
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

10

A Dependable Multi-Agent System
with Self-Diagnosable Function

Keinosuke Matsumoto, Akifumi Tanimoto and Naoki Mori
Osaka Prefecture University

 Japan

1. Introduction

In tandem with the penetration of the Internet, many information systems are connected to
large-scale computer network systems or multi-processor systems. These distributed
systems cooperate, negotiate, and solve problems by exchanging information each other. A
multi-agent system (MAS) (Weiss, 1999) attracts attention as a solution to competition or
cooperation in distributed systems. It is necessary that multi-agent systems operate for a
long time without human’s support from the viewpoint of dependable distributed system.
Some techniques (Chiang & Chen, 1994) that assume failures beforehand have been
developed for this problem. These techniques need another integrated system that
managements all the agents for fault diagnosis. It is practically impossible to apply them to
large-scale distributed systems.
We need a technique detecting faults autonomously in multi-agent systems. A self-
diagnosable algorithm (Kohda et al., 1997) has been proposed for distributed systems. In
this conventional simple highly structured system, all agents mutually diagnose all other
agents. It has a problem that the more agents are included in a system, the more
communication loads increase. To solve the problem, this paper proposes a new self-
diagnosable multi-agent system that mitigates communication loads in the multi-agent
system. Our method introduces middle agents that do not interaction with basic client
agents to mitigate the communication traffics between agents.

2. Conventional self-diagnosable algorithm

This section describes a conventional self-diagnosable algorithm, which we call it as a
simple highly structured system.

2.1 Faulty agent

An agent may malfunction in a multi-agent system and such an agent is called a faulty
agent. Our research deals with the following three kinds of failure (Fedoruk & Deters, 2001):
a. Crash failure
b. Byzantine failure
c. Communication failure.
Where, crash failure refers to an agent that is stopped by a processor fault or shortage of
system resources. Byzantine failure is a fault that does not assume faulty agents’ behavior,

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

228

and it is caused mainly by unexpected state transitions or program bugs. Communication
failure drops out all or some part of messages, or it cannot establish communication link
between agents.
If these failures occurred simultaneously at two or more agents, a multi-agent system will
malfunction because of interaction among agents. When faulty agents exist in a system,
reliability of the system cannot be maintained without identifying the faulty agents and
processing them properly.

2.2 T-fault one-step diagnosable system

Mutual diagnosis in a self-diagnosable algorithm (Preparata et al., 1967) is expressed by a

directed graph as shown in Fig. 1. In this figure, a unit and testing correspond to a vertex

and directed arc respectively. The system is defined as a directed graph G = [V, E], where V

= {v} is a set of vertexes (units) and E = {(u, v)} is a set of directed arcs (u, v). The unit

corresponding to starting point u and terminal point v of directed arc (u, v) are called a

testing unit and tested unit respectively.

A test result a(u, v) is defined as shown in Table 1, and let it be a weight of the directed arc.

This algorithm premises that it does not trust the test result if the testing unit is out of order

and each unit does not test itself. As another self-diagnosable algorithm, t-fault one-step

diagnosable system (Hakimi & Amin, 1974; Kohda, 1994) is proposed that can detect

simultaneously multiple faults of up to t among n units from mutual diagnostic results of

the system (hereinafter referred to as t-OD system).

2.3 Highly structured T-OD system

Definitions of a highly structured system and its characters as a t-OD system are described
below:
[Definition 1] A system G = [V, E] is a highly structured system if an arbitrary unit v (v∈V)
of the system G has a subsystem H(v; ǂ, ǃ) expressed in Fig. 2.

u v
0 or 1

Testing Unit Tested Unit

arc(u, v)

Test Result a(u, v)

Fig. 1. Basic system component

Tested Unit v
Testing Unit u

Fault-free Faulty

Fault-free 0 1

Faulty * *

 *: don’t care

Table 1. Test result a (u, v)

www.intechopen.com

A Dependable Multi-Agent System with Self-Diagnosable Function

229

Fig. 2. A subsystem H(v; ǂ, ǃ)

Fig. 3. Six test result patterns of type Pk in H(v; ǂ, ǃ)

The subsystem H(v; ǂ, ǃ) consists of a kernel unit v, (2ǂ+ǃ) other units, and (2ǂ+ǃ) testing
links, where ǂ is the number of testing links of length 2 and ǃ the number of testing links of
length 1. A highly structured system has the following character 1.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

230

[Character 1] If every unit v (v∈V) of a system G = [V, E] has a subsystem H(v; ǂ, ǃ) of the
definition 1 and

 ǂ+ [ǃ/2] ≥ t , (1)

then G is a t-OD system.
Where, t > 0 and [x] means a maximum integer not exceeding x.
[Definition 2] A highly structured system satisfying (1) is called a highly structured t-OD
system.
The following character 2 is suggested as an analyzing method of highly structured t-OD
systems.
[Character 2] For an arbitrary unit v (v∈V) of a system G = [V, E] that satisfies the character
1, v is normal if and only if the following (2) is satisfied.

