
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

2

A Multi-Agent System Architecture for
Sensor Networks

María Guijarro, Rubén Fuentes-Fernández and Gonzalo Pajares
University Complutense Of Madrid, Madrid,

Spain

1. Introduction

Today it is increasingly important a good design architectures that support sensors. This
chapter shows how the design of the control systems for sensor networks presents
important challenges because of using sensor networks has design problems. Besides the
traditional aspects about how to process the data to get the target information, engineers
need to consider additional aspects such as the heterogeneity and high number of sensors,
and the flexibility of these networks regarding topologies and sensors in them.
The increasing availability of sensors plugable in networks at low costs is rapidly increasing
their use for different applications like smart spaces or surveillance systems (Tubaishat, M.
& Madria, S. 2003).These networks pose important challenges for engineers working in the
development of the related control systems. Some of the most relevant are:

• Potential high number of nodes. The current trend is to set up networks densely populated
with sensors and a minor number of controllers (Yick et al., 2008). These magnitudes
imply that engineers must consider issues such as the organization of the
communications and local pre-processing of data to save bandwidth and get suitable
response times.

• Sensor heterogeneity. These networks include a wide variety of types of devices (e.g.
cameras, motion sensors or microphones) whose management and usage differs (Hill et
al., 2000). These sensors are usually specialized in specific applications, so they do not
offer the same services. The combination of different types of sensors in a network and
the use of its data requires a high-level of modularity and adaptability in the
architecture.

• Changing network topology. Sensor networks are less stable than traditional computer
networks (Yick et al., 2008). Their sensors are more prone to fail than conventional
computational devices: they frequently operate unattended in environments that can
lead them to malfunction, and with very limited resources. A common way to
overcome sensor failure is redeploying new sensors, which further changes the network
topology. These changes make that the control of the network must deal with ad-hoc
topologies to attend the communications needs of a given moment with the available
resources.

• Several levels of data processing. Processing of data happens at both local and global levels
(Tubaishat, M. & Madria, S. 2003). Since sensors can be deployed over quite wide areas,
the management of data may need to be contextualized, for instance to determine what

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

24

signals are relevant in a situation. Nevertheless, centralized processing is also
necessary, mainly for the transformations and integration of data. Thus, the architecture
of the control must deal with groups at different levels that need to coordinate.

• Unreliable networks of reduced bandwidth. The network established in these cases is highly
unreliable when compared with wired networks (Yick et al., 2008). It is usually a
wireless network where the hostile environment produces intermittent connectivity
with a high variability in the conditions for communication. This issue requires
solutions similar to those of the changing topology.

These challenges have been addressed in several works, though usually focusing only on
the solutions for some specific issues. For instance, literature (Akyildiz et al., 2007; Baronti et
al., 2007; Tubaishat, M. & Madria, S. 2003; Yick et al., 2008) reports works on routing in ad-
hoc networks to minimize energy consumption, optimal data processing to reduce
computation time in sensors or data integration in specific domains. However, the
integration of the different solutions is not a trivial problem and research in architectures for
these networks pays attention to it.
The architectures proposed for these networks usually consider some basic infrastructure
and a component model. The infrastructure provides basic services for all the components,
and the components model specify the interfaces and behaviour that components must
provide to be integrated in the network. Examples of these works are the architectural
principles in (Estrin et al., 1999) and MADSN (Qi et al., 2001), TinyOS (Hill et al., 2000) and
Tenet (Gnawali et al., 2006). (Estrin et al., 1999) is probably one of the first works discussing
the specific problematic of sensor networks. It advocates for architectures where data
processing is performed as close as possible to the sources of those data, probably in the
sensors themselves. Sensors are also responsible of communication, sometimes supported
by communication specific devices. MADSN (Qi et al., 2001) proposes changing the
paradigm for data integration from one where all the data are transmitted to a central
processing node, to another in which mobile agents travel to the nodes that collect data and
make there the processing, propagating only ellaborated data. TinyOS (Hill et al., 2000) is
focused on infrastructure. It is an operating system based on micro-threading, events and a
simple component model. A component has tasks, commands and handlers that are
executed in the context of an encapsulated fixed-size frame, and they operate on the state of
the component. Tenet (Gnawali et al., 2006) is a model of components and its supporting
libraries built on top of TinyOS. It proposes a two-layered architecture with simple sensors
and masters. Sensors get data and only make basic signal processing. Masters perform the
integration of data using more powerful computational devices. These examples are also
illustrative of the main limitations of these architectures:

• Constraining architecture. Most of times, the architecture includes a restricted component
model. Systems need to adhere strictly to its principles, which imply developing
specific interfaces and conforming to certain rules of behaviour. This is the case of
TinyOS (Hill et al., 2000) and Tenet (Gnawali et al., 2006).

• Lack of a complete vertical solution. Although these architectures are conceived to integrate
the solutions of several aspects and to give complete models on how to build a sensor
network, they usually do not cover the whole design. For instance, most of the
proposed examples (Estrin et al., 1999; Gnawali et al., 2006; Hill et al., 2000) are mainly
related with communication and sensor management issues, but they do not say
anything about the design of the sensor controllers. Even if as proposed in (Estrin et al.,
1999) controllers are in sensors, the problematic of their design is focused more on

www.intechopen.com

A Multi-Agent System Architecture for Sensor Networks

25

communications and data integration than on gathering data and the processing of the
raw signals.

• Lack of a supporting modelling language and development process. The proposed
architectures focus on design principles (Estrin et al., 1999; Qi et al., 2001) or
infrastructure (Gnawali et al., 2006; Hill et al., 2000). Nevertheless, this is not enough to
build a sensor network. Engineers need a development process that indicates them
what the relevant requirements to consider are, the design alternatives, and the steps to
follow in the development. The industrial use of such process demands customizable
modelling languages and automated support tools.

