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1. Introduction

Aims. Formalizing common knowledge reasoning in multi-agent systems is of growing
importance in Computer Science, Artificial Intelligence, Economics, Philosophy and
Psychology. Obtaining a concrete logical foundation for common knowledge reasoning plays
an important role for formal treatment and verification of multi-agent systems. For this reason,
formalizing common knowledge reasoning is also a traditional issue for multi-agent epistemic
logics (Fagin et al., 1995; Halpern & Moses, 1992; Lismont & Mongin, 1994; Meyer & van der
Hoek, 1995). The aim of this paper is to formalize more fine-grained common knowledge
reasoning by a new logical foundation based on Girard’s linear logics.
Common knowledge. The notion of common knowledge was probably first introduced by
Lewis (Lewis, 1969). This notion is briefly explained below. Let A be a fixed set of agents and
α be an idea. Suppose that α belongs to the common knowledge of A, and i and j are some
members of A. Then, we have the facts “both i and j know α”, “i knows that j knows α” and “j
knows that i knows α”. Moreover, we also have the facts “i knows that j knows that i knows
α”, and so on. Then, these nesting structures develop an infinite hierarchy as a result.
Iterative interpretation. Suppose that the underlying multi-agent logic has the knowledge
operators ♥1,♥2, ..., ♥n, in which a formula ♥iα means “the agent i knows α.” The common
knowledge of a formula α is defined below. For any m ≥ 0, an expression Km means the set

{♥i1
♥i2

· · · ♥im
| each ♥it

is one o f ♥1, ...,♥n and it �= it+1 f or all t = 1, ..., m − 1}.

When m = 0, ♥i1
♥i2

· · · ♥im
is interpreted as the null symbol. The common knowledge ♥cα

of α is defined by using an infinitary conjunction
∧

as the so-called iterative interpretation of

common knowledge: ♥cα :=
∧
{♥α | ♥ ∈

⋃

m∈ω

Km}. Then, the formula ♥cα means “α is common

knowledge of agents.”
Common knowledge logics. Common knowledge logics (CKLs) are multi-agent epistemic logics
with some knowledge and common knowledge operators (Fagin et al., 1995; Halpern &
Moses, 1992; Lismont & Mongin, 1994; Meyer & van der Hoek, 1995). So far, CKLs have
been studied based on classical logic (CL). On the other hand, CL is not so appropriate
for expressing more fine-grained reasoning such as resource-sensitive, concurrency-centric
and constructive reasoning. Thus, CKLs based on non-classical logics have been required for
expressing such fine-grained reasoning.
Linear logics. Girard’s linear logics (LLs) (Girard, 1987), which are most promising and useful
non-classical logics in Computer Science, are logics that can naturally represent the concepts
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of “resource consumption” and “parallel execution” in concurrent systems. Applications of
linear logics to programming languages have successfully been studied by many researchers
(see e.g., (Miller, 2004) and the references therein). Combining LLs with some knowledge
and common knowledge operators is thus a natural candidate for realizing an expressive and
useful common knowledge logic. Indeed, intuitionistic linear logic (ILL) and classical linear logic
(CLL) (Girard, 1987), which were introduced as refinements of intuitionistic logic (IL) and CL,
respectively, are more expressive than IL and CL, respectively.
Multi-agent linear logics. A multi-agent epistemic linear logic with a common knowledge
operator has not yet been proposed. A reason may be that to prove the cut-elimination and
completeness theorems for such an extended multi-agent linear logic is difficult because of the
complexity of the traditional setting of a common knowledge operator in sequent calculus.
This paper is trying to overcome such a difficulty by introducing a new simple formulation of
a fixpoint operator, which can be used as a common knowledge operator, and by using a phase
semantic proof method. Phase semantics, which was originally introduced by Girard (Girard,
1987), is known to be a very useful Tarskian semantics for linear and other substructural logics.
It was shown by Okada that the cut-elimination theorems for CLL and ILL can be proved by
using the phase semantics (Okada, 1999; 2002). This paper uses Okada’s method effectively
to obtain the cut-elimination and completeness theorems for the proposed multi-agent linear
logics.
New fixpoint operator. In the following, we explain the proposed formulation of fixpoint
operator. The symbol ω is used to represent the set of natural numbers, and the symbol
N is used to represent a fixed nonempty subset of ω. The symbol K is used to represent
the set {♥i | i ∈ N} of modal operators, and the symbol K∗ is used to represent the set
of all words of finite length of the alphabet K. For example, {ια | ι ∈ K∗} denotes the set
{♥i1

· · · ♥ik
α | i1, ..., ik ∈ N, k ∈ ω}. Remark that K∗ includes ∅ and hence {ια | ι ∈ K∗}

includes α. Greek lower-case letters ι and κ are used to represent any members of K∗. The
characteristic inference rules for a fixpoint operator ♥F are as follows:

ικα, Γ ⇒ γ

ι♥Fα, Γ ⇒ γ
(♥Fleft)

{ Γ ⇒ ικα | κ ∈ K∗ }

Γ ⇒ ι♥Fα
(♥Fright).

These inference rules imply the following axiom scheme: ♥Fα ↔
∧
{ια | ι ∈ K∗}. Suppose that

for any formula α, fα is a mapping on the set of formulas such that fα(x) :=
∧
{♥i(x ∧ α) | i ∈

ω}. Then, ♥Fα becomes a fixpoint (or fixed point) of fα.
Interpretations of new fixpoint operator. The axiom scheme presented above just
corresponds to the iterative interpretation of common knowledge. On the other hand, if we
take the singleton K := {♥0}, then we can understand ♥0 and ♥F as the temporal operators
X (next-time) and G (any-time), respectively, which are subsumed in linear-time temporal logic
(LTL) (Emerson, 1990; Pnueli, 1977). The corresponding axiom scheme for the singleton case

just represents the following axiom scheme for LTL: Gα ↔
∧
{Xiα | i ∈ ω} where Xiα

is defined inductively by X0α := α and Xi+1α := XXiα. The fixpoint operator ♥F is thus
regarded as a natural generalization of both the any-time temporal operator and the common
knowledge operator.
Present paper’s results. The results of this paper are then summarized as follows. Two
multi-agent versions MILL and MCLL of ILL and CLL, respectively, are introduced as
Gentzen-type sequent calculi. MILL and MCLL have the fixpoint operator ♥F, which is
naturally formalized based on the idea of iterative interpretation of common knowledge. The
completeness theorems with respect to modality-indexed phase semantics for MILL and MCLL
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are proved by using Okada’s phase semantic method. The cut-elimination theorems for MILL
and MCLL are then simultaneously obtained by this method. Some related works are briefly
surveyed.

