The program started in 1999 and ended in 2001,
where the program objective was to investigate the feasibility of fault diagnosis system for
industrial applications.
The DIAMOND system architecture is a set of distributed cooperating tasks. Each task is
associated with a specialized agent, namely the monitoring agent, which is interfaced to the
industrial application, a set of diagnostic agents to identify the functional state of the plant,
a conflict resolution agent to investigate whether the diagnostic results are contradicting or
completing each other, a facilitator agent to manage networking and mediating between
different agents, a blackboard agent for storing the diagnoses, and a user interface agent for
presenting the results to the operator (Worn, 2004).
The DIAMOND system was implemented using the KQML-CORBA- (knowledge query and
manipulation language) based architecture, in which the different agents are implemented
as distributed CORBA objects.The system prototype was evaluated while monitoring and
diagnosing the water stream cycle chemistry of a coal-fired power plant (Worn, 2004).

3.8 Multi-agent-based diagnostic data acquisition and management in complex systems

(MAGIC)

MAGIC is developed by a joint venture of several European universities and companies.
The European Commission Information Society of Technology (EC-IST) funded the project
with a budget of 3.3 million Euros. The MAGIC research program is a multi-agent system
realization of an intelligent fault diagnosis system. “The system aims at developing general
purpose architecture and a set of tools to be used for the detection and diagnosis of incipient

476 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

or slowly developing faults in complex systems. The early identification of potentially
faulty conditions provides the key information for the application of predictive maintenance
regimes” (Köppen-Seliger et al., 2003).
The distributed architecture for MAGIC is based on a multi-agents/multi-level concept. The
idea is that the task of the complex system’s diagnosis and operator support is distributed
over a number of intelligent agents which perform their individual tasks nearly autonomously
and communicate via the MAGIC architecture. Such an architecture can easily be distributed
on existing monitoring and control systems of large scale plants (Garcia-Beltran et al., 2003;
Köppen-Seliger et al., 2003). The MAGIC system consists of several model-based and
cause-effect diagnostic agents and a process specification agent to specify the process to be
monitored and diagnosed. Depending on the process specifications, the appropriate data and
knowledge acquisition is performed by another agent. A diagnostic decision agent and a
diagnostic support agent propose a final diagnostic decision, which is displayed with other
information to an operator interface agent. The MAGIC system prototype is developed for
the metal processing industry (Garcia-Beltran et al., 2003; Köppen-Seliger et al., 2003).

3.9 Intelligent control and asset management (ICAM) system

Having shown the current status of asset management research in both academia and
industry, we conclude that the AEGIS research program focused on the bookkeeping and
human machine interaction tasks rather than a fully automated and functional facility
management holistic approach. Furthermore, the CHEM-DSS research program did not
give a clear picture of how the different techniques will be integrated, and what software
development tools/plans will be used to develop a prototype of the system. A new research
program ICAM (Intelligent Control and Asset Management of industrial facilities) was
initiated by a joint venture of Atlantic Canadian universities and National Research Council
of Canada (NRC) to benefit from the success and limitations of the AEGIS, CHEM-DSS
and other projects, to build on their experiences, to complement their developed tasks, and
to push the envelope by evaluating and incorporating state of the art of fault diagnosis,
artificial intelligence (AI) and wireless sensor networks techniques (Taylor, 2004). This will
be embedded in a fully automated system architecture, which will better support process
operators and improve operability (Larimore, 2005; Laylabadi & Taylor, 2006; Omana &
Taylor, 2005; 2006; 2007; Sayda & Taylor, 2006; 2007a;b;c; 2008a;b;c; Smith et al., 2005; Taylor &
Laylabadi, 2006; Taylor & Omana, 2008; Taylor & Sayda, 2005a;b; 2008).
Figure 1 illustrates the ICAM system, to which measured data from the industrial facility
are transmitted, and interpreted for better process control and management. ICAM system
is composed of a group of servers and operator work stations linked to each other through
a high speed Ethernet network. The wireless sensor network is managed by a real time
communication server. The database server stores received data in its database after being
preprocessed. A group of application servers are the backbone of the ICAM system. The
application servers run the tasks of data preprocessing, model identification, fault diagnosis,
fault mitigation and accommodation, human machine interaction, and supervisory control.
Each server is a computer cluster, which is a group of loosely coupled computers that work
together closely to achieve higher performance, availability, and load balance. This will result
in better internal coordination among the different ICAM servers. The conceptual model of
the ICAM system is discussed in the following sections along with the system requirements
analysis.

477Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

Two-phase
oil separator

Three-phase
oil separator

Gas
Scrubber

Gas
com pressor

Oil well

W ater treatm ent

W ater

W ater

Oil & water m ix

W ater

Oil

P

P

P

To water treatm ent

Oil sales

Gas sales

Disposal

P

W ireless data
link

W ireless data
link

W ireless data
link

Gas

G as

Gas

Pipe line
Signal line
Data line

LCL : Level control loop

LCL 1

LCL 2

LCL 3

LCL 4

PCL : Pressure control loop

PCL 1

PCL 2

PCL 3

PCL 4

Radio
tower

Ethernet

Real tim e
Com m unication server

Application
servers

Data base
server

W orkstations

Fig. 1. ICAM Project schematic diagram

4. Conceptual model of the ICAM system

Several conceptual frameworks have been suggested for modeling complex intelligent
systems. In the past two decades, the most popular design framework was the expert
system, which has several advantages, namely, separation of knowledge and inference, ease
of development and transparent reasoning under uncertainty. Moore and Kramer (Moore
& Kramer, 1986) discussed the issues of expert system design for real-time process control
applications; an intelligent expert system (PICON) was designed and implemented on several
process plants to validate expert systems performance in real-time process environments.
Implementation results revealed several drawbacks, namely, lack of learning mechanisms,
knowledge base validation difficulties, and weak representation power. There are several
expert system survey papers to which one may refer for further insight (Liao, 2004; Liebowitz,
1998).
Newell (Newell, 1990) introduced cognitive architectures as a more general conceptual
framework for developing complex intelligent systems, based on a human cognition
viewpoint. This approach assumes that human cognition behavior has two components,
architecture and knowledge. The architecture is composed of cognitive mechanisms that
are fixed across tasks, and basically fixed across individuals. These mechanisms, which
define the properties of this approach, involve a set of general design considerations, namely,
knowledge representation, knowledge organization, knowledge utilization, and knowledge
acquisition. Newell argued that these considerations represent theory unification to model
complex intelligent systems. Furthermore, this allows model (knowledge) reuse and helps
create complete agents opening the way to applications. The performance of several tested
cognitive architectures in solving different problems points to a promising future for modeling
complex intelligent systems.

