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1. Introduction 

Tumor growth and metastasis depend on neovascularisation, which has been recently 

believed promoted by cancer stem cells (CSCs), a special subpopulation of tumor cells. The 

cancer stem cell theory can be traced back to the first mention by Furth and Kahn in 1937, 

when their results revealed a single leukaemic cell capable of transmitting the systemic 

disease in mice [1]. However, it was not until the 1990s that CSCs were identified and well-

characterized in acute myeloid leukaemia (AML). Among cancer cells isolated from AML 

patients, only a small fraction of them exhibiting the hematopoietic stem cell surface 

phenotype, i.e. CD34+ and CD38-, were capable of initiating leukaemia in mice similar to 

that of the original patient. These cells were then known as SCID leukemia-initiating cells 

with potentials to self-renew, proliferate and differentiate in vivo [2, 3]. Since then, CSCs 

from various types of cancer such as breast cancer and malignant glioma have been well 

characterized, and then the existence of CSCs in solid tumors has been gradually accepted 

[4-10]. The studies promote a common recognition of the accurate definition for CSCs 

reached by an American Association for Cancer Research (AACR) workshop in 2006, that 

CSCs are a small subset within a cancer that constitute a reservoir of self-sustaining cells 

with the exclusive abilities to self-renew and to cause the heterogeneous lineages of cancer 

cells that comprise the tumor [11]. 

Investigation on CSCs provides a new insight into our understanding for tumorigenesis, 

recurrence and metastasis of cancer as well as development of new strategies for cancer 

treatment. Due to up-regulation of drug resistance and anti-apoptotic genes as well as 

greater DNA-repair responses, CSCs are more resistant to chemo- and/or radiotherapies 

than differentiated cancer cells [12-17]. Recent studies suggest that CSCs existing in the 

tumor are highly invasive, indicating their crucial role in invasion and metastasis of cancer 

[18]. Therefore, eradication of CSCs is of great importance in preventing cancer recurrence 

and metastasis. 

The increasing awareness of neovascularization holding a master switch of tumor 

development and progression indicates that vascularization plays a crucial role in the stage 

of tumor progression [19]. It is generally thought that vascularization is initiated by 

microenvironmental changes such as hypoxia followed by tumor outgrowing its blood 
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supply limitation. This process is further promoted by angiogenic factors derived from 

tumor cells and infiltrating inflammatory/immune cells into tumor tissues [20-22]. Tumor 

vasculatures are mainly developed through angiogenesis by sprouting from pre-existing 

vessels and vasculogenesis via recruitment of endothelial progenitor cells (EPCs) [23, 24]. 

Both of the processes are initiated and promoted by angiogenic factors [20, 22, 25] such as 

vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) 

produced by cancer cells and stromal cells [22, 26, 27]. Interestingly, cancer cells exhibit 

heterogeneity in their production of angiogenic factors. 

CSCs have been more recently identified as initiating cells of tumor neovascularization [28-

33], but many doubts still challenge CSC theory. In this review, we provide the evidence for 

the role of CSCs in tumor vascularization and discuss the potential therapeutic significance 

based on the interaction between CSCs and their vascular niches. 

2. CSCs produce angiogenic factors 

CSCs play a predominant role in tumor angiogenesis through producing high levels of pro-

angiogenic factors. Evidence from our laboratory and others has indicated that CSCs 

produce preferentially higher levels of angiogenic factors, for instance, VEGF and 

interleukin 8 (IL-8). Ponti et al identified a subpopulation of sphere-forming cells with CSC 

properties, named MCF-S, from an established breast carcinoma cell line MCF-7 [28]. It was 

found that MCF-S cells expressed higher levels of VEGF mRNA compared with MCF-7. 

Meanwhile, higher amounts of VEGF protein were measured in the MCF-S culture medium, 

indicating CSCs might possess stronger pro-angiogenic capability than differentiated tumor 

cells. Bao et al found that hypoxia could induce glioma stem cells to produce higher levels of 

angiogenic factor VEGF [29]. CSC-enriched neurospheres derived from the GL261 murine 

glioma cell line and rat glioma cell line C6 express more VEGF compared with adherent, 

CSC-low cultures [30, 31]. Compared with adherent C6 cells, sphere-forming C6 cells 

induced higher levels of proliferation and tubulogenesis of endothelial cells in vitro. 