2. Intuitionistic case

2.1 Sequent calculus

The language used in this section is introduced below. Let n be a fixed positive integer. Then,
the symbol N is used to represent the set {1, 2, ..., n} of indexes of modal operators. Formulas
are constructed from propositional variables, 1 (multiplicative constant), ⊤, 0 (additive
constants), → (implication), ∧ (conjunction), ∗ (fusion), ∨ (disjunction), ! (of course), ♥i

(i ∈ N) (i-th modality) and ♥F (fixpoint modality). Remark that the symbols →,∧, ∗ and ∨
are from (Troelstra, 1992), which are different from those in (Girard, 1987). Lower-case letters
p, q,... are used to represent propositional variables, Greek lower-case letters α, β, ... are used
to represent formulas, and Greek capital letters Γ, ∆, ... are used to represent finite (possibly
empty) multisets of formulas. For any ♯ ∈ {!,♥i,♥F}, an expression ♯Γ is used to denote the
multiset {♯γ | γ ∈ Γ}. We write A ≡ B to indicate the syntactical identity between A and B. An
expression Γ

∗ means Γ
∗ ≡ γ1 ∗ · · · ∗ γn if Γ ≡ {γ1, · · · , γn} (0 < n) and Γ

∗ ≡ 1 if Γ ≡ ∅. The
symbol ω is used to represent the set of natural numbers. The symbol K is used to represent the
set {♥i | i ∈ N}, and the symbol K∗ is used to represent the set of all words of finite length of
the alphabet K. For example, {ια | ι ∈ K∗} denotes the set {♥i1

· · · ♥ik
α | i1, ..., ik ∈ N, k ∈ ω}.

Remark that K∗ includes ∅ and hence {ια | ι ∈ K∗} includes α. Greek lower-case letters
ι, ι1, ..., ιn and κ are used to denote any members of K∗. A two-sided intuitionistic sequent,
simply called a sequent, is an expression of the form Γ ⇒ γ (the succedent of the sequent
is not empty). It is assumed that the terminological conventions regarding sequents (e.g.,
antecedent, succedent etc.) are the usual ones. If a sequent S is provable in a sequent system
L, then such a fact is denoted as L ⊢ S or ⊢ S. The parentheses for ∗ is omitted since ∗ is
associative, i.e., ⊢ α ∗ (β ∗ γ) ⇒ (α ∗ β) ∗ γ and ⊢ (α ∗ β) ∗ γ ⇒ α ∗ (β ∗ γ) for any formulas α,
β and γ. A rule R of inference is said to be admissible in a sequent calculus L if the following
condition is satisfied: for any instance

S1 · · · Sn

S

of R, if L ⊢ Si for all i, then L ⊢ S.
An intuitionistic linear logic with fixpoint operator, MILL, is introduced below.

Definition 2..1. The initial sequents of MILL are of the form:

α ⇒ α ⇒ ι1 Γ ⇒ ι⊤ ι0, Γ ⇒ γ.

The cut rule of MILL is of the form:

Γ ⇒ α α, ∆ ⇒ γ

Γ, ∆ ⇒ γ
(cut).

The logical inference rules of MILL are of the form:

Γ ⇒ γ

ι1, Γ ⇒ γ
(1we)
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Γ ⇒ ια ιβ, ∆ ⇒ γ

ι(α→β), Γ, ∆ ⇒ γ
(→left)

ια, Γ ⇒ ιβ

Γ ⇒ ι(α→β)
(→right)

ια, Γ ⇒ γ

ι(α ∧ β), Γ ⇒ γ
(∧left1)

ιβ, Γ ⇒ γ

ι(α ∧ β), Γ ⇒ γ
(∧left2)

Γ ⇒ ια Γ ⇒ ιβ

Γ ⇒ ι(α ∧ β)
(∧right)

ια, ιβ, Γ ⇒ γ

ι(α ∗ β), Γ ⇒ γ
(∗left)

Γ ⇒ ια ∆ ⇒ ιβ

Γ, ∆ ⇒ ι(α ∗ β)
(∗right)

ια, Γ ⇒ γ ιβ, Γ ⇒ γ

ι(α ∨ β), Γ ⇒ γ
(∨left)

Γ ⇒ ια

Γ ⇒ ι(α ∨ β)
(∨right1)

Γ ⇒ ιβ

Γ ⇒ ι(α ∨ β)
(∨right2)

ια, Γ ⇒ γ

ι!α, Γ ⇒ γ
(!left)

ι1!γ1, ..., ιn!γn ⇒ κα

ι1!γ1, ..., ιn!γn ⇒ κ!α
(!right)

ι!α, ι!α, Γ ⇒ γ

ι!α, Γ ⇒ γ
(!co)

Γ ⇒ γ

ι!α, Γ ⇒ γ
(!we)

ικα, Γ ⇒ γ

ι♥Fα, Γ ⇒ γ
(♥Fleft)

{ Γ ⇒ ικα }κ∈K∗

Γ ⇒ ι♥Fα
(♥Fright).

Remark that (♥Fright) has infinite premises, and that the cases for ι = ∅ in MILL derive the
usual inference rules for the intuitionistic linear logic. The rules (♥Fleft) and (♥Fright) are
intended to formalize an informal axiom scheme: ♥Fα ↔

∧
{ια | ι ∈ K∗}.

The following proposition is needed in the completeness proof.

Proposition 2..2. The following rules are admissible in cut-free MILL: for any i ∈ N,

Γ ⇒ γ

♥iΓ ⇒ ♥iγ
(♥iregu)

Γ ⇒ ι♥Fα

Γ ⇒ ικα
(♥Fright−1)

Γ ⇒ ι(α→β)

Γ, ια ⇒ ιβ
(→right−1)

ι(α ∗ β), Γ ⇒ γ

ια, ιβ, Γ ⇒ γ
(∗left−1).

An expression α ⇔ β is an abbreviation of α ⇒ β and β ⇒ α.