478 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

Multi-agent systems (MAS) which can be considered as an instantiation of distributed artificial
intelligence, is another conceptual framework for modeling complex systems. A MAS is
defined as a loosely coupled network of problem solvers that work together to solve problems,
that are beyond their individual capabilities (Durfee & Montgomery, 1989). The MAS
platform emphasizes distribution, autonomy, interaction (i.e., communication), coordination,
and organization of individual agents. Agents in MAS can be defined as conceptual entities
that perceive and act in a proactive or reactive manner within an environment where other
agents exist and interact with each other based on shared knowledge of communication and
representation (Wooldridge, 2002). Each agent contains processes for behavior generation,
world modeling, sensory processing, and value judgment together with a knowledge
database, as shown in figure 2.

Agent

Sensory
processing

Behavior
generation

W orld m odeling

Value judgm ent
Knowledge

base

Fig. 2. Agent architecture

Sloman (Sloman & Scheutz, 2002) introduced H-Cogaff, a human-like information processing
architecture, which contains many components performing different functions all of which
operate concurrently and asynchronously. The H-Cogaff architecture seems to represent
a combination of the cognitive architecture and the MAS conceptual frameworks. As
illustrated in figure 3, Sloman’s architecture provides a framework for describing different
kinds of architectures and sub-architectures, and which, to a first approximation, is based on
superimposing two sorts of distinctions between components of the architecture: firstly the
distinction between perceptual, central and action components, and secondly a distinction
between types of components which evolved at different stages and provide increasingly
abstract and flexible processing mechanisms within the virtual machine (Sloman, 2001).
The reactive components generate goal seeking reactive behavior, whereas the middle layer
components enable decision making, planning, and deliberative behavior. The modules of the
third layer support monitoring, evaluation, and control of the internal process in the lower
layers.
Having reviewed the different conceptual modeling frameworks, it is our opinion that
Sloman’s H-Cogaff scheme is the best candidate, which would meet most of the requirements
of an ICAM system for complex industrial plants. The architecture of the system and its
functional modules will be discussed in subsequent sections.

5. ICAM System architecture and behavior model

Figure 4 illustrates the proposed architecture of the conceptual system, which consists of
four information processing layers and three vertical subsystems, namely, perception, central
processing, and action according to Sloman’s H-Cogaff scheme. The lowest horizontal layer
above the distributed control system (DCS) contains semi-autonomous agents that represent
different levels of data abstraction and information processing mechanisms of the system.
The middle two layers (i.e., the reactive and deliberative layers) interact with the external

479Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

Fig. 3. Human cognition and affect (H-Cogaff) architecture Sloman & Scheutz (2002)

environment via the DCS and thus the industrial process by acquiring perceptual inputs and
generating actions. The perceptual and action subsystems are divided into several layers
of abstraction to function effectively. This can be achieved, for example, by categorizing
observed events at several levels of abstraction, and allowing planning agents to generate
behavior (actions) in a hierarchically organized manner.

ICAM system

M eta m anager

Deliberative BB
m anager

Norm al event
Supervisor

Abnorm al event
supervisor

Reactive BB
m anager

Plan executer

Action BB
m anager

Prim ary plan
scheduler

Fault detection &
isolation # 2

Process optim izer

M odel
identification

Perception BB
m anager

Secondary plan
scheduler

Fault detection &
isolation # 1

W ireless sensor
network m anager

Data statistical
pre-processor

Data
reconciliation

Dbase m anager

User interface
m anager

M anufacturing environm ent Actuators
W ireless
Sensors

Data flow Com m unication & control flow BB: Blackboard

Fig. 4. ICAM system architecture and behavior model

480 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

The basic flow of control in the system begins when perceptual input arrives at the lowest
level in the architecture. If the reactive layer can deal with this input then it will do so,
otherwise, bottom-up activation will occur and control will be passed to the deliberative
layer. If the deliberative layer can handle the situation then it will do so, typically by
making use of top-down execution of reactive agents. Otherwise, it will pass control to
the meta-management layer to resolve any internal conflicts in the architecture or notify the
operator that it cannot do so. As illustrated in figure 4, the functionalities of the ICAM system
agents in each layer are.

• Statistical pre-processing agent to clean the measured data from undesired discrepancies
such as missed data and outliers.

• Data reconciliation agent to reconcile measured data according to mass and energy
conservation laws.

• Database agent to store real-time data for historical and other purposes.

• Several fault detection and isolation (FDI) agents to detect any abnormal events using
different FDI approaches.

• An optimization agent to generate the optimal operating plans.

• a system identification agent to identify the mathematical model of the industrial process.

• Two intelligent supervisory agents to manage the industrial plant during normal and
abnormal situations.

• A meta manager agent to manage and coordinate the different system agents.

• A set of black board agents to facilitate asynchronous communications among the system
agents.

• A set of task scheduling agents to execute the required plan according to different time
frames.

Rigorous coordination of the behavior of the ICAM system layers and agents is crucial to
success. A sound coordination scheme will allow us to assess its performance, and to
evaluate how the internal agents of the system interact when certain internal/external events
occur. Furthermore, it permits system behavior modeling to simulate the most critical design
characteristics such as concurrency, autonomy, task distribution and parallelism, in order to
guarantee robust and coherent performance. Due the complexity of modern manufacturing
plants, intelligent systems (e.g., ICAM) have to be distributed, which makes the coordination
of such systems very difficult and challenging.
Durfee et al. (Durfee & Montgomery, 1991) proposed an informal theory that integrates
organizational behavior, long term plans, and short term schedules into one coordination
framework, and treats coordination as a distributed search process through the hierarchical
space of the possible interacting behaviors of the individual agents to find a collection that
satisfactorily achieves the agents’ goals. The theory emphasizes several topics such as:

• hierarchical behavior representation to express different dimensions of behavior at
different levels of detail,

• metrics for measuring the quality of coordination between agents,

• distributed search protocol for guiding the exchange of information between agents during
the distributed search,

481Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

• local search algorithm for generating alternative behaviors at arbitrary levels of
abstractions, and

• control knowledge and heuristics for guiding the overall search process to improve
coordination.