In order to address the previous limitations, some works have proposed multi-agent
systems (MAS) (Weiss, G., 2000) as the basis for the development of sensor networks. A
MAS is composed of a large number of agents and other computational artefacts. These
agents are social entities, which need to interact with other agents to achieve the satisfaction
of system goals. Agents are goal-oriented components, i.e. they rationally choose for
execution those actions that will potentially contribute to satisfy their objectives. These
choices depend on the information they have in their mental states about their environment,
past experiences and themselves. The works in this approach usually see sensors as devices
controlled by agents. This choice meets some of the aforementioned requirements of sensor
networks. Sensors are only responsible of data gathering and basic processing, while
computationally expensive processes are assigned to agents. This organization gives
freedom of choice to put the execution of data processing either mainly in the sensors or in
the controllers. Despite of this common feature, differences between approaches are
important. From the point of view of the goal of this work, they do not achieve a complete
architecture and process to design it either because they are too focused on some specific
issues (e.g. optimization of communications (Qi et al., 2001), only provide an architecture or
just a development process which is usually a general-purpose agent-oriented software
engineering (AOSE) methodology.
This work addresses these issues with a twofold solution: a standard architecture for sensor
networks able to deal with different design choices; a design language oriented to the kind
of abstractions appearing in it, and a development process for such systems. This chapter
focuses only on the first two elements, though it gives a brief introduction to the process. To
provide these elements, this work adopts as its basis a well-known general purpose AOSE
methodology, INGENIAS. INGENIAS (Pavón et al., 2005) covers the full-development cycle
from analysis to coding with a model-driven engineering (MDE) approach (Schmidt, D. C.
2006) supported by tools. The definition of its modelling language and tools is based on
metamodels. Metamodels are a common way of defining formally modelling languages in
MDE. The fact of having a formal definition of the language effectively constrains engineers
during design to build proper models, and it also allows automated processes for code
generation, both for tools and final systems. This allows its adaptation to new contexts by
means of extensions of its metamodel.
The architecture proposed in this work considers sensor networks composed by sensors and
controllers, therefore following common approaches with sensors and MAS (Pavón et al.,
2007). However, it extends both definitions in several ways. A sensor is defined as an
environment element with attached functioning parameters and an internal state, which can
be modified using its methods. The sensor is also able to perceive events coming from its
environment, and to raise events in order to notify changes in its state or that of its external
environment. The architecture considers sensor networks composed by devices (which

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

26

include sensors) and actors (i.e. agents). It extends common definitions for these concepts
(Pavón et al., 2007) in several ways.
A device is defined as an environment element with attached functioning parameters, an
internal state, and methods to work on that state. The device is also able to raise events in
order to notify changes in its state. A sensor is a device that perceives events coming from its
environment. Actors are similar to controllers in other approaches, but the architecture
introduces for them a neat separation of concerns with roles. A role is defined by its goals,
which are related with its responsibilities, and the capabilities (i.e. tasks) and resources (i.e.
devices and applications) it has to achieve them. Different role types have exclusive skills.
For instance, only device controllers can communicate with devices, and the group leaders
have the power to impose certain goals to the members of their groups. The current version
of the architecture includes several predefined role types, but this list can be extended to
address new needs of sensor networks, such as secure communications or resource
assignment (Tubaishat, M. & Madria, S. 2003). These roles are played by actors, which are
agents with common inherited capabilities about goal management and task execution.
Their specification focuses on how they implement the specific tasks related with their roles.
The architecture defines teams of roles and their interactions to perform certain tasks, for
instance, the setup or the dynamic addition of sensors.
The previous definitions of sensor, roles and agent partially match those of INGENIAS
external applications, roles, and agents. Nevertheless there are relevant differences. For
instance, INGENIAS external applications and sensors are both environment elements
characterized in terms of offered methods and produced events, but sensors extend
applications considering its internal state, and how this changes as a consequence of
external events and method execution. Thus, this research has modified the INGENIAS
metamodel to accommodate the new concepts and being able to use the INGENIAS tools.

2. Important

Although there are partial solutions for the design of sensor networks, their integration relies
on ad-hoc solutions requiring important development efforts. In order to provide an effective
way for their integration, this chapter proposes an architecture based on the multi-agent
system paradigm with a clear separation of concerns. The architecture considers sensors as
devices used by an upper layer of controller agents. Agents are organized according to roles
related to the different aspects to integrate, mainly sensor management, communication and
data processing. This organization largely isolates and decouples the data management from
the changing network, while encouraging reuse of solutions. The use of the architecture is
facilitated by a specific modelling language developed through meamodelling.

3. Agent development with INGENIAS

INGENIAS (Pavón et al., 2005) is a MDE methodology for the development of MAS. It
comprehends a specific modelling language, a software process and a support tool.
Following MDE principles, it defines its design modelling language with a metamodel. This
metamodel is the basis for the semi-automated development of its tool, and also guides the
definition of the activities of its software process.
MAS in INGENIAS are organizations of agents, which are intentional and social entities.
Agents use applications, which represent the environment and system facilities. The models

www.intechopen.com

A Multi-Agent System Architecture for Sensor Networks

27

to specify these MAS describe their environment, agents and interactions, both from the
static and dynamic perspectives. The modelling language also includes a simple extension
mechanism for agents through inheritance relationships: a new sub-agent type inherits all
the features of its super-agent type, but it can also extend or constrain them. Table 1 shows
the main INGENIAS concepts used by our approach.
The support tool of the methodology is the INGENIAS Development Kit (IDK). It provides a
graphical environment for the specification of MAS design models. The tool can be extended
with modules. The standard distribution includes modules for documentation and code
generation based on templates. A template is a text file annotated with tags. These tags
indicate the places where information from models has to be injected to get a proper
instantiation. The instantiated template can describe, for instance, the code for an agent in a
framework, the documentation of its goals, or the configuration files for its deployment.
Engineers can use code components in models to attach specific code to entities. For
instance, if engineers want to generate nesC (Gay et al., 2003) code, they first need to
develop a template with the general description of an agent in that language; then the code
generation module reads the design models of the sensor network, and for each agent
appearing in them, it generates its specific code for nesC instantiating the template (i.e.
replacing the tags with information from the models that includes the code components).

