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1. Introduction 

The term agent is widely used in many areas with diverse meaning. In this work, agents 

have been used as they have been defined in the context of AI. In this context, many 

researchers use notions to describe an agent that are normally applied to humans, such as 

knowledge, beliefs, desires, intentions, capabilities, choices, commitments or obligation, 

(Shoham, 1993; Cohen & Levesque, 1990; Rao & Georgeff, 1991a) or even emotions (Bates, 

1994). Wooldridge in (Wooldridge, 1999) uses a broader definition and argues that an agent 

denotes a hardware or software-based system that exhibits properties such as autonomy, 

social ability, reactivity, and pro-activeness. Several other agent properties that have been 

suggested include mobility, veracity, benevolence and rationality.  

This work shares the need of the above properties and in order to express them an agent is 

considered as an intentional system based on the description of the philosopher Daniel 

Dennett. He proposed the intentional stance from which systems are ascribed mental 

qualities. Using this term, he describes entities “whose behaviour can be predicted by the 

method of attributing belief, desires and rational acumen” (Dennett, 1987). The intentional 

stance deals mainly with the behaviour of the described entities and helps to avoid 

paradoxes and clashes of intuition (Russell & Norvig, 2003). Its main disadvantage is that it 

cannot distinguish among implementations since any given behaviour can be implemented 

in many different ways and does not imply anything about the system’s internal workings 

or representation. However, from an engineering point of view, it allows the better 

understanding and consequently the description of a complex system and for this reason is 

adopted by this work. Concluding that an agent is a system that is most conveniently 

described by the intentional stance, Wooldridge and Jennings (Wooldridge & Jennings, 

1995) consider that the appropriate attitudes for representing agents are classified in 

information attitudes (belief and knowledge) which are related to the information that an 

agent has about the world it occupies, and pro-attitudes (desire, intention, obligation, 

commitment, choice etc.), which in some way guide the agents’ actions. 

More than one agent, who cooperate or deliberately act together in order to accomplish a 
task (usually common) constitute a multi agent system. Multi agent systems are inherently 
complex since “concurrency, problem domain uncertainty and non-determinism in 
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execution together conspire to make it difficult to understand the activity within a 
distributed intelligent system” (Gasser et al., 1987). In order to solve the problem of 
complexity, there is a need for practical and helpful tools, which benefit a better 
understanding and managing of a multi agent system. Furthermore, there is a need of 
suitable and well-defined formalisms, which use appropriate attitudes for representing 
agents and can express the specific features of a multi agent system such as autonomy, 
concurrency, social ability and cooperation. Despite the development of several formalisms 
for this purpose, there are not many tools to embody a formalism and to turn it in a real 
system. The main reason for the gap between theories and real agent systems is due the 
abstract notions used and to the many unrealistic assumptions made about the agents’ 
capabilities (Wooldridge, 1996). This work focuses on this issue and proposes the AOMFG 
model (Agent Oriented Multi Flow Graphs), which embodies and combines characteristics of 
agents’ theories, Petri Nets and Cognitive Engineering. 
Although formal specifications and methods have been the object of study since the late 

1960s, they have not been widely used in software development nor have they been 

accepted as both worthwhile and practicable, even in mainstream computer science 

(Wooldridge, 1996). Formal specifications are expressed in a language whose vocabulary, 

syntax and semantics are formally defined. There are a number of reasons why one should 

use formal methods for system specification. The most significant among them are that they 

provide insights into and an understanding of the software requirements and the software 

design, they can be analyzed by mathematical methods and their consistency and their 

completeness can be proved, and finally they may be automatically processed.  

In this direction and focusing on multi agent systems, some related attempts are reviewed. 

In addition, some methods describing human action and human computer interaction are 

examined. This is because several characteristics of human behaviour are ascribed to agents 

in order to simplify the reasoning about them. According to the agent definition that has 

been given, it seems that there is a need for a combination of the above methods in order to 

capture such mental notions, extend without losing specification expressiveness and to 

maintain the model simplicity to the greatest possible. 

2.1 Structure of the paper 

In the following sections, AOMFG a graphical formal model for agent specification is 

introduced. In the next section, several formalisms that have been used for the reasoning 

about multi agent systems as well as some formalism that are relevant with the scope of this 

work, are reviewed. Then, a description and a formal definition of the model are given in 

detail. Furthermore, the model execution is described as well as the model decomposition 

techniques. Finally, it is shown how an AOMFG can be transformed to a Petri Net. In the 

last section, the validation of the model is presented with the use of four examples: 

Shoham’s algorithm, FIPA communication protocols, BDI related properties, and a multi 

agent tutoring system specification. The work concludes with a summary of the work and a 

description of model application. 

3. Background 

This section presents several attempts for reasoning about multi agent systems and other 

attempts in related subjects, which influenced the development of AOMFG model. 
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3.1 Models for multi agent systems 

The most widely used formalism among those that have been developed for reasoning 
about multi agent systems is intentional logics, which are formalisms developed by 
researchers in AI and philosophy to describe systems with beliefs, goals, intentions and so 
on (Wooldridge, 1996). According to formalisms based on intentional logics, mental notions 
characterize an agent and reasoning about the system is carried out by attributing these 
notions (Cohen & Levesque, 1990; Hintikka, 1962; Konolige, 1986; Shoham, 1993). The 
mental notions correspond to a set of possible worlds with an accessibility relation between 
those worlds. However, because of the possible worlds interpretation, the well-known 
“logical omniscience” and “side effects” problems have emerged. These mean respectively, 
that an agent is a perfect reasoner and that it desires the logical consequences of its actions. 
Many attempts tried to settle these matters by grounding, weaken or even completely reject 
the possible worlds semantics. Although these efforts show some encouraging results, they 
are not clear on how attitudes such as desires or intentions can be expressed. 
One of the most influential works in agent theory is due to Cohen and Levesque (Cohen & 

Levesque, 1990), who consider intention as a central notion and as a necessary characteristic 

for agent’s reasoning and actions. Following this point of view, Rao and Georgeff developed 

a number of formalisms and decision procedures for multi agent systems based on the 

notion of beliefs, desires and intentions, which are known as the BDI formalism (Rao & 

Georgeff, 1991a; Rao & Georgeff, 1995). With respect of the intentional stance and in the 

spirit of speech act theory (Searle, 1969), Shoham proposed the agent oriented 

programming, as “… a new programming paradigm … [which] promotes a societal view of 

computation…” (Shoham, 1993). Using choice as a primitive notion and an explicit reference 

to time in his formalism, he defines a simple programming language and its interpreter, 

showing in this way, how the theory comes to practice.  

A more radical approach that rejects the possible worlds semantics altogether, is Konolige’s 

deduction model of beliefs (Konolige, 1986), which models resource-bounded reasoners 

(agents as any real system have no unlimited resources) and allows logically incomplete 

reasoning via logically incomplete deduction rules. Later Wooldridge (Wooldridge, 1992), 

based on Konolige’s model, developed a general model for the specification of realistic 

(resource-bounded) multi agent systems by using temporal logics. Temporal logics are used 

for reasoning about multi agent systems since the latter are reactive, concurrent and 

typically non-terminating. Although temporal logics seem to be powerful for describing past 

actions and for predicting the future actions of a reactive system according to changes in its 

environment, it seems to be a need of a combination with other notions such as those of 

intentional logics in order to become practical. The same holds for the process algebras, too. 

Process algebras are typically used for reasoning about concurrency in systems. In the case 

of multi agent systems, mental notions and conceptual properties must be described which 

are difficult to express using only methods of process algebras. 

3.2 Models for human behaviour 

Since many human characteristics are ascribed on agents, this section reviews the most 
important attempts in formal user representation (for details see (Kameas, 1995)) and, 
determines which of these methods and how may be applied in reasoning about multi agent 
systems. All these models approach users through Cognitive Engineering (Norman, 1987). In 
particular, users are considered to interact with computers in order to accomplish tasks that 
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may contain subtasks. From this point of view, two model categories have been proposed: task 
analysis, which represents the task decomposition and, cognitive task modelling, which 
represents the tasks through the computer functionality and the interrelation between the 
physical and mental actions that are required for the task accomplishment.  
According to task analysis (Johnson & Nicolosi, 1990), the user’s actions are hierarchically 
decomposed into subtasks. There are abstract relations between the specifications of the 
accomplished tasks and their corresponding structures and a good understanding of these 
relations is required. The analysis techniques use natural language, are ambiguous and there 
are no specifications tools.  
Cognitive task modelling regards human-computer interaction as an iterative procedure for 
the approximation of a goal through a strategy (Miller et al., 1960; Newel & Simon, 1972), 
and embodies two architectures. The Model Human Information Processor (Card et al., 
1983) includes sensible, cognitive and applied processors together with a representation of 
the long and short-term memories. The Problem Space Model (Newel & Simon, 1972) treats 
the logical behaviour in a problem space, a set of situations representing the parts of 
problem solution and a set of actions provided to the user. According to this approach, a 
user has a goal, which represents the final state of the system. This goal is iteratively 
decomposed in subgoals that constitute action plans. The decomposition stops when actions 
take place for the achievement of the goals. Depending on the actions or the action plans, the 
cognitive models are divided into models of hierarchical representation of user tasks and 
goals, linguistic and grammar models and, models of device level. The latter two categories 
have only marginal interest for this work, so only the first one will be studied further.  
A widely known representative of this category is GOMS model (Card et al., 1983), where 
the users have goals representing their intention for the achievement of a task, operators 
denoting the primitive actions, methods that are a sequence of actions and, selection rules 
that determine the choice of a method. Since a goal is decomposed into subgoals, a goal 
stack containing the intended goals is maintained and represents the users’ long-term 
memory. Another approach is the model of Goal Structure Graphs (Kieras & Polson, 1985) 
as an application of Cognitive Complexity Theory (CCT). The specification with Goal 
Structure Graphs is a graphical representation of the system functionality as well as the 
reasoning of a user. In such a system the user’s knowledge is represented as a set of 
production rules. The rules have a structure “if <condition> then <action>”. The model 
provides mechanisms for the elaboration of the rules that produce a sequence of cognitive 
actions of the user. 