Durfee also suggested that introducing a meta-level organization in the intelligent system
to manage coordination between agents, and separating knowledge representation into
domain-level and meta-level types, would enhance coordination and make it more robust.
Agents use domain-level knowledge to influence what goals they pursue, and use meta-level
knowledge to decide how, when, and where to form and exchange behavioral models (Durfee
et al., 1989). Durfee’s informal theory and suggestions give the big picture of how agents
should coordinate their activities within an intelligent system or even a society of intelligent
agents. So far we have addressed the knowledge and organization separation issues by
adopting the H-CogAff architecture proposed by Sloman. ICAM interacts with the external
world through its reactive and deliberative agents, whereas the meta-level layer dictates the
internal behavior of the system. Furthermore, domain-level knowledge is encoded in the
deliberative agents and the meta-level knowledge is encoded in the self reflective layer.
As illustrated by figure 4, the proposed conceptual behavior model of the ICAM system was
built upon our previous work in which we defined the architecture of the system, its functional
modules, and its coordination mechanisms (Taylor & Sayda, 2005a;b). We adopted Sloman’s
H-Cogaff architectural scheme because it met most of our system requirements (Sloman, 2001).
The behavioral model was drawn as a page hierarchy to make it compatible with hierarchical
colored petri net (HCPN) terminology, which could be used to analyze the logical correctness
and the dynamic behavior of the system; however, this has not been done.
The prime page in the model is called ICAM which contains all the subpages of the system.
Each subpage represents an independent agent which interacts with others by means of
communications (represented by thin bidirectional arrows). Other agents may process data
received from the plant directly (data flow is represented by open thick unidirectional arrows).
The meta manager is the main coordinator of the whole system, which guarantees more
robust and coherent performance. The meta manager is basically a rule-based expert system,
which codifies all possible system behaviors and agent interactions as a behavior hierarchy
in its knowledge base. Agent behavior is represented in the behavior hierarchy by a single
structure, which will use the same message structure communicated between agents. This
will result in a better system performance. Table 1 illustrates the unified behavior conceptual
structure.

Field name Field content

Tag Message ID
From Sender

To Recipient
What Goals
How Plans
When Schedule

How long Task length
Why Meta reasoning

Table 1. Conceptual structure of behavioral message

482 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

6. Requirements analysis for the ICAM system

Having proposed a conceptual model, architecture, and behavioral model for the ICAM
system, we define the autonomy, communications, and artificial intelligence (AI) requirements
of the different agents of such a system. We also discuss the software implementation of the
reactive and the supervisory agents.

6.1 Artificial intelligence (AI) requirements for the ICAM system

Among the industrial rule-based expert system shells, the G2 real-time expert system
shell from Gensym Corporation (Gen, 2005) is considered the most versatile real-time
expert system shell, as it integrates many software technologies and standards. The
integration of the G2 expert system development environment with the ICAM system would
benefit from and build on the previous G2 integration attempts. The G2 development
environment offers a goal-based rapid prototyping design, in which requirements analysis,
design, and development tasks are done simultaneously and incrementally during the ICAM
system development life cycle. To meet the software requirements during the design and
development of the ICAM system supervisory agent, AI design requirements such as the
supervisory agent structure and knowledge representation have to be determined.

6.1.1 ICAM system supervisory agent implementation

Modules are the building blocks of complex G2 applications. A modular knowledge base
(KB) consists of multiple G2 modules. The modules that make up an application form
a module hierarchy, which specifies the hierarchical dependencies between modules (Gen,
2005). Decomposing a large project into multiple small modules allows developers to divide
and merge work. Modules can be structural or functional ones. The structural modules
contain classes or capabilities that need to be shared in large applications; functional modules
implement well defined goals. The ICAM system supervisory agent, which potentially is a
very complex artificial intelligence application, forms a good candidate for the modularization
design approach. While the modularization design approach may add some overhead on
the overall performance of the agent, it effectively organizes knowledge, and simplifies the
development and deployment processes.
To meet the module reusability requirement, the guidelines for G2 application development
recommend use of a four layer, two-module architecture, in which the graphical user interface
(GUI) is in a separate module. The general architecture of the ICAM supervisory agent
has two modules. The first module contains the agent’s core functionality implementation
layer and its application programmer’s interface (API) layer, which protects the internal data
structures in the core from corruption by other modules. The second module contains the
public graphical user interface (GUI) layer and its GUI implementation layer, which interacts
directly with the first module through its API layer. The ICAM system supervisory agent
interacts with the other reactive agents through their external G2 links. The internal states
of the ICAM system agents and the external environment are communicated to enable the
supervisory agent to reason and make the correct and appropriate decisions for better system
management.

6.1.2 Knowledge representation of the supervisory agent

The ICAM system supervisory agent may contain multi-faceted complex knowledge such
as the internal structure of the ICAM system and the structure of the external environment
(e.g., manufacturing plant topology, enterprise business structure). To represent such complex

483Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

knowledge, organizing the knowledge structure in the core layer of the supervisory agent
as a hierarchy of smaller modules would be the solution, as shown in figure 5. Each
module is represented in the G2 development environment as a knowledge base (KB).
Each KB represents an ontology of specified knowledge. An ontology is important for
knowledge-based system development because it can serve as a software specification,
similar to the function of a software architecture. Like a software architecture, an ontology
provides guidance to the development process. The former provides guidance to the
development process by specifying the interdependencies that deal with stages or aspects
of a problem-solving process. By contrast to software architecture, however, an ontology
involves not only the stages of a process, but also the taxonomy of knowledge types. The two
aspects are referred to as task-specific and domain-specific architectures (Mark et al., 1995).
The modular knowledge base design approach supports objected-oriented design principles,
increases productivity, encourages code reuse and scalability, and improves maintainability.