 H(v; ǂ, ǃ) ≡ p1 + [ǃ/2] – (p4+p6) ≥ 0 (2)

Where, pk is the number of test result patterns of type Pk shown in Fig. 3.

Mutual test results do not depend on the order of diagnosing each unit, and its character is a
strong point of the highly structured t-OD system.

2.4 Problems of the self-diagnosable algorithm

The foregoing self-diagnosable algorithms have the following two problems: First, the more
agents are included in a system, the more communication traffics increase. This is because
the highly structured system (hereafter, it will be called a simple highly structured system in
order to distinguish from our method) applies a simple mutual diagnosis for all units.
Second, generation of mutual test results must synchronize for all units. If not all the mutual
test results are completed, it does not satisfy the condition of t-OD systems. It means that
faulty agents cannot be uniquely identified.

3. Self-diagnosable multi-agent system in consideration of load distribution

This section describes an approach to solving the problems that simple highly structured
systems have.

3.1 System configuration

The problems can be solved by introducing not only distributed type of elements but also
concentrate type of elements. Specifically, middle agents are introduced as elements. All
agents of pure MAS are not controlled by any concentrated agents. But it is natural that a
hybrid MAS (Hagras et al., 2003; Alur et al., 2003) exists as a middle class between a pure
MAS and a pure concentrated system. There is a reason for existence of the hybrid MAS if
some advantages could be obtained when it replaces the pure MAS. Middle agents are
located in a different layer from a client agent’s layer. Each middle agent has the following
characters:
[Character 3]

• It is distinguished from basic client agents.

• It does not take part in interaction among basic client agents.

• It carries only information of mutual test results.

www.intechopen.com

A Dependable Multi-Agent System with Self-Diagnosable Function

231

• It is assumed not to break down.
Our approach introduces middle agents that do not interaction with basic client agents to

mitigate communications between agents. An initial system configuration is shown in Fig. 4.

One middle agent is prepared for three client agents (they may become four client agents

since a fraction is taken into consideration) that are the minimum composition of a t-OD

system in order to keep domain of mutual tests to a minimum. They are grouped as a partial

domain. The client agents carry out mutual tests within the group through the middle agent.

In this group, only one faulty agent can be detected using (1).

We define middle agents that directly carry client agents’ communication as a bottom layer,

and another middle agent that carries communication between middle agents is defined as a

top layer. This composition technique can limit range of mutual tests and mitigate each

agent’s load because communications between agents are carried within every local group

in parallel.

Fig. 4. Initial system configuration of the proposed system

3.2 Dynamic highly structured system

The proposed system can detect only one faulty agent for each group using (1). It is

necessary to dynamically reconstitute a system configuration so that faulty agents may not

be concentrated in certain groups. For that purpose, the number of branches of the middle

agents at the bottom layer is fixed, and candidates of faulty agents are determined by

rearranging client agents and changing groups.

Our dynamic highly structured system has the following four processes as shown in the Fig.
5:
1) System reconfiguration
At first, we fix a number of client agents that can be connected to a middle agent at the

bottom layer. The middle agent exchanges the client agents of each group at random not to

concentrate faulty agents in certain groups and to reconstruct mutual testing graphs.

Because mutual tests can be conducted in parallel, faulty agents are detected for every

group from the test results. These agents are regarded as candidates of faulty agents, and it

is not decided to be faulty agents at this time.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

232

: fault-free client agent

i1
: middle agent i : middle agent j : candidate of faulty

client agent j1

reconfigure client agents
send agent list

request verification parameters

update the self syndrome

broadcast the self syndrome

send the verification parameter

update the self syndrome

broadcast the self syndrome

send the verification parameter

local client agents N

broadcast the self syndrome

analyze the self syndrome by highly structured system

calculate the reliability of local area

send/receive the reliabilities

request the recheck / send the recheck list
request verification parameters for recheck

local client
agents N

send the verification parameter

update the self syndrome
broadcast the self syndrome

analyze the self syndrome
by highly structured system
broadcast the self syndrome

request the fault handling
handle the faulty agent

broadcast the handling list

reconfigration

calculate the

reliability

select the

most reliable

group

determine

faulty agents

Fig. 5. A process of dynamic highly structured system

www.intechopen.com

A Dependable Multi-Agent System with Self-Diagnosable Function

233

2) Calculation of reliability

Equation (3) is introduced here. It expresses reliability of a middle agent based on the

number of doubtful agents within its group.