3.3 Petri Nets based models 

All the above models require a good understanding of their methods as well as an 
adequately deep knowledge of their theory. In many cases, it is difficult and infeasible to 
force software engineers to study specific mathematical models (such as temporal logic or 
process algebra) or even cognitive models (such as human psychology or user behaviour). 
On the contrary, it would be desirable to hide the complexity and the strict formalism of the 
model and to offer a friendlier tool that reflects the expressiveness of the model. In this way 
“… practitioners can learn from theoreticians how to make their models methodical, and 
theoreticians can learn from practitioners how to make their models more realistic” (Murata, 
1989). Graphical tools with theoretical background satisfy some of these requirements and 
the best delegates are Petri Nets, which can specify systems that are concurrent/parallel, 
asynchronous, distributed, non-deterministic and/or stochastic. They have been used in a 
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wide area of applications that include communication protocols, distributed systems, 
concurrent and parallel systems, formal languages, logic programs, human factors, and 
decision systems. 
A Petri Net is a directed, bipartite graph and it consists of two kinds of nodes, called places 
and transitions. Directed arcs reside between the places and the transitions, which are 
labelled with their weights. The places maintain tokens, which are produced or consumed 
by transitions. The tokens are moved and distributed through the arcs. Every transition has 
a set of input and output places. Typically, a transition represents an event, input places 
represent preconditions and output places represent post-conditions. However, the 
interpretation of transitions and places is depending on the modelling concept used. For 
example, a transition may mean a clause in logic and input and output places may mean 
conditions and conclusions respectively, or a transition may mean a task and input and 
output places may mean resources needed and released respectively. A marking is an 
assignment of tokens to each place. A Petri Net has an initial marking (initial state) and this 
marking is changed according to a simple firing rule: 

• A transition t is said to be enabled if each input place p of t is marked with at least w(p, 
t) tokens, where w(p, t) is the weight of the arc from p to t 

• An enabled transition may or may not fire  

• A firing of an enabled transition t removes w(p, t) tokens from each input place p of t, 
and adds w(p, t) tokens to each output place p of t. 

By modelling a system with a Petri Net, one can study behavioural properties, which 

include reachability, boundedness, liveness, reversibility and home state, coverability, 

persistence, synchronic distance, and fairness, or structural properties, which include 

structural liveness, controllability, structural boundedness, conservativeness, repetitiveness, 

and consistency (Murata, 1989). Powerful analysis methods help the study of those 

properties and may be classified into the coverability tree method, the incidence matrix and 

state equation approach, and reduction or decomposition techniques. However, the classical 

Petri Nets have a series of restrictions, the major among them being the need of large nets in 

order to describe systems of medium complexity (Murata, 1989). In addition, the lack of 

formal treatment or of clear identification of individuals and the implicit structuring 

mechanisms used, made inevitable the introduction of new approaches, which are known as 

High-Level Petri Nets (HPN) (for an extensive review refer to (Gerogiannis et al., 1998)), and 

extend the classical Petri Nets from several perspectives.  

Among all the HPN proposed, those of interest to this work are Predicate/Transition nets 

(PrTN) and Coloured Petri Nets (CPN). PrTN (Genrich & Lautenbach, 1981) are suitable for 

modelling logic programs since places play the role of predicates, transitions may associate 

logical formulas and tokens are predicate extensions. In addition, a PrTN may contain free 

variables, which are substituted according to the firing sequence. A variation of PrTN is the 

Predicate/Event Nets (PrEN) (Schmidt, 1991), which adopt methods of process algebra and 

are used to represent parallelism and concurrency. CPN (Jensen, 1981) associate colours 

with the tokens, the places, or the transitions. Typically, a colour is a data type assigned to 

the elements, which are handled by the model. In order to overcome some problems 

concerning the size of the CPN, an extension of the structuring mechanism has been 

proposed. This extension is the Hierarchical CPN (HCPN) (Jensen, 1997) consisting of 

interrelated subnets, called pages, and represent a substitution of transitions. PrTN and 

CPN are equivalent on computational power although their underlying formalism is 
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different since the PrTN are based on an algebraic notation while the CPN resemble the 

procedural programming languages. 

Based on a hierarchically high level Petri net, Interactive Multi Flow Graphs (IMFG) 
(Kameas, 1995) embody characteristics of GOMS and CCT and in such a way combine into a 
Petri net-based formalism the more important features of state transition models with 
elements of cognitive models of user behaviour. IMFG is a process-based state transition 
model specially designed for the specification of interactive dialogue and interactive 
applications. It provides powerful analysis techniques, task decomposition formalism and 
event handling mechanisms. Along these lines, another modelling technique concerning the 
plan decomposition has been proposed (Kinny et al., 1996), however it uses different 
perspectives as it extends existing object oriented models and the decomposition is 
represented by state charts rather than Petri Nets. This technique models agents, which are 
based on BDI architecture, and employs (in some augmented way) object-oriented dynamic 
models as agents’ plans, which are directly executable descriptions of agents’ behaviour. 

4. AOMFG model 

Agent Oriented Multi Flow Graphs (AOMFG) model is a graphical model for the 
specification and design of multi agent systems. Its main purpose is to describe how the 
agents reason and act together in a dynamic environment for the accomplishment of 
common tasks. In essence, it is a high level Petri Net, which encapsulates notions of multi 
modal logic and reflects the modelling technique of agent systems based upon the BDI 
architecture. It constitutes a modification and an extension of IMFG model (Kameas, 1995) 
both in its philosophy and syntax. Although IMFG is a formal model that has been 
originally proposed for interactive dialogue description or for the specification of interactive 
applications (Kameas & Pintelas, 1997; Zaharakis et al., 1995), it is modified and extended 
for reasoning about multi agent systems. Its well-defined formalism for task decomposition 
and its event handling mechanisms are adjusted for the description of an agent’s goal 
decomposition and for plan representation mechanisms as well as for the communication of 
messages between agents. The basic components of AOMFG reflect notions generally used 
by humans such as believes, desires and intentions that help in analysis and better 
understanding of complex computational systems. Indeed, the specification and design of 
those systems would be very difficult or even impossible without the use of such notions 
(Shoham, 1993). However, AOMFG is not intended to describe the human reasoning and 
behaviour or human social systems, so phenomena of human belief, communication and 
action are not the objects of this study. 
The BDI architecture constitutes the theoretical background of the model and according to this, 
an agent in a multi agent system is viewed as having the three mental attitudes of belief, desire 
and intention (BDI). Beliefs are the information the agent has about the world it acts upon and 
the information it sends to the world. Desires are the tasks or the objectives that the agent is 
allocated or has to accomplish. Desires are usually referred as goals in the literature, although 
sometimes there is a distinction between these two notions, and goals have the meaning of the 
desires that are being pursued. However, this work does not distinguish them and they have 
the same meaning except when otherwise declared. Intentions are the agent’s commitments to 
a desire. In addition, every agent contains a plan library. Plans are the possible ways that an 
agent can bring about an intention. In general, a plan is a partial commitment on how to 
achieve a desire. AOMFG explicitly represents the above notions in its structure. 

www.intechopen.com



The Agent Oriented Multi Flow Graphs Specification Model   

 

103 

4.1 General model description 

The actions that an agent can execute, the alternative ways an action can be achieved, the 
perception of the environment and the communication with the environment, are all 
considered as a set of AOMFG. Every graph consists of two basic active entities, the actors 
(Fig. 1) and links (Fig. 2), corresponding to the transitions and the places of the Petri Nets 
respectively. These entities produce and consume tokens, which are the passive entities of 
the model and move along the connecting edges between actors and links. 

Tokens 

Tokens are transferred on the graph edges and represent data types, which are handled by 
the links and actors. Every token has an attached data type called token colour. The token 
colour may be a simple Boolean variable or an integer or even a complex structure such as a 
record. The token colour resembles the variables of programming languages and the value 
of token colour resembles the value assignment on the variables. In AOMFG, particularly, 
which is designed to express elements of multi modal logic, the tokens correspond to 
predicates or to the modal operators used. In graphical representation tokens are 
represented as black dots. 