External environm ent
instrum entation m odule

ICAM system agents
m odule

Business
m anagem ent m odule

ICAM system
supervisory m odule

Fault propagation &
m itigation m odule

C onnection

Separator

Valve

Sensor

Instrumentation
{abstract}

 Tw o-phase
separator

Three-phase
separator

G as scrubber

Flow sensor

Volum e
sensor

Pressure
sensor

PipeM odel ID agent

Statistical
processing agent

Fault detection &
isolation agent

O ptim ization
agent

Agent
{abstract}

Principal
com ponent analysis

agent

Subspace
M odel ID agent

Parity vector
based FDI agent

Signed digraphs
based FDI agent

Fig. 5. Knowledge representation structure in the ICAM supervisory agent

The core (private layer) of the ICAM system supervisory agent has five modular KBs,
which are organized as a module hierarchy. Basic knowledge about the ICAM system
elements is represented in three lower level knowledge bases (i.e., ICAM system agents’ KB,
external environment instrumentation KB, and fault propagation and mitigation KB). The first
knowledge base organizes the different conceptual agents of the ICAM system (e.g. fault
detection and isolation agents, optimization agent, etc ...). In contrast, the second knowledge
base maps the external environment physical instrumentation (e.g., valves, sensors, and other
chemical process equipment) into its class hierarchy. Instrumentation and process faults
and their mitigating actions are represented as classes in the third KB. Each basic element
(i.e., object) in these knowledge bases has properties to represent its physical or conceptual
characteristics; and has methods to represent its behavior. Elements are further organized
as a class hierarchy to exploit object-oriented standards such as abstraction, inheritance, and
information hiding and encapsulation.
The ICAM system supervisory knowledge base merges the knowledge from the lower level
modules into a three-layer knowledge base, where each layer represents a subsystem of
connected objects (i.e., classes). The first layer (i.e., the ICAM system structure layer)
assembles the conceptual structure of the ICAM system from the agent class hierarchy of the
lower level knowledge base. This layer is responsible for managing the internal behavior

484 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

of the ICAM system. Fault propagation and mitigating actions are assembled into object
trees, and mapped into the second layer, which manages the external environment during
abnormal situations. In fact, it isolates instrumentation faults, and presents their propagation
maps and their appropriate migrating actions to process operators. The third layer (i.e.,
process topology layer) represents the external process topology, where different process
instrumentation objects are used from the instrumentation knowledge base module. Other
knowledge bases can be added to represent other types of knowledge such as the enterprise
business management module.
A G2 rule-based system maps out a multi-threaded path of execution, which is potentially
different each time the rule is invoked. For this reason, rule-based systems are often more
complex, harder to test, debug, and maintain, and less efficient than procedure-based systems
based on methods. Thus, rules should be used for specific purposes such as general event
detection and event detection based on data driven processing and forward chaining (Gen,
2005). Since the ICAM system knowledge is multi-faceted and complex, its knowledge
processing structure should be also distributed and organized according to the class and/or
module hierarchy of the supervisory agent. For example, generic rules for event detection of a
specific reactive agent can be organized in the class associated with that reactive agent. Rules
can also be categorized to achieve certain functionality. For example, the fault propagation
and mitigation schemes (i.e., cases) can be implemented as a rule category. This would narrow
the scope of rules, where rules are only applied to their specified level in the class hierarchy
and/or the module hierarchy. Consequently, rules invocation by forward chaining will be less
prone to errors. The distribution of knowledge representation and processing would meet
most of the software requirements. This would pave the way for managing complex process
plants by dividing them into sub-processes that can be managed by a separate ICAM system.
A universal supervisor can then manage the whole hierarchy of sub-processes efficiently.

6.2 Communication requirements for the ICAM system

It is crucial to design the agent structure to achieve specific autonomy requirements in
terms of an overlapping scheme for communication and computation along with ease of
prototyping and deployment. The design of the system’s middleware structure, which acts
as an integration model showing the types of connectivity between the different agents, is
also important for achieving autonomy. Middleware is connectivity software that consists of
a set of enabling services that allow multiple processes running on one or more machines to
interact across a network. Middleware can take on the following different models (Aldred
et al., 2005; Bernstein, 1996; Emmerich, 2000; Fox et al., 2005; Pinus, 2004):

1. Transactional middleware, which permits client applications to request several services
within a transaction from a server application.

2. Procedural middleware, which enables the logic of an application to be distributed across
the network, and can be executed by Remote Procedure Calls (RPCs).

3. Message-Oriented Middleware (MOM), which has become an increasingly popular
solution for interoperability of heterogeneous applications. It provides generic interfaces
that send and receive messages between applications through a central message server that
takes charge of routing the messages.

4. Object/component middleware (e.g., CORBA, Java RMI, and Microsoft COM/DCOM
technologies), which is a set of useful abstractions for building distributed systems. The
communication model for this platform is based on a request/reply pattern.

485Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

5. High Performance Computing and Communication (HPCC) middleware, which is
oriented toward the development of parallel computing hardware and parallel algorithms.
The Message Passing Interface (MPI) communication model meets the autonomy and high
performance requirements

6. Web Service-Oriented middleware, in which XML-documents (i.e., messages) are
exchanged between systems using the simple object access protocol (SOAP). A SOAP
message may include, for example, all necessary information for its secure transmission.

Having reviewed the different middleware technologies, it is our opinion that the high
performance computing and communication MPI-based middleware meets the ICAM
system requirements. The MPI communication library offers many communication modes
and protocols, giving system designers the freedom and flexibility to implement their
communication specifications and protocols. The MPI library specifies synchronous, buffered,
ready, and nonblocking communication modes. In the synchronous mode, communicating
processes are blocked till a message transfer operation is completed. However, the
non-blocking mode does not block the communicating processes, which allows more
flexible implementation in terms of communication/computation overlap. Buffered mode
gives designers more manageability over communication buffers, whereas the ready mode
guarantees correct message sending operation if a matching receiving operation is posted.
Among pre-specified MPI protocols, designers can choose from several protocols such as the
Eager, the Rendezvous, and the One-sided protocols for implementation. The Eager protocol
can be used to send messages assuming that the destination can store them. This protocol
has minimal startup overhead and is used to implement low latency message passing for
smaller messages. The Eager protocol has advantages in terms of programming simplicity and
reduction of synchronization delays. However, it requires significant buffering, additional
buffer copies, and more CPU involvement at the destination. In contrast, the Rendezvous
protocol negotiates the buffer availability at the receiver side before the message is actually
transferred. This protocol is used for transferring large messages when the sender is not sure
whether the receiver actually has the buffer space to hold the entire message. This protocol is
safe and robust, and may save in memory. However, it requires more complex programming
and may introduce synchronization delays. The One-sided protocol (i.e., remote memory
access (RMA) protocol) moves data from one process to another with a single routine that
specifies both where the data are coming from and where they are going. Communicating
agents using this protocol must have a designated public memory (i.e., blackboard), which
can be remotely accessed. This protocol has nearly the best performance compared to others in
terms of synchronization delays; however, it requires a very careful synchronization planning
process (Gropp et al., 1999).
Having described the communication design options available in the MPI library and
according to the high performance MPI recommendations (Gropp & Lusk, n.d.), it is our
opinion that the ICAM system communications should meet the following requirements:

• In order to avoid deadlocks, synchronization time, and serialization problems, the
non-blocking communication mode should be used.