Accordingly, xenografts derived from sphere-forming C6 cells exhibited increased 

microvessel density and blood perfusion and induced increased mobilization and tumor 

recruitment of bone marrow-derived endothelial progenitor cells (EPCs). When VEGF was 

blocked, all aspects of angiogenesis observed in sphere-forming C6 cells and xenografts, 

including microvessel density, perfusion, EPC mobilization/recruitment, and stimulation of 

endothelial cell activity, were reduced to levels comparable with those observed in either 

adherent C6 cells or their implanted tumors [31]. Furthermore, CSC-enriched CD133+ 

fraction derived from the U87 human glioblastoma cell line and primary human gliomas 

also had a significantly stronger capacity of promoting angiogenesis than the CSC-depleted 

CD133- fraction. Accordingly, CD133+ glioma cells generated highly vascularized tumors 

when implanted in mice, whereas the matched CD133 populations were rarely tumorigenic 

and gave rise to poorly vascularized tumors. The proangiogenic capacity of CD133+ fraction 

was attributable to VEGF activity [29, 32]. The evidence of in vivo pro-angiogenic effects of 

CSCs was further proved by Oka and the colleagues [33]. Transfecting glioma stem cells 

with a retrovirus vector expressing VEGF promoted vascular formation and tumor-

associated hemorrhage. The blood vessels adjacent to and within the tumors derived from 

VEGF-expressing glioma stem cells exhibited much higher density and more complexity of 
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neovascularization. The newly formed vessels had functional walls and lumens when they 

were stained with anti-CD31 antibody and PAS histochemistry demonstrated central 

lumens and new basement membrane. Taken together, VEGF appears to be an important 

mediator for CSC contribution to tumor neovascularization. 

Chemokines and their receptors are believed to be involved in CSCs-mediated production of 
angiogenic factors. For instance, CXCR4, a chemokine receptor that plays an important role 
in tumor angiogenesis, was preferentially expressed in glioma stem cells [16, 34-36]. 
Meanwhile, stromal derived factor-1 (SDF-1) or CXCL12, the sole ligand for CXCR4, can be 
detected in glioma stem cell culture medium, indicating that CXCR4 expressed by glioma 
stem cells can be activated in an autocrine manner. Using a rat aortic ring assay, Salmaggi 
and the colleagues found glioma stem cells induced apparently longer and thinner neo-
vessels compared with control group. They further documented high expression of CXCR4 
and release of CXCL12 by glioma stem cells might be the underlying mechanism [34]. In our 
recent studies, we also found that CD133+ glioma stem cells had significantly higher CXCR4 
mRNA and protein expression levels, as well as higher chemotactic response to its ligand 
CXCL12 as compared to CD133 negative cells [37]. In addition to chemokine receptor 
CXCR4, formylpeptide receptor (FPR), a classic chemoattractant receptor, was also found to 
induce VEGF production by glioma stem cells [32]. This G-protein coupled receptor 
mediates neutrophils to participate in inflammation, and we previously found its promotion 
of tumor growth and invasion through its activation by binding its stimulator from necrotic 
tumor cells. We recently reported this receptor expressed on glioma stem cells was 
functional and its activation promotes stem cells production of angiogenic factors such as 
VEGF and IL-8/CXCL8, resulting in initiation of angiogenesis. When transplanting human 
CSCs into nude mice, the CSCs produced in situ angiogenic factors and generated a higher 
density of microvessels to promote tumor growth. These results strongly suggest that 
chemoattractants and their receptors, at least in part, are among the major signals to 
promote CSC-mediated tumor angiogenesis by stimulating VEGF production. 
Although a greater contribution of CSCs to tumor angiogenesis than their differentiated 
counterparts within a tumor has been supported by many studies, contradictory 
phenomenons have also been observed. Salmaggi et al found non-sphere-forming cells from 
GBM could induce more vessels than glioma stem cells using the aortic ring assay. They 
observed that the pro-angiogenic capacity varied among different passages of glioma stem 
cells. Pro-angiogenic ability of glioma stem cells increased after serial passages in culture 
concomitant with elevated VEGF and CXCL12 production [34]. Consequently, VEGF mRNA 
was increased in the secondary tumor spheres acquired from primary tumorospheres of 
xenografts [34]. Recently, Sakariassen et al observed angiogenesis-dependent and 
angiogenesis-independent patterns in glioma stem cell-derived xenografts [38]. Great 
differences were seen in gene expression profiles and signaling pathways between the 
glioma stem cells with two different tumor generation patterns. These results indicate that 
CSCs are actually heterogeneous in their contribution to neovascularization. Further studies 
are still needed to elucidate the exact subclones preferentially contributing to tumor 
angiogenesis for more effective targeting to angiogenesis-initiating stem cells. 