Actors 

Actors represent the system processes and produce, consume or otherwise modify the 
tokens. Fig. 3 shows the internal structure of an AOMFG actor. Every actor has a name, 
which describes the actor. The interface part of an actor consists of a set of input links that 
provide the actor with tokens, and a set of output links that the actor supplies with tokens. In 
addition, every actor contains a set of firing rules, which determine the situations for the 
execution of an actor as well as the results of such an execution. Every rule has a left part 
that describes the pre-conditions for the rule firing and a right part that describes the post-
conditions of the rule firing. The rules constitute the actor’s behavioural part. The 
operations, which are carried out by the actor, are described with an operation function (it 
makes up the actor’s functional part) and the binding of variables is done by a binding 
function. The type defines the meaning of the actor and consequently its allowed 
decomposition schemes. An actor may be:  

• action actor: it represents a primitive action that an agent can execute and cannot be 
further decomposed. A primitive action may be private or foreign. A private action is 
executed by the agent himself. A foreign action is caused by the agent but its content is 
requested to be executed by another agent  

• context actor: it represents a set of actions that lead to the achievement of a higher goal. 
A context actor is decomposed in sub-goals iteratively until it is refined into a set of 
action actors  

• library actor: it represents the way a higher goal is decomposed and is executed in sub-
goals. The goal decomposition is achieved with the directed distribution of the tokens. 
The library actors have inherent in their behaviour the laws of this distribution. The set 
of available library actors is predefined and the model determines their operation. 
Library actors play the role and correspond to the language structures of sequence, 
condition and iteration of high-level programming languages. Furthermore, they can be 
used to express and support non-determinism and concurrency issues. Depending on 
the way they manage and control the tokens, they are divided in: 

• sequence library actor, where the actors participating in the decomposition must 
be executed sequentially  
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• non deterministic choice library actor, where (depending on the firing rule, which 
is described in the sequel) some actors are chosen and executed 

• concurrency library actor, where the actors participating in the decomposition are 
executed concurrently  

• condition library actor, where some actors are executed according to a contained 
firing condition  

• iteration library actor, where the actors participating in the decomposition are 
executed repeatedly until a termination condition is satisfied 

• group actor: it has no computational meaning but is used for model clarity. Essentially, 
group actors are substitution transitions and work in a similar way as the pages in 
Coloured Petri Nets (Jensen, 1997). 

As AOMFG is designed to specify concurrent tasks, it is usually necessary to reference time. 
This reference concerns how concurrent actions occur, when an action takes place or how 
long an action lasts. In addition, being a specification model, it has to be independent from 
the target platform where the specified application will be executed. Considering the above, 
AOMFG presumes time as a regular interval, which is not constant, but it is determined by 
the target platform (this approach has been originally proposed by (Shoham, 1993)). An 
executed action by an agent may need more than one regular interval. In addition, the 
amount of those regular intervals either is not known initially or it cannot be foreseen. 
However, in the current model version there is no explicit reference to time in actors; instead 
this can be described as a fact in actor’s input links. 
 

Private Action 

actor

Foreign Action 

actor
Group actor

Private Context 

actor

Foreign Context 

actor

Library actor

 

Fig. 1. The different actors provided by AOMFG 

Links 

Links represent the state that precedes or follows a process execution and they store, check 
and handle the tokens. Fig. 3 shows the internal structure of an AOMFG link. A link has a 
name, which describes the link, a set of producing actors that provide the link with tokens, 
and a set of consuming actors that the link supplies with tokens. The way a link is used is 
significant as it determines the role of the link inside the model and constitutes its 
behavioural part. In addition, a link can do several operations on a range of accepted 
coloured tokens. This establishes the link’s computational part. Links correspond to the 
places of the Petri Nets and in AOMFG model represent notions of the BDI logic as well as 
some kinds of events. A link may be of one of the following types: 

• event link: it reflects the caused events during the execution of the agent. Since, multi 
agent environments are populated by several agents, perhaps together with human 
participants, three kinds of events should be distinguished: those caused internally by 
an agent which concern exclusively himself, those concerning interaction between 
agents and those caused by the user of the system which are directed to the agents. 
Consequently, the event links are divided into 

• system event links, which are caused by the agent itself and represent the changes 
in the state of the system, 
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• system communication event links, which are caused by the agent and are 
directed to other agent(s) in the environment in favour of a request for an action or 
a notification of an information (e.g. inform message), 

• user event links, which are caused by the user of the application. The model 
considers the user as an agent that generates events; thus its behaviour need not be 
further elaborated. The user event link is used for distinguishing between these 
events and the events of the system. This grading differentiates the agent’s 
response towards the user to the interaction and communication between the 
agents (communication protocols etc.) 

• desire link: it reflects the broader context where the several processes and the events of 
the system or the user take place. In essence, it represents the decomposition hierarchy 
where the corresponding actor belongs. The desire link when it is an input link of an 
actor, represents the starting point of an agent’s goal, and when it is an output link of an 
actor, represents the ending point of an agent’s goal. If an input desire link contains 
tokens, then it indicates the adopted intention of an agent to bring about the desire, and 
if an output desire link contains tokens then it indicates the drop of intention 

• belief link: it is related to the information that an agent has about the environment it 
occupies and represents the information, which the agent handles or sends to the 
environment. In particular, the information, which must be sent to another agent, 
constitutes a subset of belief links and is represented by the communication belief link. 
The belief links can also be used as conditions that precede or follow an action of the 
system. 

 

 

Fig. 2. The links provided by AOMFG 

 

sein din

doutseout

actor

Name Type

Interface part

InputLinks

OutputLinks

Behavioral part

Rule

Functional part

OperationFunction

BindingFunction

Name Type

Interface part

ProducingActors

ConsumingActors

Functional part

Class

Guard

OperationFunction

Link Actor

Behavioral part

Use

 

Fig. 3. The internal structure of actors and links 

4.2 Formal definition of AOMFG 

An AOMFG is a directed, bipartite graph combining text and graphics. It is described by the 
tuple AOMFG=(A, L, E, T), satisfying the following requirements: 

• A is a non-empty set of actors  

• L is a non-empty set of links 

• E is a non-empty set of edges connecting the links and actors, where E⊆(A×L)Ӣ(L×A) 

• T is a non-empty set of coloured tokens 
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• AӡL=∅ and AӢL≠∅ 
The set of actors A is a non empty set such that  

A= ActionActor Ӣ ContextActor Ӣ LibraryActor Ӣ GroupActor, where  

ActionActor= PrivateAction Ӣ ForeignAction and  

LibraryActor= SequenceLibraryActor Ӣ ConcurrencyLibraryActor Ӣ ConditionLibraryActorӢ 

NonDeterministicChoiceLibraryActor Ӣ IterationLibraryActor. 
In addition, the intersection between the members of A is the empty set, e.g. 

ActionActorӡContextActor = ∅ etc. 

Every actor a∈A is a tuple  

a=(Name, InputLinks, OutputLinks, Rule, OperationFunction, BindingFunction, Type), where 
Name is the name of the actor, 
InputLinks is a function, which returns the set of input links and is defined as 

InputLinks: A→℘(L), 

InputLinks(a)={l | l is a link that is connected with an edge directed to the actor a} where 

℘(L) is the powerset of L, 

∀a∈A, InputLinks(a)⊂L and, 

∀a∈A, ∀l∈ InputLinks(a), <l, a>∈E 
OutputLinks is a function, which returns the set of output links and is defined as 

OutputLinks: A→℘(L), 

OutputLinks(a)={l | l is a link that is connected with an edge directed from the a} where 

℘(L) is the powerset of L, 

∀a∈A, OutputLinks(a)⊂L and, 

∀a∈A, ∀l∈ OutputLinks(a), <a, l>∈E 
Rule is a function, which returns the set of rules that describe the actor’s behaviour during 
firing. As it is mentioned above a rule has a pre-condition part and a post-condition part. 
The functions PreCond and PostCond return the links that take place in the firing and in the 
firing results of the actor respectively. In addition, they return the tokens, which are 
consumed and produced respectively during actor firing. The domain of those functions is 
the set of rules R; the union of every actor’s set of rules constitutes the R. The functions 
PreCond and PostCond are defined as  

PreCond: R→(L×T) and PostCond: R→(L×T) 
where  

∀(l, t)∈PreCond(r), l∈InputLinks(a), a∈A, t∈T and 

∀(l, t)∈PostCond(r), l∈OutputLinks(a), a∈A, t∈T 
As a result the Rule function is defined as 

Rule: A→℘(R), 

Rule(a)={r |r ≡ PreCond(r) ⇒ PostCond(r)}, where ℘(R) is the powerset of R. 
OperationFunction is the function that describes the operations an actor does when its firing 
is caused 
BindingFunction is the function that determines the binding of variables; essentially, it 
determines the colour value of each token that the actor handles 
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Type is a function that returns the actor internal complexity and is used during the 
decomposition of the actor. For example the returned value may be ContextActor, 
PrivateAction, SequenceLibraryActor, etc.  
The set of links L is a non empty set such that  

L=EventLink Ӣ DesireLink Ӣ BeliefLink, where 

EventLink=SystemEventLink Ӣ SystemCommunicationEventLink Ӣ UserEventLink 
and 

CommunicationBeliefLink⊆BeliefLink. 
In addition, the intersection between the members of L is the empty set, e.g. 

EventLinkӡDesireLink =∅ etc. 

Every link l∈L is a tuple 

l={Name, ProducingActors, ConsumingActors, Class, Use, Guard, OperationFunction, Type}, 
where 
Name is the name of the link, 
ProducingActors is a function, which returns the set of producing actors, which supply the 
link with tokens and is defined as 

ProducingActors: L→℘(A), 

ProducingActors(l)={a | l∈PostCond(r), ∀r∈Rule(a), a∈A}, and 

ProducingActors(l)⊂A, 

where ℘(A) is the powerset of A. 
ConsumingActors is a function, which returns the set of the actors, which consume the tokens 
of the link and is defined as 

ConsumingActors: L→℘(A), 

ConsumingActors(l)={a | l∈PreCond(r), ∀r∈Rule(a), a∈A} and 

ConsumingActors(l)⊂A, 

where ℘(A) is the powerset of A. 
Class is a function that returns a predicate, which describes the class of the link and 
determines the accepted colour of tokens 
Class(l)∈{EventLink, DesireLink, BeliefLink} 
Use is a function that returns a predicate, which describes the use that a link allows on its 
tokens. The returned value Normal refers to input links while the returned value OK refers to 
output links (graphically, the links of Use=OK are represented with a check mark on their 
edge) 

Use(l)∈{Normal, OK} 
Guard is a function that describes the accepted values of the coloured tokens 
OperationFunction is the function that describes the operations a link does such as token 
integrity or error handling based on the value returned by the Guard function 
Type is a function that returns the link’s internal complexity and is used during the 
decomposition of the link. For example the returned value may be SystemEventLink, 
DesireLink, etc. 