Proposition 2..3. The following sequents are provable in cut-free MILL: for any formulas α, β and any
i ∈ N,

1. ♥i(α ◦ β) ⇔ ♥iα ◦ ♥iβ where ◦ ∈ {→,∧, ∗,∨},

2. ♥i!α ⇔!♥iα,

3. ♥Fα ⇒ ♥iα,

4. ♥Fα ⇒ α,

5. ♥Fα ⇒ ♥i♥Fα,

6. ♥Fα ⇒ ♥F♥Fα.

Note that a proof of MILL provides both an infinite width and an unbounded depth. Such a
fact implies that obtaining a direct cut-elimination proof for MILL may be very difficult. Thus,
to prove the cut-elimination theorem effectively, we need the phase semantic cut-elimination
method proposed by Okada.
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2.2 Phase semantics

We now define a phase semantics for MILL. The difference between such a semantics and the
original semantics for the intuitionistic linear logic is only the definition of the valuations:
whereas the original semantics for the intuitionistic linear logic has a valuation v, our
semantics has an infinite number of modality-indexed valuations vι (ι ∈ K∗), where v∅ is
the same as v.

Definition 2..4. An intuitionistic phase space is a structure 〈M, cl, I〉 satisfying the following
conditions:

1. M := 〈M, ·, 1〉 is a commutative monoid with the identity 1,

2. cl is an operation on the powerset P(M) of M such that, for any X, Y ∈ P(M),

C1: X ⊆ cl(X),

C2: clcl(X) ⊆ cl(X),

C3: X ⊆ Y implies cl(X) ⊆ cl(Y),

C4: cl(X) ◦ cl(Y) ⊆ cl(X ◦ Y)

where the operation ◦ is defined as X ◦ Y := {x · y | x ∈ X and y ∈ Y} for any X, Y ∈ P(M) (the
operation cl is called here closure operation),

3. I is a submonoid of M such that cl{x} ⊆ cl{x · x} for any x ∈ I.

In order to obtain an interpretation of the logical constants and connectives, the corresponding
constants and operations on P(M) are defined below.

Definition 2..5. Constants and operations on P(M) are defined as follows: for any X, Y ∈ P(M),

1. 1̇ := cl{1},

2. ⊤̇ := M,

3. 0̇ := cl(∅),

4. X →̇ Y := {y | ∀x ∈ X (x · y ∈ Y)},

5. X ∧̇ Y := X ∩ Y,

6. X ∨̇ Y := cl(X ∪ Y),

7. X ∗̇ Y := cl(X ◦ Y),

8. !̇ X := cl(X ∩ I ∩ 1̇).

We define D := {X ∈ P(M) | X = cl(X)}. Then,

D := 〈D, →̇, ∗̇, ∧̇, ∨̇, !̇, 1̇, ⊤̇, 0̇〉

is called an intuitionistic phase structure.

Remark that the following hold: for any X, X′, Y, Y′, Z ∈ P(M),

1. X ⊆ Y →̇ Z iff X ◦ Y ⊆ Z,

2. X ⊆ X′ and Y ⊆ Y′ imply X ◦ Y ⊆ X′ ◦ Y′ and X′ →̇ Y ⊆ X →̇ Y′.

Remark that D is closed under the operations →̇, ∗̇, ∧̇,∨̇, !̇ and
⋂

(infinite meet), and that
1̇, ⊤̇, 0̇ ∈ D.

Definition 2..6. Modality-indexed valuations vι for all ι ∈ K∗ on an intuitionistic phase structure
D := 〈D, →̇, ∗̇, ∧̇, ∨̇, !̇, 1̇, ⊤̇, 0̇〉 are mappings from the set of all propositional variables to D. Then, vι

for all ι ∈ K∗ are extended to mappings from the set Φ of all formulas to D by:
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1. vι(1) := 1̇,

2. vι(⊤) := ⊤̇,

3. vι(0) := 0̇,

4. vι(α ∧ β) := vι(α) ∧̇ vι(β),

5. vι(α ∨ β) := vι(α) ∨̇ vι(β),

6. vι(α ∗ β) := vι(α) ∗̇ vι(β),

7. vι(α→β) := vι(α) →̇ vι(β),

8. vι(!α) := !̇vι(α),

9. vι(♥iα) := vι♥i (α),

10. vι(♥Fα) :=
⋂

κ∈K∗

vικ(α).

Definition 2..7. An intuitionistic modality-indexed phase model is a structure 〈D, {vι}ι∈K∗ 〉 such
that D is an intuitionistic phase structure, and {vι}ι∈K∗ is a class of modality-indexed valuations. A
formula α is true in an intuitionistic modality-indexed phase model 〈D, {vι}ι∈K∗ 〉 if 1̇ ⊆ v∅(α) (or
equivalently 1 ∈ v∅(α)) holds, and valid in an intuitionistic phase structure D if it is true for any
modality-indexed valuations {vι}ι∈K∗ on the intuitionistic phase structure. A sequent α1, · · · , αn ⇒ β
(or ⇒ β) is true in an intuitionistic modality-indexed phase model 〈D, {vι}ι∈K∗ 〉 if the formula α1 ∗
· · · ∗ αn→β (or β) is true in it, and valid in an intuitionistic phase structure if so is α1 ∗ · · · ∗ αn→β
(or β).

The proof of the following theorem is straightforward.

Theorem 2..8 (Soundness). If a sequent S is provable in MILL, then S is valid for any intuitionistic
phase structures.

2.3 Completeness and cut-elimination

In order to prove the strong completeness theorem, we will construct a canonical model. For
the sake of clarity for the completeness proof, an expression [Γ] is used to explicitly represent
a multiset of formulas, i.e., [Γ] and Γ are identical, but only the expressions are different.

Definition 2..9. We define a commutative monoid 〈M, ·, 1〉 as follows:

1. M := {[Γ] | [Γ] is a finite multiset of formulas},

2. [Γ] · [∆] := [Γ, ∆] (the multiset union),

3. 1 := [ ] (the empty multiset).

