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1. Introduction 

In tandem with the penetration of the Internet, many information systems are connected to 
large-scale computer network systems or multi-processor systems. These distributed 
systems cooperate, negotiate, and solve problems by exchanging information each other. A 
multi-agent system (MAS) (Weiss, 1999) attracts attention as a solution to competition or 
cooperation in distributed systems. It is necessary that multi-agent systems operate for a 
long time without human’s support from the viewpoint of dependable distributed system. 
Some techniques (Chiang & Chen, 1994) that assume failures beforehand have been 
developed for this problem. These techniques need another integrated system that 
managements all the agents for fault diagnosis. It is practically impossible to apply them to 
large-scale distributed systems.  
We need a technique detecting faults autonomously in multi-agent systems. A self-
diagnosable algorithm (Kohda et al., 1997) has been proposed for distributed systems. In 
this conventional simple highly structured system, all agents mutually diagnose all other 
agents. It has a problem that the more agents are included in a system, the more 
communication loads increase. To solve the problem, this paper proposes a new self-
diagnosable multi-agent system that mitigates communication loads in the multi-agent 
system. Our method introduces middle agents that do not interaction with basic client 
agents to mitigate the communication traffics between agents. 

2. Conventional self-diagnosable algorithm 

This section describes a conventional self-diagnosable algorithm, which we call it as a 
simple highly structured system. 

2.1 Faulty agent 

An agent may malfunction in a multi-agent system and such an agent is called a faulty 
agent. Our research deals with the following three kinds of failure (Fedoruk & Deters, 2001): 
a. Crash failure 
b. Byzantine failure 
c. Communication failure. 
Where, crash failure refers to an agent that is stopped by a processor fault or shortage of 
system resources. Byzantine failure is a fault that does not assume faulty agents’ behavior, 
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and it is caused mainly by unexpected state transitions or program bugs. Communication 
failure drops out all or some part of messages, or it cannot establish communication link 
between agents. 
If these failures occurred simultaneously at two or more agents, a multi-agent system will 
malfunction because of interaction among agents. When faulty agents exist in a system, 
reliability of the system cannot be maintained without identifying the faulty agents and 
processing them properly. 

2.2 T-fault one-step diagnosable system 

Mutual diagnosis in a self-diagnosable algorithm (Preparata et al., 1967) is expressed by a 

directed graph as shown in Fig. 1. In this figure, a unit and testing correspond to a vertex 

and directed arc respectively. The system is defined as a directed graph G = [V, E], where V 

= {v} is a set of vertexes (units) and E = {(u, v)} is a set of directed arcs (u, v). The unit 

corresponding to starting point u and terminal point v of directed arc (u, v) are called a 

testing unit and tested unit respectively.  

A test result a(u, v) is defined as shown in Table 1, and let it be a weight of the directed arc. 

This algorithm premises that it does not trust the test result if the testing unit is out of order 

and each unit does not test itself. As another self-diagnosable algorithm, t-fault one-step 

diagnosable system (Hakimi & Amin, 1974; Kohda, 1994) is proposed that can detect 

simultaneously multiple faults of up to t among n units from mutual diagnostic results of 

the system (hereinafter referred to as t-OD system). 

2.3 Highly structured T-OD system 

Definitions of a highly structured system and its characters as a t-OD system are described 
below: 
[Definition 1] A system G = [V, E] is a highly structured system if an arbitrary unit v (v∈V) 
of the system G has a subsystem H(v; ǂ, ǃ) expressed in Fig. 2.  
 

u v 
0 or 1 

Testing Unit Tested Unit 

arc(u, v) 

Test Result a(u, v) 
 

Fig. 1. Basic system component 

 

Tested Unit  v 
Testing Unit  u 

Fault-free Faulty 

Fault-free 0 1 

Faulty * * 

 *: don’t care 

Table 1. Test result a (u, v) 
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Fig. 2. A subsystem H(v; ǂ, ǃ) 

 

 

Fig. 3. Six test result patterns of type Pk  in H(v; ǂ, ǃ) 

The subsystem H(v; ǂ, ǃ) consists of a kernel unit v, (2ǂ+ǃ) other units, and (2ǂ+ǃ) testing 
links, where ǂ is the number of testing links of length 2 and ǃ the number of testing links of 
length 1. A highly structured system has the following character 1.  
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[Character 1] If every unit v (v∈V) of a system G = [V, E] has a subsystem H(v; ǂ, ǃ) of the 
definition 1 and 

 ǂ+ [ǃ/2] ≥ t , (1) 

then G is a t-OD system. 
Where, t > 0 and [x] means a maximum integer not exceeding x. 
[Definition 2] A highly structured system satisfying (1) is called a highly structured t-OD 
system. 
The following character 2 is suggested as an analyzing method of highly structured t-OD 
systems. 
[Character 2] For an arbitrary unit v (v∈V) of a system G = [V, E] that satisfies the character 
1, v is normal if and only if the following (2) is satisfied.  

 H(v; ǂ, ǃ) ≡ p1 + [ǃ/2] – (p4+p6) ≥ 0 (2) 

Where, pk is the number of test result patterns of type Pk shown in Fig. 3. 
 