• To address the message size and scalability issues, the Rendezvous protocol would be the
perfect candidate among the other MPI protocols.

• The problem of buffer contention and achieving fairness in message passing can be
resolved by having large communication buffers.

486 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

• The one-sided protocol can also be implemented to augment ICAM system communication
performance by enabling agents to have their own private blackboards, as was discussed
in the previous section.

6.3 Reactive agent software implementation requirements

In order to reconcile efficient computation with ease of prototyping requirements, the ICAM
system is deployed as a distributed interconnection of reactive MATLAB computational agents,
which runs on a network of several Windows XP workstations. Distributed MATLAB sessions
exchange messages by using our newly developed MPI communication protocol. Exchanged
messages have two roles: a control role to achieve internal coordination with other agents, and
a numerical data processing role to achieve the best interaction with the external environment
(e.g„ offshore oil processing rigs) (Sayda & Taylor, 2007b).

ICAM Agent

M ATLAB Script

M PI com m unication task RM A
Com m unications

Switch (Task)
 CaseT1;
 ...
 CaseTn;

G 2 expert system
com m unication task

Blackboard

M ATLAB workspace

G 2
Com m unications

Fig. 6. ICAM system reactive agent deployment structure

Figure 6 shows the structure of a general reactive agent of the ICAM system. The general
agent is implemented as a MATLAB m-script, which runs two communication tasks and a
computational one. The computational task represents the agent’s main functionality (e.g.,
model ID, fault detection and isolation, etc.). The first communication task is an MPI remote
memory access (RMA) protocol, which provides the basic buffered messaging capabilities
with minimum overhead (refer to the next section for more details). Furthermore, a public
memory window is embedded in each reactive agent for remote access by other agents.
The memory window will act as a blackboard for direct transfer of complex numerical data
structures among agents. This design decision was made after investigating the advanced
features of the newest MPI 2.0 library (Gropp et al., 1999), and to meet the blackboard
functionality described in the behavioral model of the ICAM system.
The second communication task manages the connection with the main system supervisor
(implemented as a G2 expert system). The general MATLAB template for reactive agents
is built as a hierarchical finite state machine (FSM) module, which consists of two FSM
layers. The first FSM is responsible for processing the ICAM system events received from
the supervisory agent (i.e., the operating system of the ICAM system). The second FSM
implements the specific computational functionality of the agent (e.g., FDI, model ID etc.).
Further FSM layers can be added depending on the complexity of the reactive agent. Figure 7
illustrates the reactive agent implementation, which first starts its main MATLAB script and

487Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

its associated graphical user interface (GUI). After the ICAM agent is instantiated and its
buffers are initialized, the MPI communication environment and the G2 expert system link
are initialized. The agent’s specified computational task is started.

M PI Com m unications
with other agents

ICAM Agent Start

InitializeM PI
environm ent

Start agentM atlab task
and its associated GUI

Do com putations

Agent's
decision?

DestroyICAM agent

Com m unications with G2
expert system

FinalizeM PI environm ent

No

Yes

InitializeG2 expert system
connection

End M atlab task and GUI

CloseG2 expert system
connection

M atlab task
done?

Requires deliberationRequires data

Fig. 7. Reactive ICAM agent implementation flow chart

Once the computations are done, the communication tasks are executed based on the agent’s
internal state and decisions. If the agent decides that it requires further deliberation about
its internal state or its response to the external environment, then messages are exchanged
with the ICAM system supervisor (i.e., the G2 expert system). On the other hand, if the
agent requires more data for better awareness of the external environment, then it would
exchange messages with other agents through its MPI link. if the computational task is done,
the task is ended; if not, the computation loop continues to execute. The MPI environment
is finalized, and the G2 expert system link is disconnected when the ICAM system shuts
down. The proposed agent structure paves the way to design and to rapid prototype any
complex multi-agent system for many applications. This definitely enables system designers
to implement any communication protocol in addition to exploiting the full power of the
MATLAB simulation, computation, and development environment.

7. ICAM System performance verification and validation

A prototype has been developed in order to have the ICAM system requirements deployed in
a real-world system. Figure 8 portrays the simplified ICAM system prototype. Real-time data
from the external plant or a simulation model are received by the statistical data monitoring
agent, which preprocesses the data by removing undesired discrepancies such as outliers and
missing data. Processed data are stored in a real-time database for logging and other purposes,
and are then sent to the fault detection, isolation, and accommodation (FDIA) and model ID
agents for further processing. When the data statistical preprocessor detects a change in the
operating point or an abnormal change in data, it alerts the model ID and FDIA agents to

488 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

further identify the nature of the data change. If the change is in the process operating point,
the FDIA agent asks the model ID agent to update the process model parameters. If the change
is a process fault (i.e., a sensor or actuator fault), the FDIA agent detects the nature of the fault
and notifies the ICAM system supervisor for further processing. If the supervisor decides
that a fault can be accommodated, it notifies the FDIA agent to do so. For every event that
occurs, the supervisor is notified, which in turn monitors and assesses the logical behavior
of the system. Processed data at every agent are sent to an operator interface, which allows
operators to make the appropriate decision depending on the plant situation.