4.3 Model execution 

The model execution is based on the notion of the state of a system, and of changes in state 
being caused by events. A state of an AOMFG represents the distribution of tokens over the 
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system links at some moment in time and is defined as a function S, such that S: L→{0, 1, 
2,…}. AOMFG has an initial state S0 (initial marking), which is the initial assignment of 

tokens to the system’s links. An AOMFG initial state is defined as S0: L→{0, 1, 2,…} and 
consequently an AOMFG together with its initial state is defined as (AOMFG, S0). 
Essentially, the above include the beliefs, desires and intentions of every agent the current 
moment; furthermore, describe what events are happening in the environment and how the 
whole multi agent system may evolve the next moment. As the behaviour of agents can be 
described in terms of agent states and their changes, AOMFG simulates this dynamic 
behaviour by state transition, which is a change from a state Si to a state Si+1. A state 
transition causes the redistribution of the tokens to links according to the actors’ firing rules. 
The history of the model execution can be considered to be a sequence of states and state 
transitions. 
A state changes according to the state transition function (firing rule). In addition, consider a 
weight function W on an arc <x, y>, where x is a link or an actor and y is an actor or a link, 

such that W: E→{1, 2,…}. For a link l∈L and an actor a∈A, l is an input link lin of a iff <l, 

a>∈E (there is an arc from l to a), and l is an output link lout of a iff <a, l>∈E (there is an arc 
from a to l). Every firing rule contains at least one desire link and one event link in its left 
and right part and optionally some belief links. The AOMFG firing rule is as follows:  

1. an actor a∈A is enabled if there is a rule r∈Rule(a) with an input desire link din on its left 

part (din∈PreCond(r)), which contains token. In this case the agent intends to bring about 

the specific desire, 

2. an enabled actor a∈A fires only if the input event link ein of the rule r∈Rule(a) 

(ein∈PreCond(r)), contains token and the rest input links of the rule contain tokens,  

3. the actor firing causes the consumption of tokens from all the input links lin, 

(lin∈InputLinks(a), and lin∈PreCond(r)), of the firing rule and tokens’ production to all 

the output links lout, (lout∈OutputLinks(a), and lout∈PostCond(r)), of the firing rule, 

causing a state transition. The new state S′ is defined as ∀l: l∈L S′(l)= S(l) + W(a, l)- 

W(l, a). 
The above imply that i) actors with the same desire link belong to a certain desire and they 

all lead to the accomplishment of the same higher goal, ii) all the state transitions are caused 

by events and this reinforces the model with the properties of responsiveness and pro-

activeness, and consequently iii) the undertaken actions lead to a certain goal that reflects a 

goal-directed behaviour. Furthermore, the history determines the state as previous beliefs 

(preconditions) are taken into consideration for the decision of the execution of an action. 

The above firing rule stands in the general case, whilst according to the actor’s type there are 
some parameters that alter the rule:  

• the colour of the tokens determines which rules of an actor are going to fire. The check 
of the tokens’ colour value is realized in the left part of the actor’s rule and a new value 
assignment or production of new tokens is realized in the right part of the actor’s rule in 
association with the binding function  

• the consumption of tokens is instantaneous if the actor terminates its execution in one 
time regular interval. In a different case the tokens of input desire and system event 
links (din, ein) are not consumed but they are retained until the actor terminates its 
execution. After actor termination these tokens are consumed and new tokens are 
produced in the output links 
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• every actor has an output desire link dout and an output system event link eout with 
Use(l)=OK. The dout link means the termination of the pursued goal, and the eout link 
means the successful processing of the event that caused the pursuing of the desired 
goal. It is mentioned that dout contains no information about the achievement of the goal; 
instead such information is contained in the actor’s output belief links. If tokens exist in 
the dout and the eout links then the execution of the actor is considered as successful. 

Every AOMFG graph describes the alternative ways that an agent can bring about a desire 
that is the plans the agent has in order to accomplish a goal. Furthermore, considering that 
the way an agent reasons, or deliberates with the others of the environment where it exists, 
can be described by the plans that an agent has, then a multi agent system can be considered 
as the union of all the AOMFG, that is  

( )0
MAS AOMFG ,

i
i

i

S=∪
 

Considering that L is the set of all MAS links, and MASS is the state transition function of a 

the multi agent system such that MASS: L→{0, 1, 2, 3, …}, then a system state transition is 
described as  

MASS′(L)= ∪ (S(l)+W(a, l)-W(l, a)). 

According to the firing rules, an actor is enabled when the input desire link of the 
behavioural rule contains token. This is very important for the model because it means that 
the agent has a goal and in addition it is committed to that goal; in other words, the agent 
intends the goal. All the actors that the agent intends are gathered in a list, which the model 
maintains, called intention list. The intention list comprises the third fundamental element of 
the BDI theory, the intentions. Thus, it is strongly connected with the theoretical model that 
the AOMFG is based upon. Only one of the actors residing in the intention list can be 
executed when the next event appears. Every new intended actor is placed at the head of the 
list and because of the head-to-tail examination of the list the head represents the current 
context. From the actors residing in the intention list those that belong in the current context 
are first examined and if no one recognizes the event then the rest of the list are examined. 
The actors remain in the intention list as long as their execution lasts. When the execution of 
the actor terminates, the actor is removed from the intention list. The above characteristics 
deal with the priorities between intentions and especially when an actor is more imperative 
than another. In the opposite case, belief links can be used as pre-conditions of the actor 
firing. 
The intention list represents the commitments of an agent to the others and to itself. These 
are parts of its mental state, which is reviewed and updated in every regular time interval. 
When an actor’s rule fires the contents of the intention list are changed according to the 
actor’s type. Thus, the firing of a context actor puts all the contained actors in the intention 
list, whilst the firing of an action actor usually removes a set of actors from the intention list. 
This is expected since a context actor contains sub-goals that must be accomplished while 
the firing of an action actor means the termination of a set of goals. Furthermore, a context 
actor can represent a persistent goal; the goal persists until the sub-goals are accomplished. 
For instance, the persistent goal “I persist to avoid crash when I want to go somewhere by 
car”, can be represented by a context actor “avoid crash” that is decomposed in several other 
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actors such as “driving a car”, “driving a motorcycle” and so on, and a belief link “destination is 
reached”. The actor “avoid crash” is kept in the intention list until it is believed that 
destination is reached that is the execution of the actor “driving a car” terminates and the 
belief link “destination is reached” has a token with value true. The library actors administrate 
the intention list and depending on their type they add, remove or preserve goals and 
actions, which must be executed or have been already executed. 

4.4 Decomposition 

Since an AOMFG is an agent’s plan that describes the necessary actions for the fulfilment of 

a desire, it is useful to support the composition and the decomposition of the plans in order 

to express higher goals and sub-goals respectively. This is realized with the use of special 

structures, in the style of dynamic logic (Harel, 1984), which determine the type of context 

actors and define the decomposition. The model supports goal decomposition and execution 

of the participating actions in the following ways: 

• sequential (;), that is the actions are executed one after the other,  

• non deterministic choice (|), that is one of the available actions may be executed,  

• concurrency (∥), that is the actions are executed in the same regular time interval,  

• with test (?), that is proportionately on the conditions which may hold some actions are 
executed,  

• iteration (*), that is the action is executed repeatedly until some termination condition is 
satisfied. 

Actually, the above kinds of decomposition are operators that determine the execution of 

the plans (Table 1), where a, b are action or context actors and c is the value of a coloured 

token. The functionality of these operators is embodied in the AOMFG library actors. 

 

a;b a is executed and then b is executed 

a|b Either a or b is executed but not both 

a∥b a and b are executed concurrently  

c?;a|¬c?;b If c holds then a is executed else b is executed 

a*c and ca*
a is executed repeatedly until c is satisfied (repeat-until loop) and a 
is executed repeatedly if c is satisfied beforehand (while-do loop) 

Table 1. Plan execution operators 

4.5 Library actors 

The decomposition capabilities of the model are supported with the help of the library 

actors. Library actors represent structure; they are in fact operators on computations. A 

library actor is in essence a pair of actors, where one of them constitutes the start (<library 

actor name>-S) of the decomposition and the other constitutes the end (<library actor name>-

E). Those actors perform the stated actions of decomposition and supervise the correct 

distribution of tokens to the participating actors, and the correct termination of the 

execution. As participating actors, it is meant any combination of action, context or group 

actors. It is mentioned that when a context actor is decomposed then library actors represent 

this decomposition. The library actors provided by AOMFG are described in the sequel. 
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Sequence-S, sequence-E 

When a token is produced in the input desire link of the sequence-S actor, then it produces 

tokens in the input desire links of the participating actors. The participating actors are 

placed in the intention list and remain there until the termination of the execution of the 

context actor. When a token is produced in the input event link of the sequence-S actor, then 

it produces tokens progressively in the input event links of the participating actors. The 

sequence-E actor produces tokens in its output desire and event links when it will receive 

tokens from all the output links of the participating actors. In addition, it removes the 

participating actors from the intention list. 