We define the following: for any ι ∈ K∗ and any formula α,

‖α‖ι := {[Γ] | ⊢c f Γ ⇒ ια}

where ⊢c f means “provable in cut-free MILL".
We then define

D := {X | X =
⋂

i∈I

‖αi‖
∅}

for an arbitrary (non-empty) indexing set I and an arbitrary formula αi.
Then we define

cl(X) :=
⋂
{Y ∈ D | X ⊆ Y}.
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We define the following constants and operations on P(M): for any X, Y ∈ P(M),

1. l̇ := cl{1},

2. ⊤̇ := M,

3. 0̇ := cl(∅),

4. X →̇ Y := {[∆] | ∀ [Γ] ∈ X ([Γ, ∆] ∈ Y)},

5. X ∧̇ Y := X ∩ Y,

6. X ∨̇ Y := cl(X ∪ Y),

7. X ∗̇ Y := cl(X ◦ Y) where X ◦ Y := {[Γ, ∆] | [Γ] ∈ X and [∆] ∈ Y},

8. !̇X := cl(X ∩ I ∩ 1) where

I := {[ι1!γ1, ..., ιn!γn] | ι1, ..., ιn ∈ K∗ and γ1, ..., γn : formulas}.

Modality-indexed valuations vι for all ι ∈ K∗ are mappings from the set of all propositional variables
to D such that

vι(p) := ‖p‖ι.

We have the following: for any X, Y, Z ∈ P(M),

X ◦ Y ⊆ Z iff X ⊆ Y →̇ Z.

Remark that D is closed under arbitrary
⋂

. Remark also that I is a monoid.
Moreover, we have to check the following fact.

Proposition 2..10. For any [Σ] ∈ I, cl{[Σ]} ⊆ cl{[Σ, Σ]}.

Proof. Let [Σ] ∈ I. Suppose [Σ] ∈ cl{[Σ]}, i.e., [Σ] ∈
⋂
{Y ∈ D | {[Σ]} ⊆ Y} iff ∀W [W ∈ D

and {[Σ]} ⊆ W imply [∆] ∈ W]. We show [∆] ∈ cl{[Σ, Σ]}, i.e., ∀W [W ∈ D and {[Σ, Σ]} ⊆ W
imply [∆] ∈ W]. To show this, suppose W ∈ D and {[Σ, Σ] ⊆ W}, i.e., {[Σ, Σ]} ⊆ W =⋂

i∈I ‖αi‖
0 = {Π | ∀i ∈ I (⊢c f Π ⇒ αi)}. This means ∀i ∈ I (⊢c f Σ, Σ ⇒ αi). Moreover, [Σ] is

of the form [ι1!γ1, ..., ιk!γk] since [Σ] ∈ I. Thus, we have:

∀i ∈ I (⊢c f ι1!γ1, ..., ιk!γk, ι1!γ1, ..., ιk!γk ⇒ αi),

and hence obtain:

∀i ∈ I (⊢c f ι1!γ1, ..., ιk!γk ⇒ αi)

by (!co). This means {[ι1!γ1, ..., ιk!γk]} ⊆
⋂

i∈I ‖αi‖
0 = W, i.e., {[Σ]} ⊆ W. Therefore we obtain

[∆] ∈ W by the hypothesis.

Proposition 2..11. The following hold: for any ι ∈ K∗ and any formula α,

1. ‖♥iα‖
ι = ‖α‖ι♥i ,

2. ‖♥Fα‖ι =
⋂

κ∈K∗

‖α‖ικ .

Proof. (1) is obvious. (2) can be shown using the rules (♥Fright) and (♥Fright−1), where

(♥Fright−1) is admissible in cut-free MILL by Proposition 2..2.

Lemma 2..12. Let D be {X | X =
⋂

i∈I

‖αi‖
∅}, and Dc be {X ∈ P(M) | X = cl(X)}. Then: D = Dc.
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Proof. First, we show Dc ⊆ D. Suppose X ∈ Dc. Then X = cl(X) =
⋂
{Y ∈ D | X ⊆ Y} ∈ D.

Next, we show D ⊆ Dc. Suppose X ∈ D. We show X ∈ Dc, i.e., X =
⋂
{Y ∈ D | X ⊆ Y}. To

show this, it is sufficient to prove that

1. X ⊆ {[Γ] | ∀ W [W ∈ D and X ⊆ W imply [Γ] ∈ W]},

2. {[Γ] | ∀ W [W ∈ D and X ⊆ W imply [Γ] ∈ W]} ⊆ X.

First, we show (1). Suppose [∆] ∈ X and assume W ∈ D and X ⊆ W for any W. Then we
have [∆] ∈ X ⊆ W. Next we show (2). Suppose [∆] ∈ {[Γ] | ∀ W [W ∈ D and X ⊆ W imply

[Γ] ∈ W]}. By the assumption X ∈ D and the fact that X ⊆ X, we have [∆] ∈ X.

Lemma 2..13. For any X ⊆ M and any Y ∈ D, we have X →̇ Y ∈ D.

Proof. By using Proposition 2..2 for the admissibility of (→right−1) and (∗left−1) in cut-free

MILL.

Then, we can show the following.

Proposition 2..14. The structure D := 〈D, →̇, ∗̇, ∧̇, ∨̇, !̇, 1̇, ⊤̇, 0̇〉 defined in Definition 2..9 forms an
intuitionistic phase structure for MILL.

Proof. We can verify that D is closed under →̇, ∗̇, ∧̇, ∨̇, !̇ and
⋂

. In particular, for →̇, we
use Lemma 2..13. The fact 1̇, ⊤̇, 0̇ ∈ D is obvious. We can verify that the conditions C1—C4
for closure operation hold for this structure. The conditions C1—C3 are obvious. We only
show C4: cl(X) ◦ cl(Y) ⊆ cl(X ◦ Y) for any X, Y ∈ P(M). We have X ◦ Y ⊆ cl(X ◦ Y) by the
condition C1, and hence X ⊆ Y →̇ cl(X ◦Y). Moreover, by the condition C3, we have cl(X) ⊆
cl(Y →̇ cl(X ◦ Y)). Here, cl(X ◦ Y) ∈ D and by Lemma 2..13, we have Y →̇ cl(X ◦ Y) ∈ D.
Thus, we obtain

cl(X) ⊆ cl(Y →̇ cl(X ◦ Y)) = Y →̇ cl(X ◦ Y)

by Lemma 2..12. Therefore we obtain (*): cl(X) ◦ Y ⊆ cl(X ◦ Y) for any X, Y ∈ P(M). By
applying the fact (*) twice, Lemma 2..12 and the commutativity of ◦, we have

cl(X) ◦ cl(Y) ⊆ cl(cl(X) ◦ Y) ⊆ cl(cl(X ◦ Y)) = cl(X ◦ Y).