ICAM system supervisor
(G 2 expert system)

Fault detection,
isolation, & accom m odation

Oil production
facility m odel

Data statistical
pre-processor &
reconciliation

Knowledge base

Control flow

Data flow

CNA pilot
plant

Real tim e
database

Operator interface

M odel
identification

Fig. 8. ICAM system prototype

Real-time simulation experiments were designed to analyze the performance of the ICAM
system prototype in terms of its logical behavior and its response to the external environment
dynamics. Five different simulation scenarios were applied in real-time experiments. Three
scenarios showed successful behavior by simulating three different plant faults, in which the
ICAM system had an adequate knowledge about. The other two scenarios simulate situations,
where the ICAM system has no knowledge whatsoever about. This would reveal The ICAM
system limitation. Due to limited space, the simulation results are not discussed, however, the
simulation experiments conclusions are discussed in the following section.

8. Learned lessons & future directions

Designing an intelligent multi-agent system is a very challenging task, as all agents are
distributed and semi-autonomous. We faced several design challenges which resulted in
limited system capabilities. Some of these design challenges and the future recommendations
for solving them are suggested in the following points:

• Although we proposed the hierarchical colored petri nets approach to design the internal
logic of the ICAM system reactive agents in our development plan (Sayda & Taylor, 2006),
we did design the agents’ internal logic in an ad hoc manner. We faced some difficulties
during the design stage of the ICAM system prototype, as more functionalities were
added. For example, the ICAM system crashed during early simulation runs due to
communication deadlocks, in which two agents were trying to send messages to each
other simultaneously. The problem was solved by imposing conditions on communicating

489Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

agents to prevent such deadlocks. Future designs should use the colored petri net
approach to verify the logical behavior of the ICAM system and its agents in different
scenarios.

• Computation/communication coordination was another design problem, in which
computation and communication code blocks were not ordered correctly in the agent code.
For example, we combined the process model estimation (computation task) and sending
the estimated model to other agents (communication task) into one task in the model ID
agent, which proved to be a design flaw. Model estimation took a long time (i.e., over one
minute), during which other agents were locked waiting for the estimated model due to
synchronization failure. The problem was solved by separating the one functionality into
two separate computation and communication functionalities (i.e., separate agent states)
and modifying other agents accordingly. Although some design flaws had to be corrected,
the ICAM system prototype acted as a set of distributed stochastic colored petri nets during
real-time simulation. This implies that a careful agent design should be done along with a
thorough system logical behavior analysis. Future design plans would take the stochastic
nature of the system and time into account to guarantee robust performance.

• The industrial plant data characteristics also had a major impact on the ICAM system
performance. For example, the ICAM system prototype is not robust against noisy
data due to the design of the data differentiation-based steady state detection algorithm.
Likewise, the FDIA algorithm is not robust to noise, which significantly affects the fault
isolation task in moderate to high noisy data situation. We suggest embedding algorithms
that are more robust to noise to cope with real-world industrial plants and their noisy
measurements.

• Detection and isolation of fast dynamics faults (e.g., faulty gas pressure sensor) is
another limitation of the ICAM system prototype. The outlier removal algorithm in
the statistical processing agent treats fast dynamics faults as outliers, which changes the
nature of processed data sent to the FDIA agent. Data filtering also may change the data
characteristic, which may have an impact on the system performance. In addition, the
system logical behavior was unpredictable and inconsistent in response to disturbances in
process variables. So we suggest developing a better safety net, in which the knowledge of
agents’ limitations is embedded in the rule base of the supervisory agent. This allows the
system to have a better reasoning ability and robust performance during undefined and
unpredictable plant situations.

• The incorporation of domain knowledge would definitely improve the performance of
the system. Such knowledge is represented by the topology of the industrial plant and
its operation procedure in different situations such as startup, normal operation, and
shutdown. This knowledge would be better utilized if a learning agent were embedded to
deal with new situations in the plant and the internal behavior of the ICAM system itself.

As can be appreciated, those enhancements will require years of additional research and
development.

9. References

Aldred, L., van der Aalst, W. M. P., Dumas, M. & ter Hofstede, A. H. M. (2005). On the notion
of coupling in communication middleware, International Symposium on Distributed
Objects and Applications (DOA), Agia Napa, Cyprus.

490 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

Banks, S. B. & Lizza, C. S. (1991). Pilot’s associate: a cooperative, knowledge-based system
application, IEEE Expert 6(3): 18–29.

Bernstein, P. A. (1996). Middleware: A model for distributed services, Communications of the
ACM 39(2): 86–97.

Cauvin, S. (2004a). CHEM-DSS : Advanced decision support system for
chemical/petrochemical industry, Fifteenth International Workshop on Principles
of Diagnosis (DX’04), AAAI, Carcassonne, France.

Cauvin, S. (2004b). CHEM-DSS: Advanced decision support system for
chemical/petrochemical manufacturing processes, CHEM Project Annual Meeting,
http://www.chem-dss.org/, Lille, France.

Cochran, E. L., Miller, C. & Bullemer, P. (1996). Abnormal situation management in
petrochemical plants: can a pilot’s associate crack crude, Proceedings of the 1996 IEEE
National Aerospace and Electronics Conference, NAECON, Vol. v2, IEEE, Piscataway, NJ,
USA, Dayton, KY, USA, pp. 806–813.

Cochran, T., Bullemer, P. & Nimmo, I. (1997). Managing abnormal situations in the process
industries parts 1, 2, 3, NIST Proceedings of the Motor Vehicle Manufacturing Technology
(MVMT) Workshop, Ann Arbor, MI.

Derriso, M. (2005). Intelligent vehicle health management for air force space systems,
ISHM/NASA session of the IEEE Sensors for Industry Conference, IEEE/ISA, Houston,
TX, USA.

Durfee, E., Lesser, V. R. & Corkill, D. D. (1989). Trends in cooperative distributed problem
solving, IEEE Transactions on Knowledge and Data Engineering 1(1): 63–83.

Durfee, E. & Montgomery, T. (1989). MICE: A flexible test bed for intelligent coordination
experiments, Proceedings of the 9th workshop on distributed AI, Rosario, Washington.

Durfee, E. & Montgomery, T. (1991). Coordination as distributed search in a hierarchical
behavior space, IEEE Transactions on Systems, Man, and Cybernetics 21(6): 1363–1378.

Emmerich, W. (2000). Software engineering and middleware: a roadmap, Proc. of the Conference
on The Future of Software Engineering, IEEE Computer Society, Limerick, Ireland,
pp. 117–129.

Figueroa, F. (2005). Integrated health with networked intelligent elements (IHNIE) prototype,
ISHM/NASA session of the IEEE Sensors for Industry Conference, IEEE/ISA, Houston,
TX, USA.