Non-deterministic-choice-S, non-deterministic-choice-E 

When a token is produced in the input desire link of the non-deterministic-choice-S actor, 

then it produces tokens in the input desire links of the participating actors. These actors are 

placed in the intention list and remain there until the termination of the execution of the 

context actor. When a token is produced in the input event link of the non-deterministic-

choice-S actor, then it produces tokens non-deterministically in the input event links of the 

participating actors. The non-deterministic-choice-E actor produces tokens in the output 

desire and event links when it receives tokens from the respective output links of the 

participating actors. In addition, it removes the participating actors from the intention list.  

Concurrency-S, concurrency-E 

When a token is produced in the input desire link of the concurrency-S actor, then it 

produces tokens in the input desire links of the participating actors. The participating actors 

are placed in the intention list, and remain there until the termination of the execution of the 

context actor. When a token is produced in the input event link of the concurrency-S actor, 

then it produces tokens in the input event links of all the participating actors. The 

participating actors are executed concurrently. The concurrency-E actor produces tokens in 

the output desire and event links when it receives tokens from all output links of the 

participating actors. In addition, it removes the participating actors from the intention list. 

Condition-S, condition-E 

The condition-S actor contains condition “if…then…else” where it examines the conditions 

that must hold and produces tokens in the proper event links of the participating actors. 

However, it produces tokens in all the input desire links of the participating actors and it 

places all the actors in the intention list. The condition-E actor checks the termination of the 

actors’ execution, and produces tokens in the output desire and event links. In addition, it 

removes the participating actors from the intention list.  

Iteration-S, iteration-E 

The iteration library actor is a kind of execution rather than a decomposition mechanism. 

Both iteration-S and iteration-E actors may have condition, which determines the start and 

the end of the execution repetition. In this way can be described loops such as “while…do” 

and “repeat…until”. The same holds for the termination of the context actor, too. The 

participating actors determine the decomposition and administrate the intention list. If the 

termination condition of the iteration library actor is not satisfied then the tokens are not 

consumed from the input desire and event links of the context actor. 
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4.6 Transformation to Petri Nets 

AOMFG is based on Petri Nets. Links resemble the places of Petri Nets. However, AOMFG 
provides a variety of link types and helps to the distinguishing of the different events that 
happen in a multi agent system, as well as to the reflection of the notions of an intentional 
system. Since Petri Nets are inherently event driven there is no representation of any kind of 
events. In order to transform an AOMFG to a Petri Net, the event links are eliminated 
without loss of expressiveness. Although action actors resemble the transitions of Petri Nets, 
context actors are more complex entities, as they are decomposition or composition 
structures. Since, the decomposition or composition of context actors is achieved via the 
library actors, their correspondence to the Petri Nets is presented in the sequel. The 
transformation of AOMFG model to equivalent Petri Nets makes it subject of analysis 
methods that imply on Petri Nets. 
In Fig. 4, the sequence-S library actor sends tokens to the action actor t2, and after the 
execution termination of the latter the action actor t3 starts execution. In the correspondent 
Petri Net, the initial marking is at place p1 and the transitions t2 and t3 are executed 
sequentially; the transitions t1 and t4 represent the sequence-S and sequence-E library actors 
respectively. The virtual transition tv, simulates the operation of library actors that control 
the sequential execution. 
In Fig. 5(a) either action actor t2 or action actor t3 is executed. The operation of the non-
deterministic-choice-S actor is represented in Fig. 5(b) where either transition tv1 or tv2 fires. 
In addition, only one of the transitions tv3 or tv4 is needed to fire for the process termination. 
In Fig. 6(a), the initial marking is in link p1 and the concurrency-S library actor sends tokens 
to both action actors t2 and t3 so they can be executed concurrently. Similarly in Fig. 6(b) the 
transitions t2 and t3 fire simultaneously since transition t1 provides with tokens both places 
p2 and p4.  
In Fig. 7(a), the condition-S library actor sends a token to either action actor t2 or action actor 

t3 depending on the condition cond. Thus, only one of these action actors fires. In a similar 

way in Fig. 7(b) either transition t2 or t3 fires, and only one of the transitions tv1 or tv2 is 

needed to fire for the process termination. In Fig. 8(a) the action actor t2 is executed 

repetitively until the satisfaction of the condition cond, and in a similar way in Fig. 8(b) 

transition t2 does. In Fig. 9(a) if the condition cond=true then the action actor t2 is executed 

repetitively, and in a similar way in Fig. 9(b) transitions t2 does. 

 

Sequence-E

t2 t3

Sequence-S

p1

p2 p3

p4 p5

p6

 

p1 p2 p3t1 t2 p4 t3 p5tv p6t4

 

(a) (b) 

Fig. 4. Sequential execution 
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Non Deterministic choice-E

Non Deterministic choice-S

t2 t3

p1

p2 p3

p4 p5

p6

 

p1

p2

p3

p4

p5

p6

t3 tv4

t2tv1

tv2

tv3

 

(a) (b) 

Fig. 5. Non deterministic choice 
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Fig. 6. Concurrency 
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Fig. 7. Condition 
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Iteration-S

cond

t2

p1

p2

p3

p4

Iteration-E

 

t2 p3
if cond=true

p1

p4

if cond=false

p2
t1

(a) (b) 

Fig. 8. Iteration (repeat…until loop) 

 

Iteration-E

t2

Iteration-S

cond

p1

p2

p3

p4

 

t2

p2
if cond=true

p1p3
if cond=false

p4
t3

 

(a) (b) 

Fig. 9. Iteration (while…do loop) 

4.7 Discussion 

The basic notions of BDI theory are embodied and represented by the structure of AOMFG. 

The beliefs are represented by the belief links that usually constitute the prerequisite or the 

results of an agent’s actions. Thus, they are strongly connected to the planning of an agent’s 

actions and decisions. The desires are described by the desire links and determine the 

context where the actions take place in order to achieve the agent’s goals. The desires as 

input links determine the initiation of a higher goal and through the goal decomposition 

they determine the partially desires for the achievement of this goal. As output links, they 

examine and mark the successful termination of the executed actions that took place for the 

goals’ achievement. The existence of the appropriate tokens in the desire links indicates the 

intentions to accomplish desires. All the enabled actors are placed in the intention list and 

point out the effort and the commitment of the agent to fulfil its desires as well as its 

obligations to the other agents. The communication between the agents is represented by the 

foreign action actors and as a part of the agent’s actions is in accordance to the speech act 

theory. The communication belief links describe shared information, while the 
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communication event links represent the triggering of communication and interaction 

events. The existence of foreign action actors and communication belief or event links, 

indicates the awareness of an agent about the capabilities and the needs of the other agents 

and it is an important factor for the role of every agent as a member of a team. In addition, 

this reflects implicitly nested mental states as in the example of the section “Specifying a real 

life system”. 
The model focuses on the description of the agent’s goals and on the different ways they can 
be achieved. Thus, it does not represent desires, which cannot ever be accomplished. 
Instead, are represented desires that either can or cannot be accomplished based on the 
current situation of the environment or on the context they are performed. In this way, the 
intentions eventually drop. This is in accordance to the models of the Cognitive Engineering 
and especially those of Cognitive Complexity Theory that regard the human-computer 
interaction as iterative goal decomposition that leads to a sequence of actions; in addition, 
they maintain the goals and consequently the subgoals in a short-term memory, which 
represents the adopted intention to accomplish the goal or even the persistence of the goals. 
The capabilities of an agent are not represented explicitly by an element of the model but 
they are specified by the actions that an agent is capable to perform. The participation and 
the role of an agent in teamwork depend on its capabilities and its desires.  
The graphical nature of the model makes it a user-friendly tool for formal specifications of 
multi agent systems. As it is, in essence, a HLPN, it inherits from Petri Nets many 
characteristics. Petri Nets are graphical formal specification models with strong 
mathematical background, powerful analysis techniques, and broad use in a range of 
applications. AOMFG model based on Petri Nets, incorporates principles of cognitive 
models and mental notions for the description of the behaviour of the agents, and results a 
model with theoretical background and an attractive, comprehensible tool, which visualizes 
the modelling and it is easy to be learnt and used by software engineers and software 
system designers. 

5. Model validation 

During specification process a software engineer focuses on those characteristics that he 
considers critical or not clear. As a result, a system specification may be viewed by different 
perspectives. In order to demonstrate the generality of AOMFG model and its potential use 
in many different ways for reasoning about multi agent systems, four different perspectives 
are used. The case studies that are used for model validation include an algorithmic one and 
especially Shoham’ s algorithm for the generic agent interpreter presented in (Shoham, 
1993), a cooperating problem solving one and especially a communication protocol from the 
standards of FIPA (Foundation for Intelligent Physical Agents) (www.fipa.org), BDI related 
properties described in (Rao & Georgeff, 1995), and finally the specification of the 
Dermatology Tutor system (Zaharakis et al., 1998).  

5.1 Generic agent interpreter 

Shoham proposed the agent-oriented programming (AOP) paradigm as a specialization of 
object-oriented programming paradigm. Particularly, “AOP specializes the framework by 
fixing the state (now called mental state) of the modules (now called agents) to consist of 
components such as beliefs (including beliefs about the world, about themselves, and about 
one another), capabilities, and decisions, each of which enjoys a precisely defined syntax. 
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Various constraints are placed on the mental state of an agent, which roughly correspond to 
constraints on their common sense counterparts. A computation consists of these agents 
informing, requesting, offering, accepting, rejecting, competing, and assisting one another” 
(Shoham, 1993, p.56). In AOP a multi modal formal language is introduced which describes 
the agents’ mental state and a generic agent interpreter that describes the agents’ behaviour. 
The interpreter works by consistently iterating between the following processes: 

• read the current messages, and update your mental state, including your beliefs and 
commitments (the agent program is crucial for this update) 

• execute the commitments for the current time, possibly resulting in further belief 
change (this phase is independent of the agent’s program) (Shoham, 1993, p.68). 