Concept Meaning

Agent An active element with explicit goals able to initiate actions involving other elements.

Role A group of related goals and tasks. An agent playing a role adopts its goals and must
be able to perform its tasks.

Environment
application

An element of the environment. Agents/roles act on the environment using its actions
and receive information from the environment through its events.

Internal
application

A non-intentional component of the MAS. Agents/roles use it through its actions and
receive information from it through its events.

Goal An objective of an agent/role. Agents/roles try to satisfy their goals executing tasks.
The satisfaction or failure of a goal depends on the presence or absence of some
elements (i.e. frame facts and events) in the society or the environment.

Task A capability of an agent/role. In order to execute a task, certain elements (i.e. frame
facts and events) must be available. The execution produces/consumes some
elements.

Interaction A basic communication action. Agents/roles send with them information to other
agents/roles.

Method A basic imperative operation of an application described by its parameters and result.

Frame fact An information element produced by a task, and therefore by the agents/roles.

Event An information element spontaneously produced by an application.

Interaction Any kind of social activity involving several agents/roles.

Group A set of agents/roles that share some common goals and the applications they have
access to. The behaviour of groups is specified with workflows involving its
components. These workflows indicate their tasks, the elements these
produce/consume and the agents/roles that carry them out. The workflows must
fulfil the group goals through the achievement of the individual agent/role goals.

Society A set of agents, roles, applications and groups, along with general rules that govern
their behaviour.

Environment The set of external applications with which the components of a MAS interact.

Table 1. Main concepts of the modelling language of the INGENIAS methodology.

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

28

There are two main reasons for the choice of INGENIAS in this work considering available
alternatives with agents (Vinyals et al., 2008). First, its modelling language is a suitable basis
for the extensions required for sensor networks. It considers concepts such as agents, roles
and environment applications that are required in our architecture, and covers the
interactions between system components with a high-level of detail. Second, INGENIAS
strictly adheres to MDE principles. It defines its modelling language with a metamodel that
is also the basis of the IDK development. This facilitates the modification of the language to
house additional concepts and propagating these changes to the tool. Given the complexity
of the development of sensor networks (Tubaishat, M. & Madria, S. 2003; Yick et al., 2008),
the availability of support tools (e.g. for coding, debugging or reporting) is mandatory to get
a high productivity. Nevertheless, the IDK has the shortcoming of using an ad-hoc approach
for transformations based on modules and templates, although there are ongoing efforts to
support more standard approaches (García Magariño et al., 2009). The development process
proposed in our work adopts standard transformation languages (Sendall et al., 2003) to
manipulate models and code. This has two key advantages. First, the tools to develop and
run these transformations are already externally available, so there is no need of new
developments. Second, these languages focus on the description of the transformations,
which facilitates their understanding as this is not blurred with low-level details about
processing design models (e.g. reading the input file, managing syntax errors or generating
the output file).

3.1 An agent-based modelling language

The design of MAS to manage sensor networks in the presented approach uses
specializations of general agent concepts. The purpose of these specializations is acting as a
guide for engineers: they indicate the concepts that should appear in the specifications and
how they are related. The main extensions of our approach to the INGENIAS (Pavón et al.,
2005) conceptual framework appear in Fig. 1. with their main relationships. The mechanism
used for the metamodel extension is its direct modification (Cook, S., 2000). Note that
profiles cannot be used since this is not an UML extension, and INGENIAS limits
inheritance to agents.
Fig. 1. represents elements of the metamodel of the modelling language in our approach.
Nodes and links respectively represent meta-entities and meta-relationships. Meta-
relationships with triangles and diamonds are standard (i.e. non specific of INGENIAS)
representations of inheritance and aggregation (i.e. whole-part link) relationships. Numbers
in the ends of relationships are cardinality indications. The stereotypes of nodes
(represented between angle brackets) are the names of the INGENIAS meta-entities that our
meta-entities extend. The meta-entities have the features (e.g. attributes and relationships) of
the extended meta-entities and add new features and constraints. For instance, at the meta-
modelling level, there are meta-entities device and controller that are modifications of the
INGENIAS meta-entities environment application and role respectively. These meta-entities
are related with a meta-relationship WFUses, which is restricted to connect this pair of meta-
entities. These meta-elements are instantiated in models. For example, a model can contain
instances of the device meta-entity, which can only be related with instances of the
controller meta-entity through instances of the WFUses meta-relationship. The rest of the
section discusses the concepts present in Fig. 1.
A sensor network in the proposed architecture distinguishes between reactive and active
components. Reactive components receive requests or notifications of events, and generate

www.intechopen.com

A Multi-Agent System Architecture for Sensor Networks

29

Fig. 1. Partial metamodel of agent-based concepts for sensor networks.