 () –= i
i

i

Nm
R m 1

Am
 (3)

Where, mi is an ith middle agent group, Nmi is a number of faulty agent candidates that

belong to mi, and Ami is a number of agents that belong to mi. The value of this function

R(mi) will go down if the number of faulty agent candidates increases. Each middle agent at

the bottom layer computes (3) at each group and it shares the information among middle

agents.

3) Selection of the most reliable group

We omit a group that has more than two faulty agent candidates, which means that it is not

a t-OD system. We choose a group of the highest reliability value among the remaining

groups. If there are more than two groups have the same value of R(mi), we give priority to a

group whose value of H(v; ǂ, ǃ) in (2) is the largest. H(v; ǂ, ǃ) is a parameter showing

allowable degree of failures.

4) Determination of faulty agents

Combining faulty agent candidates with agents connected to another middle agents having

high reliability, mutual tests are performed again, and faulty agents are finally determined.

Because the number of times of mutual tests changes with the number of failures in an

actual system, the dynamic highly structured system has feature that it is able to mitigate

the communication loads between agents when all agents are trouble-free or a few agents

are faulty. Unlike the conventional techniques, our approach has an advantage that it should

synchronize generation of test results only within each local group.

Our self-diagnosable system conducts independent mutual tests only in a middle agent

layer. This algorithm has restrictions that more than a half must be normal among the agents

that constitute a mutual testing group. It can be said that the element of a meta-level does

not need to guarantee high reliability because it is tested to be normal or faulty. Calculation

amounts necessary for mutual tests are estimated for a simple highly structured system and

a dynamic highly structured system. If the number of client agents is n, O(n): orders of

calculation to diagnose are as follows:

• Simple highly structured system

 O(n) = n2 – n (4)

• Dynamic highly structured system

()

()

–

– 1
0

2

≤ ≤

⎛ ⎞⎡ ⎤= =⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

2n O n 8n 12

n
t t

 (5)

where, t is the number of faulty agents.

For the dynamic highly structured system, (5) shows that calculation orders in the cases in

which the trouble is not completely occurring, and the number of faulty agents is fewer

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

234

than half of all agents by one that is an upper limit of the number of faulty agents. The

calculation order changes between these two values according to the number of faulty

agents which exists in the system. The dynamic highly structured system needs

synchronizing mutual tests only in each local group, but no necessity of synchronizing in

all client agents. Therefore, the proposed system can reduce the communication traffics

between agents.

4. Simulation results

Our approach has been applied to a multi-agent system (circle multi-agent system) that

forms a circle autonomously, and compared with a simple highly structured system.

4.1 Circle multi-agent system

Initial conditions of the circle multi-agent system are shown below:

• Each agent knows a value of diameter that should be kept, and perceives other agents’
locations.

• Each agent determines its action based on two distances to the furthest agent and to the
nearest one.

• Each agent is placed at a two dimensional latticed space, and chooses one action among
eight directions and no motion.

Behaviors of this system are shown in Fig. 6 to Fig. 8. Fig. 6 shows a normal state in which

a circle can be formed in cooperation. Fig. 7 shows a faulty state that troubles arise at

Agent1, Agent11 and Agent21, and they cannot obtain right location data of other normal

agents. As a result, the cooperative target of forming a circle cannot be attained. On the

other hand, in Fig. 8 a restoration system stops the faulty agents and the other normal

agents form another circle. The experiment environment is as follows: CPU is Pentium4

(R) 2.4 GHz, OS Windows XP Professional, and the programming language Java JDK

version 1.4.

4.2 Experiments on communication traffics between agents

The proposed system was incorporated to the circle multi-agent system, and some

simulations were carried out. The experiment conditions are shown below:

• Byzantine failures happen at some agents and they cannot get right location data of
other agents. It means that they fail to identify the environment.

• The experiments are carried out for two cases:
1) 10% of agents are faulty, and
2) 40% of agents are faulty, which means a fatal failure to the system.

• Faulty agents are selected by uniform random numbers.

• An agent is tested comparing location data of its own with the same location data that

another agent has.

• A restoration system only stops faulty agents.