Mutual test results do not depend on the order of diagnosing each unit, and its character is a 
strong point of the highly structured t-OD system. 

2.4 Problems of the self-diagnosable algorithm 

The foregoing self-diagnosable algorithms have the following two problems: First, the more 
agents are included in a system, the more communication traffics increase. This is because 
the highly structured system (hereafter, it will be called a simple highly structured system in 
order to distinguish from our method) applies a simple mutual diagnosis for all units. 
Second, generation of mutual test results must synchronize for all units. If not all the mutual 
test results are completed, it does not satisfy the condition of t-OD systems. It means that 
faulty agents cannot be uniquely identified. 

3. Self-diagnosable multi-agent system in consideration of load distribution 

This section describes an approach to solving the problems that simple highly structured 
systems have. 

3.1 System configuration 

The problems can be solved by introducing not only distributed type of elements but also 
concentrate type of elements. Specifically, middle agents are introduced as elements. All 
agents of pure MAS are not controlled by any concentrated agents. But it is natural that a 
hybrid MAS (Hagras et al., 2003; Alur et al., 2003) exists as a middle class between a pure 
MAS and a pure concentrated system. There is a reason for existence of the hybrid MAS if 
some advantages could be obtained when it replaces the pure MAS. Middle agents are 
located in a different layer from a client agent’s layer. Each middle agent has the following 
characters: 
[Character 3] 

• It is distinguished from basic client agents. 

• It does not take part in interaction among basic client agents. 

• It carries only information of mutual test results. 
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• It is assumed not to break down. 
Our approach introduces middle agents that do not interaction with basic client agents to 

mitigate communications between agents. An initial system configuration is shown in Fig. 4. 

One middle agent is prepared for three client agents (they may become four client agents 

since a fraction is taken into consideration) that are the minimum composition of a t-OD 

system in order to keep domain of mutual tests to a minimum. They are grouped as a partial 

domain. The client agents carry out mutual tests within the group through the middle agent. 

In this group, only one faulty agent can be detected using (1). 

We define middle agents that directly carry client agents’ communication as a bottom layer, 

and another middle agent that carries communication between middle agents is defined as a 

top layer. This composition technique can limit range of mutual tests and mitigate each 

agent’s load because communications between agents are carried within every local group 

in parallel. 

 

 

Fig. 4. Initial system configuration of the proposed system 

3.2 Dynamic highly structured system 

The proposed system can detect only one faulty agent for each group using (1). It is 

necessary to dynamically reconstitute a system configuration so that faulty agents may not 

be concentrated in certain groups. For that purpose, the number of branches of the middle 

agents at the bottom layer is fixed, and candidates of faulty agents are determined by 

rearranging client agents and changing groups.  

Our dynamic highly structured system has the following four processes as shown in the Fig. 
5: 
1) System reconfiguration 
At first, we fix a number of client agents that can be connected to a middle agent at the 

bottom layer. The middle agent exchanges the client agents of each group at random not to 

concentrate faulty agents in certain groups and to reconstruct mutual testing graphs. 

Because mutual tests can be conducted in parallel, faulty agents are detected for every 

group from the test results. These agents are regarded as candidates of faulty agents, and it 

is not decided to be faulty agents at this time.  

www.intechopen.com



  Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies 

 

232 

 
: fault-free client agent 

i1 
: middle agent i : middle agent j : candidate of faulty 

client agent j1 

reconfigure client agents 
send  agent list 

request verification parameters 

update the self syndrome 

broadcast the self syndrome 

send the verification parameter 

update the self syndrome 

broadcast the self syndrome 

send the verification parameter 

local client agents N 

broadcast the self syndrome 

analyze the self syndrome by highly structured system 

calculate the reliability of local area 

send/receive the reliabilities 

request the recheck / send the recheck list 
request verification parameters for recheck 

local client 
agents N 

send the verification parameter 

update the self syndrome 
broadcast the self syndrome 

analyze the self syndrome 
by highly structured system 
broadcast the self syndrome 

request the fault handling 
handle the faulty agent 

broadcast the handling list 

reconfigration 

calculate the 

reliability 

select the  

most reliable 

group 

determine 

faulty agents 

 

Fig. 5. A process of dynamic highly structured system 
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2) Calculation of reliability 

Equation (3) is introduced here. It expresses reliability of a middle agent based on the 

number of doubtful agents within its group. 

 ( ) –= i
i

i

Nm
R m   1  

Am
 (3) 

Where, mi is an ith middle agent group, Nmi is a number of faulty agent candidates that 

belong to mi, and Ami is a number of agents that belong to mi.  The value of this function 

R(mi) will go down if the number of faulty agent candidates increases. Each middle agent at 

the bottom layer computes (3) at each group and it shares the information among middle 

agents. 

3) Selection of the most reliable group 

We omit a group that has more than two faulty agent candidates, which means that it is not 

a t-OD system. We choose a group of the highest reliability value among the remaining 

groups. If there are more than two groups have the same value of R(mi), we give priority to a 

group whose value of H(v; ǂ, ǃ) in (2) is the largest. H(v; ǂ, ǃ) is a parameter showing 

allowable degree of failures. 