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

30

answers for them that only depend on the input and some internal state if this exists. Active
components take initiatives on their own that contribute to satisfy the system goals. The
basic type of reactive component is the resource, and the actor of active component. Actors
are a specific type of agents that use resources. Their work is organized through the roles
they played. Roles represent prototypical aspects of the activities in the network. A role
indicates the goals it pursues and the available elements to achieve them, which can be
information, capabilities and resources.
A resource is an external application. Its specification is known, but neither its behaviour nor
its interfaces can be modified. The only way to interact with it is what their external/public
interfaces allow. The actions available for this external manipulation of resources are
represented by external methods. These methods can change the internal state of the resource,
i.e. modification method, or just consult it, i.e. consult method. Internal methods can be used to
provide information about the internal behaviour of the resource with specification
purposes, but other components of the MAS cannot invoke them. A resource may have
functioning parameters that influence its behaviour. These parameters can determine for
instance, the threshold of certain operations or the initially available energy. Resources
represent different elements appearing in sensor networks. A utility is a stateless resource. It
corresponds to a computational facility available for the network, such as data
normalization, combination of different signals or information conversions. Devices are
stateful resources able to generate events called notifications. The state is characterized in
terms of frame facts, which are the units of information in INGENIAS. Devices offer specific
methods to manage the subscription of other components to their notifications. A subclass
of devices is sensors, which generate events but are also able to perceive them in the
surrounding environment. Thus, the behaviour of a sensor is characterized in terms of a
state machine that changes its state according to the execution of methods and the
appearance of events from the environment. A channel is a particular type of sensor intended
for communication. It is able to send and receive information over a medium and perform
basic tests on it.
These resources are used by manager roles to provide services in sensor networks. The
language distinguishes two types of managers depending on if they work with devices or
utilities.
The controller is the role with access to devices. According to the rights it has over it, there
are two types of controllers. A passive controller can only consult the device state with consult
methods and perceive those events to which it subscribes. The active controller is able to
make requests to change the device state using its modification methods. In this way,
several access levels can be granted to controllers of the same devices.
The expert is the role in charge of utilities. This role specifies the knowledge and skills
required to manipulate an utility, as well as how to obtain additional information that can
be extracted from sequences of data manipulations over time. For instance, an expert can
store information about temporal series of signals to draw conclusions about trends.
Another concept central in the proposed solution is that of team. A team is a hierarchical
INGENIAS group that comprehends a leader role and several member roles. The leader has
the right of posing new commands to the members of its team, where a command is a kind of
objective. Roles receiving the commands must include them in their agenda, but their
management of them depends on their design. The leader can be also the provider of a
given service for all the members of its team. Teams facilitate setting up basic groups of
collaborating roles. For instance, there are groups for the initialization of the network,

www.intechopen.com

A Multi-Agent System Architecture for Sensor Networks

31

solving issues of quality of service, communications or data processing. These teams
constitute design blocks that can be reused in different specifications.
The previous roles are played by roles and actors. When a role plays another role, it adds the
features of that role to its own ones. The actors are agents with common skills for the
management of goals (e.g. decomposition, checking their state or removing when satisfied),
planning for their achievement (in terms of the available information, resources and
capabilities) and basic communications (both with agents and resources). When an actor
plays a role, it fulfils the standard behaviours specified by the role, that is, it implements its
capabilities, has actual access to its resources, and manipulates the related goals and
information. The actor can have additional elements beyond those of its roles. Note that an
actor manipulates all these elements globally. For instance, the satisfaction of a goal linked
to a certain role can be the result of the information produced with a capability related with
another role.
The previous elements run in containers, which represent deployable computational devices.
A container has basic processing capabilities that allow the execution of agents, and at least
one channel for communication. Additionally, it can include an arbitrary number of
resources. Note that, given the relationships and constraints in the metamodel, a device and
its managers run in the same container.
In order to provide a simple extension mechanism for the language, this approach also
generalizes the INGENIAS inheritance relationship. It is not constrained to agents but can be
applied to any concept with an equivalent meaning: a sub-concept inheriting from a super-
concept has all its features but it can extend or constrain them with additional models.

4. Architecture for sensor networks

The metamodel for sensor networks just defines the modelling primitives that can be used
when specifying these networks as MAS. However, it cannot specify how these elements
should interact to provide the expected functionality. The architecture provides this
information. This section focuses on its description through its main teams. The list is not
exhaustive, as more teams can be specified to address new needs. The description of teams
includes their purpose, and the characterization of their leader and member roles regarding
their responsibilities. Note that when talking about roles performing actions, it is really the
actors playing those roles that perform the actions, as roles are just functional abstractions.
The initialization team is aimed at setting up all the components of a container and providing
them with the initial information required for their proper functioning. Its team leader is the
initializer and its members play the role of targets of the initialization. The initializer creates
all the actors in its container and sends them the information about the managers they play.
Then, each manager receives a list of the assigned resources, and the notifications and
external methods it can use. If required, it can also obtain information to initialize the
resources. Besides, each manager receives information about all the teams it belongs to,
including the type of team, its leader and the role of that manager in it. Note that these
teams can involve roles whose actors are not running in the same container.
An information process team focuses on the generation of information from the data of
devices. Its team leader is a consumer for that information. It organizes the gathering and
processing of data. Team members play the role of providers of information and can be
passive controllers or experts. The activity of these teams can begin either with a request
from the customer or with a notification from a device. In the second case, a passive

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

32

controller provider captures an event raised by a device and notifies it to its consumer. From
this point forward, both scenarios are the same. The consumer may send additional requests
to its manager providers: to passive controllers in order to collect additional data; to experts
to further manipulate these data before their use. Note that with this approach, the
consumer itself can be regarded as a manager that provides services of a higher-level, as it
encapsulates the interactions with a group of resources and its managers.
Communication teams refine the INGENIAS communication schema, as they give further
details about how interactions are transmitted between different actors and roles. They
manage communication through channels. The communicator is both the team leader and the
active controller of the channel. The rest of the members of the team play the role customers
in the communication. All the customers in a communication team are able of direct
communication between them, but they need to ask its communicator for external
communication outside the team. These teams encapsulate the use of the communication
infrastructure and related algorithms, which makes transparent the communication
capabilities of other network elements from the design point of view. Engineers only need to
guarantee that each role or actor that needs to communicate belongs to a communication
team in order to have access to a communicator. In order to optimize communications (e.g.
latency or energy consumption) and perform message routing, communicators need to build
a rough map of the nearby communicators. Containers have a limited range of
communication, so some messages may need several hops to reach its final destination. To
build the map, a communicator broadcasts a request of information amongst other
communicators in range. Available communicators answer this request with information
about the features of their service, and take note of the sending communicator.
Load balancing teams are intended to keep the quality of service in the network. Sensor
networks face to several situations that can require their dynamic reconfiguration. Some of
them were outlined in the introduction, such as failure of sensors or communications, but
also sensors overloaded with requests or replacement of the failing customer for some data.
Although different, all these situations are solved through the collaboration of two sub-
teams. First, there is a failure notification team where a team leader referee controls a group of
team member watchers that can warn of potential failures in the behaviour of some observed
elements of the network. For instance, a controller can be the watcher of a sensor: when this
sensor depletes its energy, it does not longer answer the requests of its watcher, which raises
to its referee the information about the failure. The referee evaluates that information and if
it determines that there is need of acting, a repairer team begins working. A repairer team
has as leader a dispatcher governing a set of referees and initializers. When a dispatcher
receives the notification of a failure, it looks for some replacement. The replacement can be
obtained either asking other referees in the team for a component with similar features or
asking an initializer to create a new one if possible. For instance, in the case of failure of a
sensor, the replacement could be another sensor in a container near the location of the
original one, but if an expert is failing, a new one can be created and assigned to the utilities
of the original one. The dispatcher informs of the replacement to the involved referees,
which send to the initializers in their containers the information to update. For instance,
adjustments need to be made in the state of the replacement or the teams depending on it.
Note that any container must have running at least two teams. The initial setup requires one
initialization team, and integration with other elements of the network a communication
team. Executing these teams requires at least one actor which plays the initializer and
communicator roles.