For a simple highly structured system and a dynamic highly structured system, the

experiment measured the number of communication traffics between agents to detect faulty

agents. For both systems, the number of agents was changed every ten agents from 10 to

100. Fig. 9 shows average values of ten trials.

www.intechopen.com

A Dependable Multi-Agent System with Self-Diagnosable Function

235

Fig. 6. A normal state of a circle multi-agent system

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

236

Fig. 7. A state after Byzantine failure

www.intechopen.com

A Dependable Multi-Agent System with Self-Diagnosable Function

237

Fig. 8. A state after restoration

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

238

Fig. 9. Communication traffics

Fig. 10. Restoration time

www.intechopen.com

A Dependable Multi-Agent System with Self-Diagnosable Function

239

Fig. 9 proves that the proposed system needs only a few times to communicate while the

simple highly structured system remarkably increasing times with the number of agents. It

means that mutual tests are carried out in parallel in dynamic highly structured system.

Small communication frequencies make the load of the agents reduce.

As for failure processing, we measured the restoration time from occurring of failure to

stopping faulty agents. Fig. 10 shows the results. The more faulty agents exist, the longer the

restoration time is. The restoration time of the conventional system has exceeded that of the

proposed system for both cases of failure rate 10% (t = 0.1n) and 40% (t = 0.4n). The cause is

that the proposed system can be processed in parallel and synchronizing only in each local

group.

5. Conclusion

This paper has proposed a self-diagnosable multi-agent system that uses a dynamic

highly structured system for fault diagnosis and a restoration system. Some experiments

have demonstrated the validity of the proposed system. Future works to be done are as

follow: development of a more accurate reconstituting algorithm of basic client agents, a

more advanced restoration algorithm, and a reliability improvement method of middle

agents.

6. Acknowledgment

This work was partially supported by JSPS KAKENHI 21560430.

7. References

Alur, R.; Thao Dang; Esposito, J.; Yerang Hur; Ivancic, F.; Kumar, V.; Mishra, P.; Pappas,

G.J., & Sokolsky, O. (2003). Hierarchical Modeling and Analysis of Embedded

Systems, Proceedings of the IEEE, Vol.91, No. 1, pp. 11- 28.

Chiang, W. K. & Chen, R. J. (1994). Distributed Fault Tolerant Routing in Kautz Networks,

Journal of Parallel and Distributed Computing, Vol. 20, No. 1, pp. 99-106.

Fedoruk, A. & Deters, R. (2001). Improving Fault Tolerance by Replicating Agents,
Proceeding of the First International Joint Conference on Autonomous Agents and Multi-

Agent Systems, pp. 737-744, Bologna, Italy.

Hagras, H.; Callaghan, V.; Colley, M. & Clarke, G. (2003). A Hierarchical Fuzzy–Genetic

Multi-Agent Architecture for Intelligent Buildings Online Learning, Adaptation and

Control, Information Sciences, Vol.150, No. 1-2, pp. 33-57.

Hakimi, S. L. & Amin, A. T. (1974). Characterization of Connection Assignment of

Diagnosable Systems, IEEE Transaction on Computers, Vol.23, No.1, pp. 86-88.

Kohda, T. (1994). A Simple Discriminator for Identifying Faults in Highly Structured

Diagnosable Systems, Journal of Circuits, Systems, and Computers, Vol. 4, No. 3, pp.

255-277.

Kohda, T.; Yoshida, K.; Sujaku,Y., et al. (1997). Decentralized Self-Diagnosis in Multi-Agent

Systems, Proceeding of the 6th Multi-Agent and Cooperative Computing Workshop,

Kobe, Japan.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

240

Preparata, P.; Metze, G. & Chien, R. T. (1967). On the Connection Assignment Problem of

Diagnosable Systems, IEEE Transaction on Electronic Computers, Vol. 16, No. 6, pp.

848-854.

Weiss, G. (1999). Multiagent Systems - A Modern Approach to Distributed Artificial Intelligence,

The MIT Press.

www.intechopen.com

Multi-Agent Systems - Modeling, Interactions, Simulations and

Case Studies

Edited by Dr. Faisal Alkhateeb

ISBN 978-953-307-176-3

Hard cover, 502 pages

Publisher InTech

Published online 01, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent

systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic

system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous

and proactive software components. Multi-agent systems have been brought up and used in several

application domains.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Keinosuke Matsumoto, Akifumi Tanimoto and Naoki Mori (2011). A Dependable Multi-Agent System with Self-

Diagnosable Function, Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies, Dr. Faisal

Alkhateeb (Ed.), ISBN: 978-953-307-176-3, InTech, Available from: http://www.intechopen.com/books/multi-

agent-systems-modeling-interactions-simulations-and-case-studies/a-dependable-multi-agent-system-with-

self-diagnosable-function

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