4) Determination of faulty agents 

Combining faulty agent candidates with agents connected to another middle agents having 

high reliability, mutual tests are performed again, and faulty agents are finally determined. 

Because the number of times of mutual tests changes with the number of failures in an 

actual system, the dynamic highly structured system has feature that it is able to mitigate 

the communication loads between agents when all agents are trouble-free or a few agents 

are faulty. Unlike the conventional techniques, our approach has an advantage that it should 

synchronize generation of test results only within each local group. 

Our self-diagnosable system conducts independent mutual tests only in a middle agent 

layer. This algorithm has restrictions that more than a half must be normal among the agents 

that constitute a mutual testing group. It can be said that the element of a meta-level does 

not need to guarantee high reliability because it is tested to be normal or faulty. Calculation 

amounts necessary for mutual tests are estimated for a simple highly structured system and 

a dynamic highly structured system. If the number of client agents is n, O(n): orders of 

calculation to diagnose are as follows: 

• Simple highly structured system 

 O(n) = n2 – n                   (4) 

• Dynamic highly structured system 

 

( )

( )

–     

– 1
0        

2

≤ ≤

⎛ ⎞⎡ ⎤= =⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

2n O n   8n  12

n  
t       t  

 (5) 

where, t is the number of faulty agents. 

For the dynamic highly structured system, (5) shows that calculation orders in the cases in 

which the trouble is not completely occurring, and the number of faulty agents is fewer 
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than half of all agents by one that is an upper limit of the number of faulty agents. The 

calculation order changes between these two values according to the number of faulty 

agents which exists in the system.  The dynamic highly structured system needs 

synchronizing mutual tests only in each local group, but no necessity of synchronizing in 

all client agents.  Therefore, the proposed system can reduce the communication traffics 

between agents. 

4. Simulation results 

Our approach has been applied to a multi-agent system (circle multi-agent system) that 

forms a circle autonomously, and compared with a simple highly structured system. 

4.1 Circle multi-agent system 

Initial conditions of the circle multi-agent system are shown below: 

• Each agent knows a value of diameter that should be kept, and perceives other agents’ 
locations. 

• Each agent determines its action based on two distances to the furthest agent and to the 
nearest one. 

• Each agent is placed at a two dimensional latticed space, and chooses one action among 
eight directions and no motion. 

Behaviors of this system are shown in Fig. 6 to Fig. 8. Fig. 6 shows a normal state in which 

a circle can be formed in cooperation. Fig. 7 shows a faulty state that troubles arise at 

Agent1, Agent11 and Agent21, and they cannot obtain right location data of other normal 

agents. As a result, the cooperative target of forming a circle cannot be attained. On the 

other hand, in Fig. 8 a restoration system stops the faulty agents and the other normal 

agents form another circle. The experiment environment is as follows: CPU is Pentium4 

(R) 2.4 GHz, OS Windows XP Professional, and the programming language Java JDK 

version 1.4. 

4.2 Experiments on communication traffics between agents 

The proposed system was incorporated to the circle multi-agent system, and some 

simulations were carried out. The experiment conditions are shown below: 

• Byzantine failures happen at some agents and they cannot get right location data of 
other agents. It means that they fail to identify the environment. 

• The experiments are carried out for two cases:  
1) 10% of agents are faulty, and 
2) 40% of agents are faulty, which means a fatal failure to the system.  

• Faulty agents are selected by uniform random numbers. 

• An agent is tested comparing location data of its own with the same location data that 

another agent has. 

• A restoration system only stops faulty agents. 

For a simple highly structured system and a dynamic highly structured system, the 

experiment measured the number of communication traffics between agents to detect faulty 

agents. For both systems, the number of agents was changed every ten agents from 10 to 

100. Fig. 9 shows average values of ten trials.  
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Fig. 6. A normal state of a circle multi-agent system 
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Fig. 7. A state after Byzantine failure 
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Fig. 8. A state after restoration 
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Fig. 9. Communication traffics 

 

 

Fig. 10. Restoration time 
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Fig. 9 proves that the proposed system needs only a few times to communicate while the 

simple highly structured system remarkably increasing times with the number of agents. It 

means that mutual tests are carried out in parallel in dynamic highly structured system. 

Small communication frequencies make the load of the agents reduce.  

As for failure processing, we measured the restoration time from occurring of failure to 

stopping faulty agents. Fig. 10 shows the results. The more faulty agents exist, the longer the 

restoration time is. The restoration time of the conventional system has exceeded that of the 

proposed system for both cases of failure rate 10% (t = 0.1n) and 40% (t = 0.4n).  The cause is 

that the proposed system can be processed in parallel and synchronizing only in each local 

group. 

5. Conclusion 

This paper has proposed a self-diagnosable multi-agent system that uses a dynamic 

highly structured system for fault diagnosis and a restoration system. Some experiments 

have demonstrated the validity of the proposed system.   Future works to be done are as 

follow: development of a more accurate reconstituting algorithm of basic client agents, a 

more advanced restoration algorithm, and a reliability improvement method of middle 

agents. 
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