We then have a modified version of the key lemma of Okada (Okada, 2002).

Lemma 2..15. For any ι ∈ K∗ and any formula α,

[ια] ∈ vι(α) ⊆ ‖α‖ι.

Proof. By induction on the complexity of α. We show only some critical cases.
(Case α ≡ ♥iβ): By induction hypothesis, we have [ι♥iβ] ∈ vι♥i (β) ⊆ ‖β‖ι♥i , i.e., [ι(♥iβ)] ∈
vι(♥iβ) ⊆ ‖♥iβ‖

ι by Proposition 2..11.
(Case α ≡ ♥Fβ): We show [ι♥Fβ] ∈ vι(♥Fβ) ⊆ ‖♥Fβ‖ι. First, we show [ι♥Fβ] ∈ vι(♥Fβ),

i.e., [ι♥Fβ] ∈
⋂

κ∈K∗

vικ(β) iff ∀κ ∈ K∗ ([ι♥Fβ] ∈ vικ(β)). Since vικ(β) ∈ D, we have vικ(β) =

⋂

k∈I

‖δk‖
∅ = {[Γ] | ∀k ∈ I(⊢c f Γ ⇒ δk)}. Thus, ∀κ ∈ K∗ ([ι♥Fβ] ∈ vικ(β)) means (*): ∀k ∈ I(⊢c f

ι♥Fβ ⇒ δk). On the other hand, by induction hypothesis, we have ∀κ ∈ K∗ ([ικβ] ∈ vικ(β)),
i.e., (**): ∀k ∈ I ∀κ ∈ K∗ (⊢c f ικβ ⇒ δk). By applying (♥Fleft) to (**), we obtain (*).

150 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com



Next we show vι(♥Fβ) ⊆ ‖♥Fβ‖ι. Suppose [Γ] ∈ vι(♥Fβ), i.e., [Γ] ∈
⋂

κ∈K∗

vικ(β). We show

[Γ] ∈ ‖♥Fβ‖ι, i.e., ⊢c f Γ ⇒ ι♥Fβ. By induction hypothesis, we have vικ(β) ⊆ ‖β‖ικ . Thus, we

obtain [Γ] ∈
⋂

κ∈K∗

vικ(β) ⊆
⋂

κ∈K∗

‖β‖ικ , and hence [Γ] ∈
⋂

κ∈K∗

‖β‖ικ , i.e., ∀κ ∈ K∗ ([Γ] ∈ ‖β‖ικ) iff

∀κ ∈ K∗ (⊢c f Γ ⇒ ικβ). By applying (♥Fright) to this, we obtain ⊢c f Γ ⇒ ι♥Fβ.

Theorem 2..16 (Strong completeness). If a sequent S is valid for any intuitionistic phase structures,
then S is provable in cut-free MILL.

Proof. Using Lemma 2..15, we can obtain this theorem as follows. Let Γ ⇒ γ be S, and α be
Γ
∗→γ. If formula α is true, then [ ] ∈ v∅(α). On the other hand vι(α) ⊆ ‖α‖ι for any ι ∈ K∗,

and hence [ ] ∈ ‖α‖∅, which means “⇒ α is provable in cut-free MILL”.

Theorem 2..17 (Cut-elimination). The rule (cut) is admissible in cut-free MILL.

Proof. If a sequent S is provable in MILL, then S is valid by Theorem 2..8 (Soundness). By

Theorem 2..16 (Strong completeness), S is provable in cut-free MILL.

3. Classical case

3.1 Sequent calculus

The language used in this section is introduced below. Formulas are constructed from
propositional variables, 1,⊥ (multiplicative constants), 0, ⊤ (additive constants *), ∧
(conjunction), ∗ (fusion), ∨ (disjunction), + (fission), ·⊥ (negation), ! (of course), ? (why
not), ♥i (i ∈ N) (i-th modality), ♥F (fixpoint modality) and ♥D (co-fixpoint modality). The
notational conventions are almost the same as that in the previous section. For example, for
any ♯ ∈ {!, ?,♥i,♥F,♥D}, an expression ♯Γ is used to denote the multiset {♯γ | γ ∈ Γ}. A
classical one-sided sequent, simply a sequent, is an expression of the form ⊢ Γ. An expression

α ↔ β is used to represent the fact that both ⊢ α⊥, β and ⊢ α, β⊥ are provable. In the
one-sided calculi discussed here, the De Morgan duality is assumed, i.e., the following laws
and the replacement (or substitution) theorem are assumed: 1⊥ ↔ ⊥, ⊥⊥ ↔ 1, ⊤⊥ ↔ 0,

0⊥ ↔ ⊤, α⊥⊥ ↔ α, (α ∧ β)⊥ ↔ α⊥ ∨ β⊥, (α ∨ β)⊥ ↔ α⊥ ∧ β⊥, (α ∗ β)⊥ ↔ α⊥ + β⊥,

(α + β)⊥ ↔ α⊥ ∗ β⊥, (!α)⊥ ↔ ?(α⊥), (?α)⊥ ↔ !(α⊥), (♥iα)
⊥ ↔ ♥i(α

⊥), (♥Fα)⊥ ↔ ♥D(α
⊥)

and (♥Dα)⊥ ↔ ♥F(α
⊥).

A classical linear logic with fixpoint operator, MCLL, is introduced below.

Definition 3..1. The initial sequents of MCLL are of the form:

⊢ α, α⊥ ⊢ ι1 ⊢ Γ, ι⊤.

The cut rule of MCLL is of the form:

⊢ Γ, ια ⊢ ∆, ι(α⊤)

⊢ Γ, ∆
(cut).

*Although 0 is not appeared explicitly in the one-sided calculi discussed in this paper, it is used as an
abbreviation of ⊤⊥.
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The logical inference rules of MCLL are of the form:

⊢ Γ

⊢ Γ, ι⊥
(⊥)

⊢ Γ, ια ⊢ ∆, ιβ

⊢ Γ, ∆, ι(α ∗ β)
(∗)

⊢ Γ, ια, ιβ

⊢ Γ, ι(α + β)
(+)

⊢ Γ, ια ⊢ Γ, ιβ

⊢ Γ, ι(α ∧ β)
(∧)

⊢ Γ, ια

⊢ Γ, ι(α ∨ β)
(∨1)

⊢ Γ, ιβ

⊢ Γ, ι(α ∨ β)
(∨2)

⊢ ι1?γ1, ..., ιn?γn, κα

⊢ ι1?γ1, ..., ιn?γn, κ!α
(!)