www.intechopen.com

A Multi-Agent System Architecture for Sensor Networks

33

The architecture involving these teams pursues satisfying three main objectives. First, it
facilitates the design of sensor networks decoupling the different responsibilities in roles
and teams. Second, it looks for networks that can semi-autonomously reconfigure
themselves to address new situations, a concept present in current research in autonomic
computing (Kephart, J. O. & Chess, D. M., 2000). Third, it achieves the extensibility of the
design of systems to control sensor networks through new teams.

5. Development process

In this chapter a simple model-driven development process customized is included to

develop the control system of sensor networks following the architecture in section 4. A

model-driven process focuses the development on design models. Engineers refine these

models from abstract representations to those models closer to the intended target platform,

and finally to code. The refinements are partially supported by automated transformations.

The process proposed in this approach is based on the software process of the INGENIAS

methodology (Pavón et al., 2005). It adds to the INGENIAS process several specific activities

aimed at identifying the elements required in a sensor network. These elements are those

defined in the modelling language and organized in the teams of the architecture. Fig. 2.

shows the resulting process. Activities 1-7 are specific of the current approach, while

activities 8-13 summarize INGENIAS activities. The process takes as input a previous

analysis of the data required as output of the network and the sensors able to provide them,

and produces as output the code of the control system for the sensor network.

The design of the network begins with activity 1. Engineers determine the containers of the

network, i.e. the computational devices able to execute code and transmit information.

These are usually the sensors, but also additional devices such as computers or

communication facilities can be considered here. This activity also identifies the resources:

the sensors that gather data from the environment; the utilities that represent services that

actors use to process data. The activity distinguishes the two aspects of the sensor, as

resource and container. Note that the modelling language provides different concepts for

these aspects, and therefore assign to them particular features that must be considered in the

design models. When these elements have been identified, engineers assign them

initialization and communication teams. As discussed in section 4, these teams are

mandatory for every container.

Decision 2 and activities 3-4 are intended to organize complex processing and integration of

data. According to the architecture, information process teams are responsible of these

activities. Engineers identify in decision 2 and activity 3 specific data that must be generated

in the network. For each group of data, activity 4 designs the corresponding team. First,

engineers discover the sensors that provide the source data. For each sensor, they must

assign at least one active controller and a passive one. The first one is required in the

initialization, and the second one to provide access to sensor data. Next, engineers must

identify the data transformations required to get the final information. Some of them are

achieved using utilities of the network. For these utilities, engineers assign an expert.

Finally, the team is composed by the passive controllers of the sensors and the experts of the

utilities playing the role of providers, and a customer to integrate and consume the

information. The identification of this kind of teams finishes when all the complex

calculation of data has a team assigned.

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

34

Fig. 2. Process for the development of sensor networks.

Decision 5 and activities 6-7 are intended to specify the teams that manage the dynamic
adaptation of the network. Engineers begin this design with decision 5, where they find out
what the elements are that can fail or be incrementally set up or deployed during the
working of the network. This identification considers resources, roles and actors. For every
element identified in this decision, activity 6 carries out an analysis regarding its potential
replacements, and how they can be located and evaluated to find the best suited if several
are available. Activity 7 designs the specific team related with this replacement. It includes a
watcher that monitors the element. In the case of a device it is a passive controller, for a
utility it is an expert, and for a role or agent it can be a customer that communicates with it.
The team also needs a referee that evaluates when the failure needs to be notified for a
potential replacement. The repairer team includes referees related with the same type of
elements and similar features. For instance, for sensors they can be referees of nearby
sensors and for roles other agents in the same container able to work with the same
resources. As an alternative, initializers can be used to set up new roles or agents in these
teams. Each of these teams must also identify its dispatcher, which selects the best
alternative for a required replacement.
After these activities, engineers have available PIM of the resulting system according to the
architecture. These PIM describe the devices, agents and roles, the information they

www.intechopen.com

A Multi-Agent System Architecture for Sensor Networks

35

exchange, and their interactions; they do not contain details on the final target platform, for
instance about energy levels or low-level control commands for the sensors. Activities 8-13
follow the INGENIAS process to refine these models and generate the final code of the
control system.
Activity 8 adds several INGENIAS PIM to the MAS specifications. Organization models
define agents and groups outside the architecture, and assign to the groups workflows that
describe their work. This allows refining the teams when complex processing of data needs
further specification. Agent models refine actors and roles with additional goals, capabilities
and information. These models also establish the pieces of information whose appearance
determine when a goal is satisfied or failed. Tasks/Goals models map tasks with the goals
that satisfy them, and hierarchically decompose goals and tasks into sub-elements.
Interaction models describe actor interactions in terms of goals pursued, information
exchanged and tasks performed. These models provide the details of the previous
architectural design, though they are not always required. For instance, if engineers do not
need to refine teams beyond what is said in the architecture, they do not use organization
models.
Activity 9 and 10 develop the models required for the final target platform. Activity 10

develops the PM corresponding to the target platform. These PM include information about

how to translate general concepts to specific elements in the platform. As explained in

section 3, INGENIAS uses templates to represents PM. In case that these PM are available

from previous projects, activity 10 can be omitted. Activity 9 develops the PSM of a specific

design for the target platform. The PSM provide two main types of information. First,

resources include their functioning parameters for the target platform, which can describe

their limits about energy, memory or computational power. Second, engineers provide with

code components attached to modelling entities the code specific for them. That is, part of

the code required for the final system cannot be extracted from models, as models abstract

the specific low-level details of the behaviour of systems. For instance, there are not

modelling primitives to describe complex algorithms, and templates only contain general

code for concept types in a platform. Engineers can include the remaining information

attaching INGENIAS code components to the elements in models.