Time is counted in regular intervals determined by the target execution platform. According 
to the above algorithm there are two independent processes, which run iterative at regular 
intervals.  
A private AOMFG action actor, the update-mental-state, and a context AOMFG actor, the 
execute-commitment can represent these processes (Fig. 10). The update-mental-state action 
actor checks and updates the agent’s mental state according to the model that specifies its 
properties. The check and update mechanisms are not examined from the presented 
perspective; instead they can be implemented with the use of a programming language. The 
system event input link sin=sel1 and the desire input link din=ums represent the system 
qualification for the fulfilment of the goal to check or update its mental state. The system 
communication input event link cein=“incoming messages” represents the reading of incoming 
messages, which may be several requests or informs from other agents of the environment. 
The content of these messages is the subject that is examined by the mental state. The 
AOMFG model generates tokens in the sin=sel1 and the din=ums. When an incoming message 
exists a token is generated in the cein=“incoming messages”. When the action update-mental-
state terminates then tokens are produced in the output belief link bout=“update results”, 
which represents the conclusions of the check and update of the mental state, and in the 
system and desire output links sout=sel1.OK and dout=ums.OK respectively. The AOMFG 
model generates tokens in the sin=sel2 and the din=ec too, however the “execute commitment” 
context actor cannot start execution until bin=“update results” contains tokens. The execute 
commitment process is represented by a context actor since it is a process that corresponds 
to many actions the agent is able to perform and may be decomposed to several other 
actions. Because of its general nature, it is not further decomposed here. When the process 
terminates, tokens are produced in the system and desire output links sout=sel2.OK and 
dout=ec.OK respectively. Any resulting information is stored in the belief link bout=“action 
results”, and if there are messages for other agents then the communication event 
ceout=“outgoming messages” is triggered. 
AOMFG turned out to be a general enough model and capable of describing in a clear and 
straightforward way the two independent processes contained in the algorithm proposed by 
Shoham for his generic agent interpreter, which is the basis of the agents that can be built 
according to the AOP paradigm. The generality of the algorithm results in generality of the 
graphs, and lies mainly on the second process of the algorithm and consequently on the 
context actor “execute commitment”. Nevertheless, in an implementation phase this context 
actor corresponds to a number of other actors that constitute instances of this actor. These 
instances can be executed concurrently or can be suspended as it happens in AGENT0 that 
implements Shoham’ s algorithm. Furthermore, AOMFG can be used to describe the agent 
mental state and the alternative actions an agent may choose. However, the notion of time 
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that is used explicitly in AOP cannot be represented in AOMFG in a straightforward way. 
Instead, the use of belief links as action preconditions can substitute the explicit reference to 
time.  
 

update mental state execute commitment

incoming 

messages
sel1 ums

ums.OKsel1.OK action 

results

sel2 ec

update 

results

ec.OKsel2.OKupdate 

results

outgoing 

messages

 

Fig. 10. Shoham’ s generic agent interpreter 

5.2 FIPA communication protocols 

The Foundation for Intelligent Physical Agents (FIPA) has published a series of specification 

documents including the Communicative Act Library Specification (www.fipa.org). In this 

document, in addition to the formalism, a series of standard communication protocols 

between agents is presented. These protocols are based on speech act theory (Searle, 1969) and 

include communication actions such as request, request-whenever, request-when. Due to 

space limitations, the AOMFG is used to describe FIPA-request protocol only.  

According to FIPA-request protocol, an agent requests an action from another agent and the 

latter either does not understand the message, or refuses the action and justifies the refusal, 

or agrees to perform the requested action and after the action termination it informs the 

requester agent about the results of the action. 

For representing the FIPA-request protocol, two processes take place: the send process (Fig. 

12), which is fired when a request is desired, and the receive process (Fig. 11), which is fired 

when a request has happened and there is a need for reaction. In essence, the AOMFG for 

the send process describes how an agent behaves after the request has been sent. The same 

holds for the receive process, i.e., after a request has been received. This concession has been 

done since it is trivial to describe these two processes e.g., by two single events. 

 

response=
{not_understood,

refuse, agree}

execute requested action

results=
{failure, done}

sel3 r2

response= 

agree

r2.OKsel3.OK

sel2 r1

r1.OKsel2.OK

evaluate request

requested 

action

 

Fig. 11. FIPA-request protocol: receive process 
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Suppose that an agent (the receiver) received a request message from another agent (the 
sender). This is represented by the communication input event link cein=“requested action”. 
The receiver evaluates the request with action actor “evaluate request” and has to respond 
that it either did not understand the message, or that it refuses the action or that it agrees to 
perform the action. The response is represented as communication output belief link 
cbout=“response”. It is mentioned that the values of cbout=“response” are one among 
not_understood, refuse or agree. If the receiver agrees to perform the requested action then 
the context actor “execute requested action” is fired since there exist tokens in its entire input 
links. After the execution of the action, the receiver has to inform the sender about the 
results of the performed actions. Those results are represented by the cbout=“results”, which 
may have the values failure or done.  
Suppose now, that an agent (the sender) sends a request message to another agent (the 
receiver). After the evaluation of the request by the receiver, a communication event link 
represents receiver’s response as cein=“response”. The whole process is specified by a 
condition library actor, which checks the content of cein=“response” and enables the 
appropriate action actor. In order to achieve this, the condition-S library actor contains the 
following rules:  
i. if response=not_understood then (sel1.1 and ra1) 
ii. if response=refuse then (sel1.2 and ra2) 
iii. if response=agree then (sel1.3 and ra3) 
Since the successful termination of only one action actor is necessary, the condition-E library 
actor contains the rule: 

if {(sel1.1.OK and ra1.OK) or (sel1.2.OK and ra2.OK) or (sel1.3.OK and ra3.OK)} then (sel1.OK 
and ra.OK) 

The action actor “wait until requested action terminates” does not consume the tokens of its 
input links until it is believed that the action has been performed. The fact that something is 
believed can be modelled by another AOMFG that specifies the agent’s mental state such as 
the one of Fig. 10.  
 

Condition -S

Condition -E

recover action for 

misunderstanding

sel1 ra

ra.OKsel1.OK

failure

done

sel1.3 ra3

ra3.OKsel1.3.OK

sel1.1 ra1

ra1.OKsel1.1.OK

wait until requested 

action terminates

recover action for 

refusal

sel1.2 ra2

ra2.OKsel1.2.OK

response

 
Fig. 12. FIPA-request protocol: send process 
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AOMFG was used to describe communication between agents in the sense of speech act 
theory. For this reason, the FIPA-request protocol was used as a test case. Although FIPA 
standards describe the communication process from an external observer’s view, in this 
work the description is from an internal observer’s view and focuses on the reactions of the 
agent in a communication action. This is due to the reasons of unity, uniformity, continuity 
and autonomy of the graphs and the specification method. Since AOMFG is used for the 
specification of the reasoning process and the actions of every agent separately, the 
communication should not be an exception. Besides, the model regards and manages the 
communication actions as physical actions. However, a different use of the model (external 
observer’s perspective) is possible and this is due to the designer’s choice.  

5.3 BDI related properties  

The AOMFG model reflects and explicitly represents the notions described by the BDI 
formalism, so this section attempts to represent some BDI related properties. The used BDI 
logic is a multi modal temporal logic based on the branching time logic CTL* (Emerson, 
1991). The basic concept of the BDI logic is the transformation of a decision tree and the 
functions applied to it, to an equivalent model that represents beliefs, desires and intentions 
as accessibility relations over a set of possible worlds. Each world is a time tree with a single 
past and a branching future, with nodes corresponding to a possible system state and 
representing the options available to the system itself or the state of the environment which 
the system is embedded in, and with arcs (transitions) representing the different system 
actions for the achievement of an objective.  
In this way, there are belief-, desire- and intention-accessible worlds corresponding to the states 
that the system believes to be possible, desires to bring about and intends to bring about, 

and belief-, desire- and intention-accessibility relations (B, D and I, respectively) which are the 

transitions between the worlds. The detailed syntax and semantics of the BDI logic are 
described in (Rao & Georgeff, 1995); in the following only its basic properties are briefly 
presented.  
 

 Beliefs Desires Intentions 

K-axiom 
BEL(p) ∧ BEL(p ⊃ q) ⊃ 
BEL(q) 

DES(p) ∧ DES(p ⊃ q) 

⊃ DES(q) 

INTEND(p) ∧ INTEND(p ⊃ 

q) ⊃ INTEND(q) 

D-axiom 
BEL(p) ⊃ ¬BEL(¬p) DES(p) ⊃ ¬DES(¬p) INTEND(p) ⊃ 

¬INTEND(¬p) 

4-axiom BEL(p) ⊃ BEL(BEL(p))   

5-axiom 
¬BEL(p) ⊃ 

BEL(¬BEL(p)) 

  

Table 2. The axioms of the KD45 system 

The normal modal system KD45 (weak-S5) is adopted for beliefs, while the K and D axioms 
are adopted for desires and intentions. K-axiom states that if an agent believes (desires or 

intends) p and believes (desires or intends) that p ⊃ q then it will believe (desire or intend) q. 
D-axiom says that the agent' s beliefs (desires or intentions) are not contradictory. 4-axiom 
and 5-axiom are respectively the positive and negative introspection axioms: 4-axiom states 
that an agent is aware of what it knows and 5-axiom says that an agent is aware of what it 
does not know. The axioms of the KD45 system are summarized in Table 2, where p, q are 
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propositions of the classical propositional logic, “∧”and “⊃” are the propositional 
connectives for conjunction and implication, and BEL, DES and INTEND are modal 
operators representing the agent’s beliefs, desires and intentions respectively. 