⊢ Γ, ια

⊢ Γ, ι?α
(?)

⊢ Γ, ι?α, ι?α

⊢ Γ, ι?α
(?co)

⊢ Γ

⊢ Γ, ι?α
(?we)

{ ⊢ Γ, ικα }κ∈K∗

⊢ Γ, ι♥Fα
(♥F)

⊢ Γ, ικα

⊢ Γ, ι♥Dα
(♥D).

Note that the following conditions hold for MCLL: for any i ∈ N and any formulas α and β,
♥i(α ◦ β) ↔ (♥iα) ◦ (♥iβ) where ◦ ∈ {∧,∨, ∗,+}, (♥iα)

⊥ ↔ ♥i(α
⊥) and ♥i(♯α) ↔ ♯(♥iα)

where ♯ ∈ {!, ?}.

3.2 Phase semantics

We now define a phase semantics for MCLL. The difference between such semantics and the
original semantics is only the definition of the valuations.

Definition 3..2. Let 〈M, ·, 1〉 be a commutative monoid with the unit 1. If X, Y ⊆ M, we define
X ◦Y := {x · y | x ∈ X and y ∈ Y}. A phase spase is a structure 〈M, ⊥̂, Î〉 where ⊥̂ is a fixed subset

of M, and Î := {x ∈ M | x · x = x} ∩ ⊥̂⊥̂. For X ⊆ M, we define X⊥̂ := {y | ∀x ∈ X (x · y ∈ ⊥̂)}.

X (⊆ M) is called a fact if X⊥̂⊥̂ = X. The set of facts is denoted by DM.

Remark that the operation ◦ is commutative and assosiative, and has the monotonicity
property w.r.t. ◦: X1 ⊆ Y1 and X2 ⊆ Y2 imply X1 ◦ X2 ⊆ Y1 ◦ Y2 for any X1, X2, Y1, Y2 (⊆ M).

Proposition 3..3. Let X, Y ⊆ M. Then:

1. X ⊆ Y⊥̂ iff X ◦ Y ⊆ ⊥̂,

2. if X ⊆ Y then X ◦ Y⊥̂ ⊆ ⊥̂,

3. X ◦ X⊥̂ ⊆ ⊥̂,

4. if X ⊆ Y then Y⊥̂ ⊆ X⊥̂,

5. if X ⊆ Y then X⊥̂⊥̂ ⊆ Y⊥̂⊥̂,

6. X ⊆ X⊥̂⊥̂,

7. (X⊥̂⊥̂)⊥̂⊥̂ ⊆ X⊥̂⊥̂,

8. X⊥̂⊥̂ ◦ Y⊥̂⊥̂ ⊆ (X ◦ Y)⊥̂⊥̂,

9. x ∈ X⊥̂ iff {x} ◦ X ⊆ ⊥̂,

10. if X ◦ Y ⊆ ⊥̂ then X ◦ Y⊥̂⊥̂ ⊆ ⊥̂.

Note that ·⊥̂⊥̂ is a closure operator similar to cl discussed in the previous section.
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Proposition 3..4. Let X, Y ⊆ M. Then:

1. X⊥̂ is a fact,

2. X⊥̂⊥̂ is the smallest fact that includes X,

3. if X and Y are facts, then so is X ∩ Y,

4. if Xi for all i ∈ ω are facts, then so is
⋂

i∈ω

Xi.

Definition 3..5. Let A, B ⊆ M. We define the following operators and constants:

1. ⊥̂ := {1}⊥̂,

2. 1̂ := ⊥̂⊥̂ = {1}⊥̂⊥̂,

3. ⊤̂ := M = ∅⊥̂,

4. 0̂ := ⊤̂⊥̂ = M⊥̂ = ∅⊥̂⊥̂,

5. A ∧̂ B := A ∩ B,

6. A ∨̂ B := (A ∪ B)⊥̂⊥̂,

7. A ∗̂ B := (A ◦ B)⊥̂⊥̂,

8. A +̂ B := (A⊥̂ ◦ B⊥̂)⊥̂,

9. !̂A := (A ∩ Î)⊥̂⊥̂,

10. ?̂A := (A⊥̂ ∩ Î)⊥̂.

We can show that, by Proposition 3..4, the constants defined above are facts and the operators
defined above are closed under DM.

Definition 3..6. Modality-indexed valuations φι for all ι ∈ K∗ on a phase space 〈M, ⊥̂, Î〉 are
mappings which assign a fact to each propositional variables. Each modality-indexed valuation φι (ι ∈
K∗) can be extended to a mapping ·ι (ι ∈ K∗) from the set Φ of all formulas to DM by:

1. pι := φι(p) for any propositional variable p,

2. ⊥ι := ⊥̂,

3. 1ι := 1̂,

4. ⊤ι := ⊤̂,

5. 0ι := 0̂,

6. (α⊥)ι := (αι)⊥̂,

7. (α ∧ β)ι := αι ∧̂ βι,

8. (α ∨ β)ι := αι ∨̂ βι,

9. (α ∗ β)ι := αι ∗̂ βι,

10. (α + β)ι := αι +̂ βι,

11. (!α)ι := !̂(αι),

12. (?α)ι := ?̂(αι),

13. (♥iα)
ι := αι♥i ,
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14. (♥Fα)ι :=
⋂

κ∈K∗

αικ ,

15. (♥Dα)ι := (
⋃

κ∈K∗

αικ)⊥̂⊥̂.

We call the values αι (ι ∈ K∗) the inner-values of α (∈ Φ).