Activity 11 considers the development of the transformations that support the semi-

automated refinement of PIM to PSM in activity 12, and the generation of code from PSM in

activity 13. In the case of an INGENIAS development, transformations are implemented as

IDK modules. These modules support model transformations and model-to-text

transformations. Model transformations are useful to represents standard refinements of

model concepts. For instance, each actor needs several goals to manage its planning cycles

(e.g. collect information, discard non-achievable goals, look for achievable goals), but these

are standard and engineers do not need to write them for each actor; a transformation can

automatically generate these goals for the available actors. The best-known example of

model-to-text transformation is code generation. In this case, the IDK includes a module for

this purpose in its standard distribution. For a given specification and target platform, this

module operates as follows: (1) it identifies the templates for the concepts present in the

specifications and the target platform; (2) it traverses the templates looking for their tags; (3)

when it found a tag, it replaces the tag with information from the models, which can be the

content of a code template; (4) it returns the instantiated template as its output, which is the

code of the concepts. In this way, changing the target platform for a given design only

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

36

requires using different PM (i.e. code templates) and changing the attached code

components.

Note that though Fig. 2. shows a sequence of activities, a true development needs to carry
out several iterations of these activities. For instance, engineers can discover when they are
developing their PSM in activity 9 that some teams are missed, and they will need to return
to activities 2-7. Moreover, activities 1-7 need further refinement to provide more guidance
depending on specific application contexts.

6. Related work

This section compares the proposed approach with related work in sensor networks and
MAS. The introduction already discussed different perspectives on the design of sensor
networks. This section follows this classification and distinguishes between integral
solutions with architectures and partial solutions for specific aspects. Among architectures,
there are examples focused on the infrastructure and others on the high-level design of the
network. Transversal to these approaches, some researchers have proposed the use of MAS
for the development of the related control systems.
Architectures for sensor networks focused on infrastructure provide a platform with basic
services for the sensor network. This platform has a component model that those elements
to integrate in the network must fulfil. In this group can be included operating systems (e.g.
TinyOS (Hill et al., 2000) and Contiki (Dunkels et al., 2000)), programming languages (e.g.
nesC (Gay et al., 2003)) and middleware (e.g. MORE (Wolff et al., 2007), RUNES (Costa et al.,
2005), SMEPP (Caro-Benito et al., 2009) and Tenet (Gnawali et al., 2006)). These works and
ours appear at different levels of abstraction when considering the development of sensor
networks and their control systems. According to MDA (Kleppe et al., 2003), the models
based on the architecture proposed in this work are PIM that use highly abstract primitives
to model sensor networks. These abstract elements are mapped to the constructions
available in these implementation platforms. For instance, the concept of team in our
architecture can be partially supported in SMEPP (Caro-Benito et al., 2009) with the concept
of group, which provides mechanisms for authentication and authorization, communication

between agents can be implemented with μSOA messages of MORE (Wolff et al., 2007). The
information of these platforms would appear in our approach as PM. Engineers would
refine the PIM of our architecture in that provides the information for that specific
implementation. This refinement would be partly implemented with automated

transformations from PIM to PSM, for instance to create the structure of μSOA messages,
and partly manual, for instance the actual content of messages. If required, abstract
components of these architectures could appear in the architecture of this work as additional
roles and teams. The code generation module of the IDK would generate the code for the
control system from the final PSM and PM.
Architectures considering the high-level design of the network have adopted usually the
form of guidelines. Either they just give some abstract design principles or they consider
also a development process. From the point of view of the design principles, the flexibility of
the proposed architecture allows it adopting the principles underlying a variety of these
approaches. For instance, carrying out the processing of data as close as possible to their
sources (as (Qi et al., 2001) recommends) means that the actors playing the roles of
information process teams should run in the same container, and moving that processing to
more powerful computational devices (as proposed in (Gnawali et al., 2006)) splits these