The necessitation rule is applied in beliefs, desires and intentions (Table 3)1:  
 

 Necessitation rule 

Beliefs If ` p then ` BEL(p) 

Desires If ` p then ` DES(p) 

Intentions If ` p then ` INTEND(p) 

Table 3. The necessitation rule for beliefs, desires and intentions 

As the belief-, desire- and intention-accessible worlds are sets and in the same time are time 

trees, there are set relationships (⊆, ∩ etc.) and structure relationships (sub-world, identical 

or incomparable worlds) between them. Depending on the combinations of the above 

relationships and the axiomatizations of them, three constraints are under consideration: 

strong realism (Rao & Georgeff, 1991a), realism (Cohen & Levesque, 1990) and weak realism 

(Rao & Georgeff, 1991b). Structurally, AOMFG reflects the properties of realism since 

according to realism constraint an agent intends the actions it desires to bring about and it 

desires the actions it believes that can be achieved. In AOMFG model, the desires are 

represented by desire links and the intentions by desire links containing tokens. In addition, 

it is known the existence of the desire links a priori. Formally, I⊆D⊆B, that is if an agent 

intends an action then it desires it and it believes it too. 
However, AOMFG does not restrict the designer of an application to use one or another 
constraint. It is the designer’s responsibility to use AOMFG in such a way that the properties 
of a constraint can be reflected. So, it is possible to reflect the properties of the other constraints 
too as this is depending on the broader concept in which, designer uses the model. Some of the 
characteristics of the weak realism are referred in the following, as it is the constraint for which 
some properties will be described by AOMFG. According to weak realism, the intersection 
between the belief-accessible worlds and desire-accessible worlds is not null and an agent does 
not desire a proposition the negation of which is believed. The same holds between desire- and 
intention-accessible worlds and between belief- and intention-accessible worlds. An agent 
does not intend a proposition the negation of which is desired or is believed (Table 4).  
 

Semantic Condition Distinguishing Axiom 

B ∩ D ≠ ∅ BEL(p) ⊃ ¬DES(¬p) 

D ∩ I ≠ ∅ DES(p) ⊃ ¬INTEND(¬p) 

B ∩ I ≠ ∅ BEL(p) ⊃ ¬INTEND(¬p) 

Table 4. The BDI modal system for weak realism 

Some other properties that characterize the weak realism are the asymmetry thesis proposed 

by Bratman (Bratman, 1987) and extended by Rao and Georgeff (Rao & Georgeff, 1991b). 

Among them the intention-belief incompleteness (⊭INTEND (p) ⊃ BEL(p))2, which is 

                                                 
1 ‘`’ means that the formula which follows is valid 

2 ‘⊭’ means that the formula which follows is not satisfiable  
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allowed by weak realism, is selected to depict how this property can be represented by 

using AOMFG. In essence, it means that an agent intends to do an action but does not 

believe that it will do it. As a validation scenario is used the example referred in (Rao & 

Georgeff, 1995, p.33), in which Robbie the robot has an intention of opening the door when 

the bell rings but it does not believe that it will open the door when the bell rings because it 

might be serving beer.  
 

Concurrency-E

sel sb

sb.OKsel.OK

sel1 sb1

sb1.OKsel1.OK

open door

sel2 sb2

sb2.OKsel2.OK
beer served

bell rings

Concurrency-S

serve beer

 

Fig. 13. Concurrent tasks for Robbie 

Robbie serves beer while the bell rings (Fig. 13). The context actor “open door” is fired and is 
decomposed in the graph of Fig. 14. It is mentioned that both actors “serve beer” and “open 
door” may be in the intention list since Robbie might not have finished serving. In this case, 
the action actors “move” and “open” cannot fire since the condition link “beer served” contains 
no tokens and consequently no tokens can be produced in belief link “door opened”. So action 
actor “do nothing” fires and the context actor “open door” terminates its execution. It is 
mentioned that although “do nothing” is a void action it is considered as an action (in the 
flavour of speech act theory) that affects the environment as any other action does. 
In the above, AOMFG was used to describe BDI related properties. Since it is based on BDI 
theory most of the properties are embodied in its semantics. Although the model 
structurally reflects the realism constraint, other BDI properties can be described too, but it 
is mentioned that is critical how the model will be used for such a purpose. This is not 
necessarily a drawback since even in theory there is a need of different logics in order to 
express the several constraints and their asymmetry thesis. It is mentioned that a primary 
aim of the AOMFG is to hide the complexity of strict formalisms from designers who are not 
experts in formal specification methods.  

5.4 Specifying a real life system 

General description of the Dermatology Tutor 

The Dermatology Tutor (Zaharakis et al., 1998) is an intelligent tutoring system used for 
teaching Dermatology at the Department of Dermatology, School of Medicine, University of  
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do nothing

sel2 sb2

sb.OKsel1.OK

sel2.1
sb2.1

sb1.OKsel1.1.OK be_at_pos

Non Deterministic choice-S

sel2.2 sb2.2

sb.OKsel2.2.OK

sel2.2.1 sb2.2.1

sb2.2.1.OKsel2.2.1.OK

open

sel2.2.2 sb2

sb2.OKsel2.2.2.OK

beer served

be_at_pos

Sequence-S

move

Non Deterministic choice-E

door opened

bell rings

Sequence-E

 

Fig. 14. Alternative actions according to Robbie’s mental state 

Patras. The Dermatology Tutor uses a self-organized society of autonomous software agents  
who have different capabilities or roles. In particular, the tutoring system for teaching 
dermatology consists of nine agents. A user can interact with the multi agent system 
through the user interface, which processes all the requests that come from the environment 
outside the system (i.e. the user). Depending on the event, this module (which has not been 
implemented as an agent) activates either the Dermatology Agent or the Help Agent. If they 
have a desire for the requested action and they believe that it is possible, then they adopt an 
intention about it. However, if there is a need to cooperate for task accomplishment then a 
structured society is constructed. As the architecture is composed for tutoring purposes, 
only the Dermatology Agent can act as an instructor; all the instructional strategies necessary 
for the tutoring process are contained in this agent’s plans. The other agents populating the 
society called medical agents, can be members of a team formed by the Dermatology Agent 
and they can also communicate each other. Currently seven medical agents have been 
implemented: Histology, Physiology, Biology, Biochemistry, Microbiology, Radiology and 
Immunology agent. Each of them specializes on the corresponding medical domain and can 
provide knowledge and information about the domain matters. Furthermore, medical 
agents can request an action from third level agents (information agents) who may be local 
or remote and are responsible for information retrieval. The information agents are 
registered to the system and medical agents are aware of their existence. Although the 
information retrieval may be performed by a non-agent software system, their behaviour 
could be considered as one of an autonomous agent. 
When the trainees use Dermatology Tutor, they have to select from a list of available actions, 
which includes “Teach”, “Topic”, “Search” and “Help”. Each action causes the execution of 
one of the agent’s high-level plans. For each trainee, a student environment is created, which 
records performance information. Currently, Dermatology Tutor creates a set of files for each 
trainee, where it records personal data, as name, year of study, specialty and performance 
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data, as the goals accomplished, the learning units seen, the time spent on each plan or 
learning unit, the answers given and the score taken in each test, and the level of competence. 
In this way, Dermatology Tutor records the last position of the trainee, while performance 
information is used to decide the values of the preconditions of the agents’ plans. 
As described above, the plans specify the ways that an agent brings about its intentions. 
They refer to an agent’s desires and they consist of actions that must be executed. There may 
exist more than one plan for each desire. Typically, plans have a name (plan name), pre-
conditions that describe the plan triggering, and a body part, which describes the actions 
that will take part in the plan execution.  

Using AOMFG for the specification of Dermatology Tutor 

Suppose that the issue of psoriasis has to be taught. The Dermatology agent has a desire 
named “Teach psoriasis” and a plan in its plan library in order to carry out such a desire 
(Table 5). Each step of this plan constitutes a lower-level plan that can be further analyzed. 
The Dermatology agent is aware of the medical agents and can form teams in order to go 
through with its goals. In the following, the etiology and pathogenesis of psoriasis plan is 
examined. Dermatology agent adopts an intention about this goal and executes the 
corresponding plan (Table 6). In order to do this it needs to form a team with Biology, 
Biochemistry, Immunology, and Histology medical agents. 
 