Definition 3..7. 〈M, ⊥̂, Î, {φι}ι∈K∗ 〉 is a modality-indexed phase model if 〈M, ⊥̂, Î〉 is a phase
space and φι (ι ∈ K∗) are modality-indexed valuations on 〈M, ⊥̂, Î〉. A sequent ⊢ α is true in a

modality-indexed phase model 〈M, ⊥̂, Î, {φι}ι∈K∗ 〉 if α∅⊥̂ ⊆ ⊥̂ (or equivalently 1 ∈ α∅), and valid
in a phase space 〈M, ⊥̂, Î〉 if it is true for any modality-indexed valuations φι (ι ∈ K∗) on the phase
space. A sequent ⊢ α1, · · · , αn is true in a modality-indexed phase model 〈M, ⊥̂, Î, {φι}ι∈K∗ 〉 if ⊢ α1 +
· · ·+ αn is true in the model, and valid in a phase space 〈M, ⊥̂, Î〉 if it is true for any modality-indexed
valuations φι (ι ∈ K∗) on the phase space.

Theorem 3..8 (Soundness). If a sequent S is provable in MCLL, then S is valid for any phase space.

Proof. By induction on the length of the proof P of S. For example, if the last rule of inference
in P is of the form:

⊢ Γ
′

⊢ Γ

where Γ ≡ {α1, · · · , αn} and Γ
′ ≡ {α′1, · · · , α′n}, then we show that (α′1 + · · · + α′n)

∅⊥̂ ⊆ ⊥̂

implies (α1 + · · ·+ αn)∅⊥̂ ⊆ ⊥̂, i.e. (α
′∅⊥̂
1 ◦ · · · ◦ α

′∅⊥̂
n )⊥̂⊥̂ ⊆ ⊥̂ implies (α∅⊥̂

1 ◦ · · · ◦ α∅⊥̂
n )⊥̂⊥̂

⊆ ⊥̂. To show this, it is enough to prove that α
′∅⊥̂
1 ◦ · · · ◦ α

′∅⊥̂
n ⊆ ⊥̂ implies α∅⊥̂

1 ◦ · · · ◦ α∅⊥̂
n

⊆ ⊥̂, since we have Proposition 3..3 (10) and (6). Γ
∅⊥̂ denotes ⊥̂ if Γ is empty, and Γ

∅⊥̂ denotes

γ∅⊥̂
1 ◦ · · · ◦ γ∅⊥̂

n if Γ ≡ {γ1, · · · , γn}. In the proof, we will sometimes use the properties in
Propositions 3..3 and 3..4 implicitly. Here we show only the following case.
Case (♥F): The last inference of P is of the form:

{ ⊢ Γ, ικα }κ∈K∗

⊢ Γ, ι♥Fα
(♥F).

Suppose ∀κ ∈ K∗ [Γ∅⊥̂ ◦ (ικα)∅⊥̂ ⊆ ⊥̂], i.e., ∀κ ∈ K∗ [Γ∅⊥̂ ◦ (αικ)⊥̂ ⊆ ⊥̂]. Then we obtain

(*): ∀κ ∈ K∗ [Γ∅⊥̂ ⊆ αικ ] by Proposition 3..3 (1). We show Γ
∅⊥̂ ◦ (ι♥Fα)∅⊥̂ ⊆ ⊥̂, i.e., Γ

∅⊥̂◦

(
⋂

κ∈K∗

αικ)⊥̂ ⊆ ⊥̂. This is equivalent to Γ
∅⊥̂ ⊆

⋂

κ∈K∗

αικ by Proposition 3..3 (1), and hence we

show this below. Suppose x ∈ Γ
∅⊥̂. Then we obtain ∀κ ∈ K∗ [x ∈ αικ ] by (*). This means

x ∈
⋂

κ∈K∗

αικ .

3.3 Completeness and cut-elimination

Next, we consider the strong completeness theorem for MCLL. In order to prove this theorem,
we have to construct a canonical model.

Definition 3..9. We construct a canonical modality-indexed phase model 〈M, ⊥̂, Î, {φι}ι∈K∗ 〉. Here
M is the set of all multisets of formulas where multiple occurrence of a formula of the form ι?α in the
multisets counts only once. 〈M, ·, 1〉 is a commutavive monoid where ∆ · Γ := ∆ ∪ Γ (the multiset
union) for all ∆, Γ ∈ M, and 1 (∈ M) is ∅ (the empty multiset). For any formula α, we define
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[α]ι := {∆ | ⊢c f ∆, ια} where ⊢c f ∆, ια means that ⊢ ∆, ια is cut-free provable. We call [α]ι (ι ∈ K∗)

the outer-values of α (∈ Φ). We define ⊥̂ := [⊥]∅ = {∆ | ⊢c f ∆}. Î is defined as {[ι1?γ1, ..., ιn?γn]
| [γ1, ..., γn] ∈ M, ι1, ..., ιn ∈ K∗}. The modality-indexed valuations φι (ι ∈ K∗) are defined as
φι(p) := [p]ι for any propositional variable p.

Proposition 3..10. Let Î be {[ι1?γ1, ..., ιn?γn] | [γ1, ..., γn] ∈ M, ι1, ..., ιn ∈ K∗}, and İ be {∆ ∈

M | ∆ ∪ ∆ = ∆} ∩ ⊥̂⊥̂. Then: Î = İ.

We then have the following.

Proposition 3..11. 〈M, ⊥̂, Î〉 defined in Definition 3..9 is a phase space.

To prove the completeness theorem, we must prove some lemmas which are analogous to the
lemmas established by Okada in (Okada, 1999).

Lemma 3..12. For any ι ∈ K∗ and any formula α, if αι ⊆ [α]ι then {ια} ∈ αι⊥̂.

Lemma 3..13. Let α be any formula. Then:

1. [α]⊥̂⊥̂
ι = [α]ι,

2. [♥iα]ι = [α]ι♥i
,

3. [♥Fα]ι =
⋂

κ∈K∗

[α]ικ ,

4. [♥Dα]ι =
⋃

κ∈K∗

[α]ικ .

Proof. We show only (4).

(4): First, we show [♥Dα]ι ⊆
⋃

κ∈K∗

[α]ικ . To show this, we use the fact that the following rule is

admissible in cut-free MCLL:
⊢ Γ, ι♥Dα

⊢ Γ, ια
(♥−1

D ).

Suppose Γ ∈ [♥Dα]ι, i.e., ⊢c f Γ, ι♥Dα. We show Γ ∈
⋃

κ∈K∗

[α]ικ , i.e., ∃κ ∈ K∗ (⊢c f Γ, ικα). By

applying the rule (♥−1
D ) to the hypothesis ⊢c f Γ, ι♥Dα, we obtain ⊢c f Γ, ια. Next, we show

⋃

κ∈K∗

[α]ικ ⊆ [♥Dα]ι. Suppose Γ ∈
⋃

κ∈K∗

[α]ικ , i.e., ∃κ ∈ K∗ (⊢c f Γ, ικα). By applying the rule (♥D)

to this, we obtain ⊢c f Γ, ι♥Dα, i.e., Γ ∈ [♥Dα]ι.