www.intechopen.com

A Multi-Agent System Architecture for Sensor Networks

37

actors in different containers. In both cases the design of roles and teams is the same, and
only the initialization information actually changes. The proposed architecture is not
intended however for mobile agents as those in (Qi et al., 2001; Tong et al., 2003). Actors in
the proposed architecture are not able of redeploying in a container different from that
where the initializers create them. However, the initializers could be modified to allow this
kind of behaviour. It would be enough to allow initializers to collect information about the
actor that wants to migrate (e.g. current state, teams or available resources), and send it to
the target container where another initializer would use it to create another actor with the
same data. Of course, this migration would also demand checking that the resources and
managers that the actor needs are available in the target container.
This section has already mentioned works based on agents (Botti et al., 1999; Hla et al., 2008;
Jamont, J. P. & Occello, M., 2007; Pavón et al., 2007; Qi et al., 2001), but some of them deserve
further discussion given the similarities with our work. (Hla et al., 2008) establishes some
guides for the design of MAS for sensor networks and uses some concepts common with
our approach, as controllers, sensors and providers. They also consider concepts that our
approach can incorporate, such as directory facilitators to refine the location of sensors with
certain features. However, these roles are informally defined in terms of their
responsibilities and the set is closed. In this sense, our approach with a specific modelling
language and the possibility of defining teams facilitates customization. Besides, (Hla et al.,
2008) does not consider a development process for control systems. (Botti et al., 1999;
Jamont, J. P. & Occello, M., 2007; Pavón et al., 2007) present development process for control
systems. ARTIS (Botti et al., 1999) is a methodology for holonic manufacturing systems that
includes the use of sensors. It considers aspects of real time, but ignores issues such as
limited resources. (Jamont, J. P. & Occello, M., 2007) is tailored for sensor networks and has
been validated with real projects. Though it considers automated generation of code, it does
not offer a standard process for it, as our approach does with MDE. This makes more
difficult reusing available infrastructure for development and reusing the design models of
previous projects. (Pavón et al., 2007) deserves special mention as it also considers
INGENIAS for the design of sensor networks. As a matter of fact, both approaches represent
complementary points of view. The approach proposed in this work extends the modelling
language of INGENIAS with new concepts, and establishes patterns and guidelines to
address the design of these networks with its architecture. These tasks correspond to
activities 1-7 in Fig. 2. Since these models are INGENIAS models, their refinement to the
running code can follow any suitable INGENIAS development process. These tasks
correspond to activities 8-13 in Fig. 2. In particular, this refinement can follow (Pavón et al.,
2007), which is targeted for sensor networks. Thus, these works can be seen as part of an
ongoing effort to provide engineers with a tailored methodology and development process
for sensor networks.

7. Conclusions

The presented approach is intended to facilitate the high-level design of sensor networks
based on MAS. It includes an agent-oriented modelling language with specific extensions
and an architecture describing how these elements interact to achieve the standard
functionalities of these networks.
The modelling language is built around three main concepts. Resources are the passive
elements in the network. They are modelled in terms of their available methods. Their sub-

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

38

types include sensors and data processing utilities. Sensors add to resources a state and
work with events, both perceived from their environment and raised to inform to their
controllers. These abstractions cover the most common uses of sensors in previous works.
The active elements of the network are designed as roles. Roles are common abstraction in
MAS defined in terms of their goals, capabilities to achieve them, and their resources and
information. Managers are in our approach the roles governing resources. They can have
different access rights in order to organize the use of the resources. The final element of the
language is teams, which are hierarchical groups of roles aimed at performing some
collaborative activities in the network. Actors running in containers implement the roles.
The architecture works with these concepts to specify teams that define standard aspects of
behaviour in these networks. It identifies teams for the initialization or redeployment of
containers, the management of data (including collection, processing and integration),
communications and load balancing (or adaptation of the network to changes in the
environment or its elements).
The proposed solution is intended to be flexible in several ways. First, it allows
accommodating new or modified concepts for specific needs through changes in its
metamodel. Using model-driven techniques, engineers propagate these changes to the
supporting tools. Second, the specialization of concepts with inheritance relationships and
the organization of systems around teams cover a variety of approaches, so it allows
incorporating existing research in the area. Third, the use of a MDE approach facilitates
reusing the knowledge present in the definition of teams. These teams can become the basic
building blocks for sensor networks with MAS, as their models can incorporate information
for the final code generation. Only models and transformations related with the control of
specific sensors and particular manipulations of data need to be replaced in the system. If
new teams were required, they could be modelled as extensions of concepts presents in the
architecture as done with standard teams.
The main concern in the application of the proposed approach is the difficulty to model the
low-level details of sensor networks, such as energy consumption of routing algorithms for
messages. At the moment, the only mean to do that is attaching code snippets to entities in
design models for the code generation. There are plans to extend the modelling language
with additional primitives to describe some low level issues. For instance, methods can be
modelled with additional state machines, and certain standard data transformations can be
added as instances of the methods of utilities. Moreover, this work has applied the standard
INGENIAS development process for part of its process.

8. References

Akyildiz, I. F., Melodia, T., Chowdhury, K. R. (2007) A survey on wireless multimedia
sensor networks. Computer Networks 51(4), pp. 921-960.

Baronti, P., Pillai, P., Chook, V. W. C., Chessa, S., Gotta, A., Hu, Y. F. (2007) Wireless sensor
networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards.
Computer Communications 30(7), pp. 1655-1695.

Botti, V., Carrascosa, C., Julián, V., Soler, J. (1999) Modelling agents in hard real-time
environments. In Proceedings of the 9th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW’99), Lecture Notes in
Computer Science 1647, pp. 63-76.

Budinsky, F. (2003) Eclipse Modelling Framework: Developer’s Guide. Addison Wesley.

www.intechopen.com

A Multi-Agent System Architecture for Sensor Networks

39

Caro-Benito, R. J., Garrido-Márquez, D., Plaza-Tron, P., Román-Castro, R., Sanz-Martín, N.,
Serrano-Martín, J. L. (2009) SMEPP: A Secure Middleware For Embedded P2P. In
Proceedings of the 2009 ICT Mobile Summit, pp. 1-8.

Casbeer, D. W., Kingston, D. B., Beard, R. W., McLain, T. W. (2006) Cooperative forest fire
surveillance using a team of small unmanned air vehicles. International Journal of
Systems Science 37(6), pp. 351-360.

Cook, S. (2000) The UML family: Profiles, prefaces and packages. In Proceedings of the 3rd
International Conference «UML» – The Unified Modelling Language (UML 2000),
Lecture Notes in Computer Science 1939, pp. 255-264.

Costa, P., Coulson, G., Mascolo, C., Picco, G. P., Zachariadis, S. (2005) The RUNES
middleware: A reconfigurable component-based approach to networked embedded
systems. In Proceedings of the 16th Annual IEEE International Symposium on
Personal Indoor and Mobile Radio Communications (PIMRC’05), vol. 2, pp. 806-
810.

Dunkels, A., Gronvall, B., Voigt, T. (2004) Contiki - A Lightweight and Flexible Operating
System for Tiny Networked Sensors. In Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks (LCN 2004), pp. 452-462.