Figueroa, F., Holland, R. & Schmalzel, J. (2006). ISHM implementation for constellation
systems, 42nd AIAA/ASME/SAE/ASEE Joing Propulsion Conference and Exhibit,
Sacramento, CA, USA.

Figueroa, F., Holland, R., Schmalzel, J. & Duncavage, D. (2006). Integrated system health
management (ISHM): systematic capability implementation, Proceedings of the 2006
IEEE Sensors Applications Symposium, pp. 202–206.

Fox, G. C., Aktas, M. S., Aydin, G., Gadgil, H., Pallickara, S., Pierce, M. E. & Sayar, A. (2005).
Algorithms and the grid, Conference on Scientific Computing, Vysoke Tatry, Podbanske.

Garcia-Beltran, C., Exel, M. & Gentil, S. (2003). An interactive toot for causal graph modeling
for supervision purposes, In Proc. IEEE International Symposium on Intelligent Control
(ISIC), Huston, Texas, pp. 866– 871.

Garcia-Galan, C. (2005). Integrated system health management for exploration mission
systems, ISHM/NASA session of the IEEE Sensors for Industry Conference, IEEE/ISA,
Houston, TX, USA.

Gen (2005). G2 for Application Developers Reference Manual, 8.0 edn.

491Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

Gropp, W. & Lusk, E. (n.d.). Tuning MPI applications for peak performance.
www.mcs.anl.gov/Projects/mpi/tutorials/perf, Argonne National Laborary.

Gropp, W., Lusk, E. & Thakur, R. (1999). Using MPI-2: Advanced features of the
message-passing interface, Scientific and Engineering Computation, MIT Press,
Cambridge, Massachusetts.

Jennings, N. R. & Mamdani, E. M. (1996). Using ARCHON to develop real–world DAI
applications parts 1, 2, 3, IEEE Expert 11(6): 64–86.

Karsai, G., Biswas, G., Abdelwahed, S., Mahadevia, N., Keller, K. & Black, S. (2005). Intelligent
component health management: An architecture for the integration of IVHM and
adaptive control, ISHM/NASA session of the IEEE Sensors for Industry Conference,
IEEE/ISA, Houston, TX, USA.

Kim, I. S. & Modarres, M. (1987). Application of goal tree-success tree model as the
knowledge-base of operator advisory systems, Nuclear Engineering and Design
104: 67–81.

Köppen-Seliger, B., Marcu, T., Capobianco, M., Gentil, S., Albert, M. & Latzel, S. (2003).
MAGIC: An integrated approach for diagnostic data management and operator
support, Proceedings of the 5th IFAC Symposium Fault Detection, Supervision and Safety
of Technical Processes - SAFEPROCESS05, Washington D.C.

Larimore, W. (2005). Multivariable System Identification Workshop, University of New
Brunswick, Fredericton, New Brunswick.

Laylabadi, M. & Taylor, J. H. (2006). ANDDR with novel gross error detection and
smart tracking system, 12th IFAC Symposium on Information Control Problems in
Manufacturing, IFAC, Saint-Etienne, France.

Liao, S. H. (2004). Expert systems: Methodologies and applications, a decade review from
1995 to 2004, Expert systems with applications pp. 1–11.

Liebowitz, J. (1998). The Handbook Of Applied Expert Systems, CRC Press, Boca Raton, FL.
Mark, W., Dukes-Schlossberg, J. & Kerber, R. (1995). Towards very large knowledge bases, IOS

Press/Ohmsha, msterdam/Tokyo, chapter Ontological commitment and domain
specific architectures: Experience with comet and cosmos.

Matania1, R. (2005). Interoperability and integration oil and gas science and technologyof
industrial software tools, Oil and Gas Science and Technology 60(4): 617–627.

Maul, W. A., Park, H., Schwabacher, M., Watson, M., Mackey, R., Fijany, A., Trevino, L. & Weir,
J. (2005). Intelligent elements for the ISHM testbed and prototypes (ITP) project,
ISHM/NASA session of the IEEE Sensors for Industry Conference, IEEE/ISA, Houston,
TX, USA.

Miller, C. A. & Hannen, M. D. (1999). Rotorcraft pilot’s associate: Design and evaluation of
an intelligent user interface for cockpit information management, Knowledge-Based
Systems 12(8): 443–456.

Moore, R. L. & Kramer, M. (1986). Expert systems in online process control, Proceedings of the
3rd international conference on chemical process control, Asilomar, California.

Mylaraswamy, D. (1996). DKIT: a blackboard-based, distributed, multi-expert environment for
abnormal situation management, PhD thesis, Purdue University.

Mylaraswamy, D. & Venkatasubramanian, V. (1997). A hybrid framework for large scale
process fault diagnosis, Computers and Chemical Engineering 21: S935–S940.

Mylopoulos, J., Kramer, B., Wang, H., Benjamin, M., Chou, Q. B. & Mensah, S. (1992).
Expert system applications in process control, In Proc. of the International Syposium on
Artificial Intelligence in Materials Processing Applications, Edmonton, Alberta, Canada.

492 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

Newell, A. (1990). Unified theories of cognition, Harvard University Press, Cambridge, MA.
Ogden-Swift, A. (2005). Reducing the costs of abnormal situations . . . the next profit

opportunity, IEEE Advanced Process Control Applications for Industry Workshop
(APC2005), Vancouver, Canada.

Omana, M. & Taylor, J. H. (2005). Robust fault detection and isolation using a parity equation
implementation of directional residuals, IEEE Advanced Process Control Applications
for Industry Workshop (APC2005), Vancouver, Canada.

Omana, M. & Taylor, J. H. (2006). Enhanced sensor/actuator resolution and robustness
analysis for FDI using the extended generalized parity vector technique, Proc. of
American Control Conference, IEEE, Minneapolis, Minn., pp. 2560–2566.

Omana, M. & Taylor, J. H. (2007). Fault detection and isolation using the generalized parity
vector technique in the absence of a mathematical model, IEEE Conference on Control
Applications (CCA), Singapore.

Pinus, H. (2004). Middleware: Past and present a comparison.
URL: http://www.research.umbc.edu/ dgorin1/451/middleware/middleware.pdf.