Using Lemmas 3..12 and 3..13, we can prove the following main lemma.

Lemma 3..14. For any formula α and any ι ∈ K∗, αι ⊆ [α]ι.

Proof. By induction on the complexity of α.
• Base step: Obvious by the definitions.
• Induction step: We show some cases. Other cases are almost the same as those in (Okada,
1999).
(Case α ≡ ♥iβ): Suppose Γ ∈ (♥iβ)

ι, i.e., Γ ∈ βι♥i . Then we have Γ ∈ βι♥i ⊆ [β]ι♥i
by

induction hypothesis, and hence obtain ⊢c f Γ, ι♥iβ, i.e., ⊢c f Γ, ι(♥iβ). Therefore Γ ∈ [♥iβ]ι.
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(Case α ≡ ♥Fβ): Suppose Γ ∈ (♥Fβ)ι, i.e., Γ ∈
⋂

κ∈K∗

βικ . Then we have Γ ∈
⋂

κ∈K∗

βικ ⊆
⋂

κ∈K∗

[β]ικ

by induction hypothesis, and hence obtain ∀κ ∈ K∗ (Γ ∈ [β]ικ), i.e., {⊢c f Γ, ικβ}κ∈K∗ . By
applying the rule (♥F) to this, we obtain ⊢c f Γ, ι♥Fβ. Therefore Γ ∈ [♥Fβ]ι.
(Case α ≡ ♥Dβ): We will show:

(♥Dβ)ι =d f (
⋃

κ∈K∗

βικ)⊥̂⊥̂ ⊆ (
⋃

κ∈K∗

[β]ικ)
⊥̂⊥̂ ⊆ [♥Dβ]ι.

For this, (
⋃

κ∈K∗

βικ)⊥̂⊥̂ ⊆ (
⋃

κ∈K∗

[β]ικ)
⊥̂⊥̂ can be proved by the induction hypothesis βικ ⊆ [β]ικ

and Proposition 3..3 (5), i.e., the monotonicity of ·⊥̂⊥̂. Next, we prove (
⋃

κ∈K∗

[β]ικ)
⊥̂⊥̂ ⊆ [♥Dβ]ι.

By Lemma 3..13 (4), we have
⋃

κ∈K∗

[β]ικ ⊆ [♥Dβ]ι. Moreover, by Proposition 3..3 (5), i.e., the

monotonicity of ·⊥̂⊥̂, we obtain (
⋃

κ∈K∗

[β]ικ)
⊥̂⊥̂ ⊆ [♥Dβ]⊥̂⊥̂

ι . By Lemma 3..13 (1), we have

[♥Dβ]⊥̂⊥̂
ι = [♥Dβ]ι. Therefore (

⋃

κ∈K∗

[β]ικ)
⊥̂⊥̂ ⊆ [♥Dβ]ι.

Theorem 3..15 (Strong completeness). If a sequent S is valid for any phase space, then S is provable
in cut-free MCLL.

Proof. Lemma 3..14 implies this theorem as follows. Let ⊢ α1, ..., αn be S, and ⊢ α be ⊢ α0 +
· · ·+ αn. If ⊢ α is true, then ∅ ∈ α∅. On the other hand, we have αι ⊆ [α]ι for any ι ∈ K∗, and

hence obtain ∅ ∈ [α]∅. This means that ⊢ α (i.e., S) is provable in cut-free MCLL.

Theorem 3..16 (Cut-elimination). The rule (cut) is admissible in cut-free MCLL.

Proof. If a sequent S is provable in MCLL, then S is valid by Theorem 3..8 (Soundness). By

Theorem 3..15 (Strong completeness), S is provable in cut-free MCLL.

4. Related works

It is known that LLs are useful for formalizing and analyzing multi-agent systems (Harland
& Winikoff, 2001; 2002; Pham & Harland, 2007). In (Harland & Winikoff, 2001), LLs were used
by Harland and Winikoff as a basis for BDI (Belief, Desire, Intention)-style agent systems. In
(Harland & Winikoff, 2002), the notion of negotiation in multi-agent systems was discussed
by Harland and Winikoff based on LLs. As mentioned in (Harland & Winikoff, 2002), the
resource-sensitive character of LLs is more appropriate for handling agent negotiation. In
(Pham & Harland, 2007), a temporal version of LLs was used by Pham and Harland as a
basis for flexible agent interactions.
In order to directly express agents’ knowledge, some epistemic linear logics, which have
some knowledge operators, have been introduced and studied by several researchers (Baltag
et al., 2007; Kamide, 2006). Epistemic linear and affine logics, which are formulated as
Hilbert-style axiomatizations, were proposed by Kamide (Kamide, 2006). The completeness
theorems with respect to Kripke semantics for these epistemic logics were shown by him.
A resource-sensitive dynamic epistemic logic, which is based on a sequent calculus for a
non-commutative ILL with some program operators, was introduced by Baltag et al. (Baltag
et al., 2007). The completeness theorem with respect to epistemic quantales for this logic was
proved by them.

156 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com



A fixed point linear logic µMALL= which has some least and greatest fixed point operators
was introduced and studied by Baelde and Miller (Baelde, 2009; Baelde & Miller, 2007). The
logic µMALL= enjoys cut-elimination and has a complete focused proof system. µMALL=,
also called µMALL, was motivated to offer a natural framework for reasoning about automata
(Baelde, 2009). The least fixed point operator µ in µMALL= is formalized using the following
inference rule:

⊢ Γ, B(µB)t

⊢ Γ, µBt
(µ)

where B represents a formula abstracted over a predicate and terms, and t represents a vector
of terms. Compared with ♥F in MCLL, the operator µ in µMALL= does not use an infinitary
rule.
Some linear logics with some additional modal operators have been proposed by some
researchers. For example, (linear-time) temporal linear logics, which are roughly regarded as
special cases of fixpoint linear logics, were studied by Kanovich and Ito (Kanovich, 1997) and
by Kamide (Kamide, 2010).
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