Estrin, D., Govindan, R., Heidemann, J., Kumar, S. (1999) Next century challenges: Scalable
coordination in sensor networks. In Proceedings of the 5th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MOBICOM
1999), pp. 263-270.

Gay, D., Levis, P., Von Behren, R., Welsh, M., Brewer, E., Culler, D. (2003) The nesC
language: A holistic approach to networked embedded systems. In Proceedings of
the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation (PLDI 2003), pp. 1-11.

Gnawali, O., Jang, K. Y., Paek, J., Vieira, M., Govindan, R., Greenstein, B., Joki, A., Estrin, D.,
Kohler, E. (2006) The Tenet architecture for tiered sensor networks. In Proceedings
of the 4th International Conference on Embedded Networked Sensor Systems
(SenSys 2006), ACM Press, pp. 153-166.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K. (2000) System architecture
directions for networked sensors. ACM Sigplan Notices 35(11), pp. 93-104.

Hla, K. H. S., Choi, Y., Park, J. S. (2008) The multi agent system solutions for wireless sensor
network applications. In Proceedings of the 2nd KES Symposium on Agent and
Multi-Agent Systems – Technologies and Applications (KES-AMSTA 2008), Lecture
Notes in Computer Science 4953, pp. 454-463.

Jamont, J. P., Occello, M. (2007) Designing embedded collective systems: The DIAMOND
multiagent method. In Proceedings of the 19th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2007), pp. 91-94.

Kephart, J. O., Chess, D. M. (2003) The Vision of Autonomic Computing. Computer 36(1),
pp. 41-50.

Kleppe, A. G., Warmer, J., Bast, B. (2003) MDA Explained: The Model Driven Architecture -
Practice and Promise. Addison-Wesley.

García-Magariño, I., Rougemaille, S., Fuentes-Fernández, R., Migeon, F., Gleizes, M. P.,
Gómez-Sanz, J. J. (2009) A Tool for Generating Model Transformations By-Example
in Multi-Agent Systems. In Proceedings of the 7th International Conference on

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

40

Practical Applications of Agents and Multi-Agent Systems (PAAMS 2009),
Advances in Soft Computing 55, pp. 70-79.

Lorincz, K., Malan, D. J., Fulford-Jones, T. R. F., Nawoj, A., Clavel, A., Shnayder, V.,
Mainland, G., Welsh, M., Moulton, S. (2004) Sensor Networks for Emergency
Response: Challenges and Opportunities. IEEE Pervasive Computing 3(4), pp. 16-
23.

Object Management Group (OMG) (2006) Meta Object Facility (MOF), Core Specification,
Version 2.0. January 2006, http://www.omg.org

Object Management Group (OMG) (2009) OMG Unified Modeling Language (OMG UML),
Superstructure, V2.2. February 2009, http://www.omg.org

Pavón, J., Gómez-Sanz, J., Fernández-Caballero, A., Valencia-Jiménez, J. J. (2007)
Development of intelligent multisensor surveillance systems with agents. Robotics
and Autonomous Systems 55(12), pp. 892-903.

Pavón, J., Gómez-Sanz, J. J., Fuentes, R. (2005). The INGENIAS Methodology and Tools. In
Henderson-Sellers, B., Giorgini, P. (eds.). Agent-Oriented Methodologies, Idea
Group Publishing, chapter IX, pp. 236–276.

Qi, H., Iyengar, S. S., Chakrabarty, K. (2001) Multiresolution data integration using mobile
agents in distributed sensor networks. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews 31(3), pp. 383-391.

Schmidt, D. C. (2006) Model-Driven Engineering. IEEE Computer 39(2), pp. 25-31.
Sendall, S., Kozaczynski, W. (2003) Model Transformation: The Heart and Soul of Model-

Driven Software Development. IEEE Software 20(5), pp. 42-45.
Son, B., Her, Y., Kim, J. G. (2006) A design and implementation of forest-fires surveillance

system based on wireless sensor networks for South Korea mountains.
International Journal of Computer Science and Network Security 6(9B), pp. 124-130.

Tong, L., Zhao, Q., Adireddy, S. (2003) Sensor networks with mobile agents. In Proceedings
of the IEEE Military Communications Conference (MILCOM 2003), vol. 1, pp. 688-
693.

Tubaishat, M., Madria, S. (2003) Sensor networks: an overview. IEEE Potentials 22(2), pp. 20-
23.

Vinyals, M., Rodriguez-Aguilar, J. A., Cerquides, J. (2008) A survey on sensor networks from
a multi-agent perspective. In Proceedings of the 2nd International Workshop on
Agent Technology for Sensor Networks (ATSN 2008), pp. 1-8.

Weiss, G. (ed.) (2000) Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press.

Wolff, A., Michaelis, S., Schmutzler, J., Wietfeld, C. (2007) Network-centric Middleware for
Service Oriented Architectures across Heterogeneous Embedded Systems. In
Proceedings of the 11th International IEEE Enterprise Distributed Object
Computing Conference (EDOC 2007), Middleware for Web Services Workshop, pp.
105-108.

Yick, J., Mukherjee, B., Ghosal, D. (2008) Wireless sensor network survey. Computer
Networks 52(12), pp. 2292-2330.

www.intechopen.com

Multi-Agent Systems - Modeling, Control, Programming,

Simulations and Applications

Edited by Dr. Faisal Alkhateeb

ISBN 978-953-307-174-9

Hard cover, 522 pages

Publisher InTech

Published online 01, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent

systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic

system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous

and proactive software components. Multi-agent systems have been brought up and used in several

application domains.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

María Guijarro, Rube ́n Fuentes-Ferna ́ndez and Gonzalo Pajares (2011). A Multi-Agent System Architecture for

Sensor Networks, Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications, Dr.

Faisal Alkhateeb (Ed.), ISBN: 978-953-307-174-9, InTech, Available from:

http://www.intechopen.com/books/multi-agent-systems-modeling-control-programming-simulations-and-

applications/a-multi-agent-system-architecture-for-sensor-networks

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