Sayda, A. F. & Taylor, J. H. (2006). An implementation plan for integrated control and
asset management of petroleum production facilities, IEEE International Symposium
on Intelligent Control ISIC06, IEEE, Munich, Germany, pp. 1212–1219.

Sayda, A. F. & Taylor, J. H. (2007a). An intelligent multi agent system for integrated control and
asset management of petroleum production facilities, In Proc. of The 17th International
Conference on Flexible Automation and Intelligent Manufacturing (FAIM), Philadelphia,
USA, pp. 851–858.

Sayda, A. F. & Taylor, J. H. (2007b). Modeling and control of three-phase gravity separators in
oil production facilities, the American Control Conference (ACC), New York, NY.

Sayda, A. F. & Taylor, J. H. (2007c). Toward a practical multi-agent system for integrated
control and asset management of petroleum production facilities, IEEE International
Symposium on Intelligent Control (ISIC), Singapore.

Sayda, A. F. & Taylor, J. H. (2008a). A multi-agent system for integrated control and
asset management of petroleum production facilities - part 1: Prototype design and
development, accepted for the IEEE International Symposium on Intelligent Control (ISIC),
San Antonio, Texas, USA.

Sayda, A. F. & Taylor, J. H. (2008b). A multi-agent system for integrated control and
asset management of petroleum production facilities - part 2: Prototype design
verification, accepted for the IEEE International Symposium on Intelligent Control (ISIC),
San Antonio, Texas, USA.

Sayda, A. F. & Taylor, J. H. (2008c). A multi-agent system for integrated control and asset
management of petroleum production facilities - part 3: Performance analysis and
system limitations, accepted for the IEEE International Symposium on Intelligent Control
(ISIC), San Antonio, Texas, USA.

Schmalzel, J., Figueroa, F., Morris, J., Mandayam, S. & Polikar, R. (2005). An architecture for
intelligent systems based on smart sensors, IEEE Transactions on Instrumentation and
Measurement 54(4): 1612–1616.

Sloman, A. (2001). Varieties of affect and the COGAFF architecture schema, proceedings of
symposium on Emotions, Cognition, and Affective Computing at the AISB’01 convention,
York, UK.

Sloman, A. & Scheutz, M. (2002). Framework for comparing agent architectures, Proceedings
of the UK Workshop on Computational Intelligence, Birmingham, UK.

493Multi-agent Systems for Industrial Applications: Design, Development, and Challenges

www.intechopen.com

Small, R. L. & Howard, C. W. (1991). A real-time approach to information management
in a pilot’s associate, Proceedings of Digital Avionics Systems Conference, IEEE/AIAA,
pp. 440–445.

Smith, C., Gauthier, C. & Taylor, J. H. (2005). Petroluem Applications of Wireless Sensors (PAWS)
Workshop, Cape Breton University, Sydney, Nova Scotia.

Taylor, J. H. (2004). Petroleum applications of wireless systems - UNB’s control/information
technology subproject, submitted to Cape Breton University on 11 December 2003 and
subsequently to ACOA on 21 September 2004.

Taylor, J. H. & Laylabadi, M. (2006). A novel adaptive nonlinear dynamic data reconciliation
and gross error detection method, Proc. of IEEE Conference on Control Applications,
IEEE, Munich, Germany, pp. 1783–1788.

Taylor, J. H. & Omana, M. (2008). Fault detection, isolation and accommodation using the
generalized parity vector technique, submitted to the IFAC World Congress, Seoul,
Korea.

Taylor, J. H. & Sayda, A. F. (2005a). An intelligent architecture for integrated control and asset
management for industrial processes, Proc. IEEE International Symposium on Intelligent
Control (ISIC05), Limassol, Cyprus, pp. 1397–1404.

Taylor, J. H. & Sayda, A. F. (2005b). Intelligent information, monitoring, and control
technology for industrial process applications, The 15th International Conference on
Flexible Automation and Intelligent Manufacturing (FAIM), Bilbao, Spain.

Taylor, J. H. & Sayda, A. F. (2008). Prototype design of a multi-agent system for integrated
control and asset management of petroleum production facilities, accepted for the
American Control Conference (ACC), Seattle, Washington.

Vedam, H. (1999). OP-AIDE: an intelligent operator decision support system for diagnosis and
assessment of abnormal situations in process plants., PhD thesis, Purdue University.

Vedam, H., Dash, S. & Venkatasubramanian, V. (1999). An intelligent operator decision
support system for abnormal situation management., Computers and Chemical
Engineering 23: S577–S580.

Venkatasubramanian, V. (2005). Prognostic and diagnostic monitoring of complex systems
for product lifecycle management: Challenges and opportunities., Computers and
Chemical Engineering 29: 1253–1263.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N. & Yin, K. (2003). A review of
process fault detection and diagnosis part 1, 2, 3, Computer & Chemical Engineering
27(3): 293–346.

Wang, H. & Wang, C. (1996). APACS: A multi-agent system with repository support,
Knowledge-Based Systems 9(5): 329–337.

Wang, H. & Wang, C. (1997). Intelligent agents in the nuclear industry, Computer 30(11): 28–34.
Wilikens, M. & Burton, C. J. (1996). FORMENTOR: Real-time operator advisory system for

loss control. application to a petro-chemical plant, International Journal of Industrial
Ergonomics 17: 351–366.

Wooldridge, M. J. (2002). An introduction to multiagent systems, Wiley, Chichester, England.
Worn, H. (2004). DIAMOND: Distributed multi-agent architecture for monitoring and

diagnosis, Production Planning and Control 15: 189–200.

494 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com

Multi-Agent Systems - Modeling, Control, Programming,

Simulations and Applications

Edited by Dr. Faisal Alkhateeb

ISBN 978-953-307-174-9

Hard cover, 522 pages

Publisher InTech

Published online 01, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent

systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic

system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous

and proactive software components. Multi-agent systems have been brought up and used in several

application domains.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Atalla F. Sayda (2011). Multi-agent Systems for Industrial Applications: Design, Development, and Challenges,

Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications, Dr. Faisal Alkhateeb

(Ed.), ISBN: 978-953-307-174-9, InTech, Available from: http://www.intechopen.com/books/multi-agent-

systems-modeling-control-programming-simulations-and-applications/multi-agent-systems-for-industrial-

applications-design-development-and-challenges

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