Plan name: Teach psoriasis 
Pre-conditions:  
Plan body: Definition and Epidemiology  
 Clinical View  
 Histological View  
 Etiology and Pathogenesis 
 Treatment 

Table 5. Dermatology agent plan for teaching psoriasis 

 

Plan name: Etiology and Pathogenesis  
Pre-conditions:  Associated Agents 
Plan body: Disorder of protein expression in 

keratinocytes 
Biology, Biochemistry 

 Antigenic stimulation and 
immunology activation 

Immunology 

 Proteases and intense mitotic activity Biology, Biochemistry 
 Metabolic disorders Biochemistry 
 Histopathologic changes of psoriasis Histology 

Table 6. Etiology and Pathogenesis plan of the Dermatology agent 

The representation of “Etiology and pathogenesis” plan of the Dermatology agent with an 
AOMFG is depicted in Fig. 15. The plan is decomposed in foreign actions, which are requested 
from other agents. The context actor “Proteases and intense mitotic activity” is further 
decomposed in Fig. 16. The input desire link ep corresponds to the desire to teach the topic of 
etiology and pathogenesis of psoriasis, while the epi, i=1,…,5, correspond to the sub-goals 
which must be accomplished. When the agent adopts an intention to bring about this desire, a 
token is produced in the ep link. In addition, a token is produced in the system event link sep.  
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Fig. 15. Etiology and pathogenesis AOMFG 

 

Concurrency -S

Concurrency -E

Proteases

sep3 ep3

ep3.OKsep3.OK

sep3.1 ep3.1

ep3.1.OKsep3.1.OK

Mitotic activity

sep3.2 ep3.2

ep3.2.OKsep3.2.OK

 

Fig. 16. Decomposition of “Proteases and intense mitotic activity” context actor 

As the sep and ep input links contain tokens, the Sequence-S library actor produces tokens to 
every epi. All the actions are put in the intention list of the Dermatology agent as they are 
ready to fire (enabled). In addition, the Sequence-S library actor produces a token to the sep1 
and the action “Disorder of protein expression in keratinocytes” fires. When the execution of 
the action terminates, then the tokens of sep1 and ep1 are consumed and tokens are 
produced to sep1.OK and ep1.OK. Afterwards, the Sequence-S library produces a token to 
sep2 and the same process follows. A concurrency library actor decomposes the context actor 
“Proteases and intense mitotic activity” and this means that when the actor fires, both 
actions “Proteases” and “Mitotic activity” are executed concurrently. 
In order to fulfil its first partial goal (“Disorder of protein expression in keratinocytes”) 
Dermatology agent requests the action from Biochemistry and Biology agents. As both 
Biochemistry and Biology agents have a desire about the requested action they adopt an 
intention about it (Table 7 and Table 8). AOMFG in Fig. 17 and Fig. 19 represent the plans of 
the Biochemistry and Biology agents respectively. The “Disorder of protein expression in 
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keratinocytes” plans are detailed while the rest can be similarly represented. When both 
Biology and Biochemistry agents request this action, a token is produced in each input 
communication event links of the corresponding AOMFG in Fig. 18 and Fig. 20. Both agents 
adopt an intention, which means they produce a token to kp and pe desire links respectively. 
Furthermore, they produce a token to the skp and spe, respectively. 
 

Plan name: Disorder of protein expression in keratinocytes: Keratinocyte proteins  
Pre-conditions:  Associated 

Agents 
Plan body: Types of keratinocytes  
 Protein conformation Biology 
 Abnormal conformation Biology 
 

Plan name: Proteases  
Pre-conditions:  Associated 

Agents 
Plan body: Proteases definition  
 Abnormalities  
 

Plan name: Metabolic disorders  
Pre-conditions:  Associated 

Agents 
Plan body: Disorder of metabolic fermentations  
 � Disorder of metabolism of the cyclic nucleotides  
 � Disorder of metabolism of the arachidonic acid  
 � Disorder of metabolism of the polyamide  
 � Disorder of metabolism of the phosphatides  
 Vascular dysfunction  

Table 7. Plans of the Biochemistry agent 

 

Plan name: Disorder of protein expression in keratinocytes: Protein expression 

Pre-conditions: Protein conformation, Abnormal conformation Associated 
Agents 

Plan body: Normal expression of keratinoproteins Biochemistry 
 Abnormal expression of keratinoproteins Biochemistry 
 
Plan name: Mitotic acivity  
Pre-conditions:  Associated 

Agents 
Plan body: Phases of mitotic activity Immunology 
 � keratinocytes  
 � macrophages  
 � lymphocytes  
 � mast cells  
 � neutrophilic cytes  
 Abnormalities of mitotic activity  

Table 8. Plans of the Biology agent 
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Biology agent cannot execute the first step (“Normal expression of keratinoproteins”) of its 
“Disorder of protein expression in keratinocytes: Protein expression” plan, because it has to 
wait for precondition “Protein conformation” to become true. Neither can it execute the 
second step, due to precondition “Abnormal Conformation” being false. These 
preconditions are represented by the communication beliefs Pc and Ac. Biochemistry agent 
handles both preconditions. When the latter can infer the truth or the falsity of those facts, it 
will inform Biology agent about the results. This happens only after the execution of the 
actions “Protein conformation” and “Abnormal conformation” respectively, which cause the 
production of a token to each Pc and Ac communication belief links. Note that each medical 
agent that participates in a team is responsible for informing all other medical agents of the 
same team about all changes in its environment. 
The above process indicates implicitly how AOMFG deals with some kind of nested beliefs. 
More precisely, Biology Agent cannot execute the actions “Normal expression of 
keratinoproteins” and “Abnormal expression of keratinoproteins” until it believes that 
Biochemistry agent believes that Pc and Ac are true, i.e., 
 

BEL(“Biology Agent” BEL(“Biochemistry Agent”, “Pc”)) 
BEL(“Biology Agent” BEL(“Biochemistry Agent”, “Ac”)) 

 

Equivalently, some kind of other nested mental states can be represented, for example, as 
described above, Dermatology agent requests the action “Metabolic disorders” from 
Biochemistry Agent and implicitly desires what Biochemistry agent desires, i.e., 
 

DES(“Dermatology Agent” DES(“Biochemistry Agent”, “Metabolic disorders”)) 
 

When precondition “Protein Conformation” becomes true, then Biology agent executes the 
step “Normal expression of keratinoproteins”. At the same time, the second precondition 
(“Abnormal Conformation”) may become true, which means that Biology agent may 
execute the step “Abnormal expression of keratinoproteins”. When both agents bring about 
their intentions they inform Dermatology agent for the results of the requested actions. 
Afterwards it attempts to fulfil the rest of its partial goals. After the execution of the 
“Etiology and pathogenesis” plan, Dermatology agent drops its intention for this plan and it 
continues with the next plan. 
Thus, in order to validate AOMFG with a real system such as The Dermatology Tutor, the 
following steps were taken. Initially, the plans of all agents involved were analyzed. In this 
way, the agents’ capabilities, desires and alternative ways of their achievement were 
expressed. Next, the agents’ awareness of their environment and their interaction was 
 

 

Fig. 17. AOMFG represents the plans of Biochemistry agent 
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Fig. 18. Decomposition of “Disorder of protein expression in keratinocytes: Keratinicytes 
protein” plan 
 

spe pe

pe.OKspe.OK

Disorder of protein expression in 

keratinocytes: Protein expression 

Disorder of protein 
expression in 

keratinocytes
sma ma

ma.OKsma.OK

Mitotic acivity 

Mitotic acivity 

 
Fig. 19. AOMFG represents the plans of Biology agent 
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Fig. 20. Decomposition of “Disorder of protein expression in keratinocytes: Protein 
expression” plan 
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expressed with the use of the foreign action actors and communication event and belief 
links. Finally, their roles inside the formed teams according to their knowledge and 
capabilities were determined.  
The design of the Dermatology Tutor was based on the description and the analysis of every 
agent separately and this gave a detailed view of the functionality and the participation in the 
team action. Thus, there are several autonomous design parts that relate with each other 
through communication actions, i.e. every agent is described by a set of graphs and the union of 
these graphs constitutes the whole system description. This approach does not allow a global 
and clear view of the composition and structure of the teams unless all the graphs are collected 
and studied. As a result, the team composition and the role of every agent are inducted from the 
foreign actors and the communication links. However, in the Dermatology Tutor the teams and 
the role of the agents are not determined at design time; instead the teams are formed 
dynamically depending on the tutoring process that justifies such a design approach. 

6. Summary 

Formal specifications are necessary for reasoning about multi agent systems. However, 
existing methods are not practical for wide use from designers and software engineers. In 
this work, AOMFG is introduced as a graphical model for formal specifications of multi 
agent systems. The model is based on well-defined formalism and possesses the 
mechanisms for expressing mental notions such as beliefs, desires and intention that are 
used for the description of the agents’ behaviour. It provides ready to use mechanisms for 
goal decomposition and it also facilitates the expression of social activity of agents as it 
handles several kinds of events by providing reaction and communication mechanisms, and 
structures for the awareness of the environment. 
In particular, AOMFG is based on the well-defined and broadly accepted BDI theory as well as 
on the principles of agent-oriented programming. The BDI theory has been chosen as the model 
underlying formalism because it reflects the intentional stance and employs a strong 
mathematical background. The principles of agent-oriented programming also reflect the 
intentional stance, in the same manner as the societal view of agents. In addition, AOMFG 
employs the most commonly used principles of state-based machines, programming languages, 
Cognitive Engineering and interaction specification models in a compact representation. 
The presented model differs from the other related models in that it embodies in its building 
blocks the BDI and AOP concepts fused together with features taken from disciplines that 
relate to the design of applications based on multi agent systems. Furthermore, the graphical 
nature of AOMFG, which is based on High Level Petri Nets, provides a friendly way for 
multi agent systems specification by hiding from users the underlying use of mathematical 
formalism, which may be hard to use by non-specialists.  
AOMFG is general enough to be used in a wide range of agent applications as well as to 
encapsulate other well-known agent theories. In the above sections, AOMFG model was 
used and validated under theoretical issues as well as in the description of a real system in 
order to provide evidence that it can cover the specification needs of both directions. In fact, 
as demonstrated, an AOMFG can be used for the specification of generic agent interpreters, 
FIPA communication protocols, and BDI properties as well as for the specification of real life 
systems. Furthermore, an AOMFG can be transformed to an equivalent Petri Net, which 
may then be subjected to formal analysis techniques. Other researchers and mainly 
practitioners in software specifications may use the model for easy and rapid specification 
and prototyping of multi agent systems. Programmers can also use the model as it embodies 
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programming structures familiar to them. The inclusion of an explicit representation of time 
in AOMFG is currently under investigation. 
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