3. CSCs transdifferentiate into endothelial cells 

Endothelial cells (ECs) not only interact with cancer cells through aberrant growth factors, 
but also share genetic abnormality with cancer cells, which might suggest a link in their 

www.intechopen.com



 Cancer Stem Cells Theories and Practice 

 

244 

common origin [39-41]. Streubel et al investigated 27 cases of lymphoma and found 15% to 
85% of the microvascular ECs harbored the same lymphoma-specific genetic aberrations. In 
vitro assays also showed that the ECs isolated from primary human lymphoma presented 
the lymphoma-specific genetic aberrations [39]. In multiple myeloma patients with the 
13q14 deletion, a significant proportion of circulating ECs carried the same chromosome 
aberration as the neoplastic plasma cells, and presented the same immunoglobulin gene 
rearrangement as multiple myeloma plasma cells. In addition, most circulating ECs 
presented EPC features as they expressed CD133, a marker gradually lost during 
endothelial differentiation and absent on mature ECs [40]. Renal tumor-derived ECs but not 
normal ECs expressed paired-box 2 (Pax2) proteins and mRNA, which were restricted to the 
developing kidney in the embryo [41]. These results suggest that cancer cells and ECs might 
derive from common multipotent progenitor cells, or possibly CSCs. 
More evidence supports that CSCs might generate or transdifferentiate into ECs for 
neovascularization. Pezzolo et al investigated the origin of the microvascular ECs in MYCN-
amplified nephroblastoma and found that 20%-78% of the ECs identified by CD105 
expression exhibited amplification of the oncogene MYCN, the tumor marker of this tumor 
at stage 3 and 4. This finding strongly implicates the possible cancer cell origin of ECs in 
MYCN amplification nephroblastoma. Furthermore, microvessels formed by the ECs were 
functional because they contained erythrocytes and were covered with a layer of pericytes. 
They further studied a cell line HTLA-230 from human stage 4 nephroblastoma with MYCN 
amplification and injected the cells into immunodeficient mice to investigate the origin of 
ECs in the xenografts. It was found that the xenografts contained approximately 80% of 
human ECs and 20% murine ECs, suggesting the nephroblastoma cells directly 
transdifferentiating to tumor ECs [42, 43].  
More direct evidence of the potential transdifferentiation of CSCs to ECs has been reported 

in recent years. In a study with the injecting fluorescence-labeled human cutaneous 

metastatic melanoma cells into the ischemic hind limbs of nude mice, it was found that after 

five days, the vessels consisted of human melanoma-derived cells adjacent to and 

overlapping with mouse ECs in a linear arrangement were formed and provided blood for 

the ischemic limbs [44]. A CD133+ cell population, which is negative for the endothelial 

marker CD34, but positive for the renal embryonic marker Pax-2, derived from human renal 

carcinomas was also able to differentiate into ECs. When injected subcutaneously in SCID 

mice, they formed functional vessels which integrated with the mouse vasculature. Among 

the tumor vasculature, vessels of human origin accounted for 85% and were mainly located 

within the tumors [45]. Kusumbe et al isolated a non-tumorigenic CD133+ population in 

ovarian cancer and termed them as endothelial stem cells (EnSCs) based on their capacity of 

differentiating into ECs. A unique feature of these EnSCs is the continual expression of the 

surface molecule CD44 at all the steps of the hierarchy [46]. In the two reports, the authors 

did not detect the cellular karyotypes, thus we cannot know whether these cells are normal 

or abnormal in their phenotype. However, the expression of Pax-2 or CD44 suggested that 

they are not hematopoietic cells or endothelial cells. As they were isolated from tumors, it 

can be hypothesized that this CD133+ population might be a committed lineage that derived 

from CSCs and could differentiate into ECs but not tumor cells. This was confirmed by Shen 

and his colleagues who found precancerous stem cells (pCSCs), representing the early stage 

of developing CSCs, can not only initiate tumors but also generate most of the tumor 

vasculature [47, 48]. More recently, Bussolati and the colleagues isolated and cloned a 
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population of breast CSCs, which were able to differentiate into the endothelial lineage 

acquiring endothelial markers and the ability to organize in Matrigel into capillary-like 

structures when cultured in the presence of VEGF. The capacity of in vivo endothelial 

differentiation was proven by vessels of human origin in the transplanted tumors, formed 

by these cells [49]. Evidence from the studies of CSCs in human renal carcinomas and 

ovarian cancers also confirmed the capacity of CSCs to transdifferentiate into endothelial 

cells. CD105+ tumor-initiating cells isolated from human renal carcinomas acquired an 

endothelial phenotype when cultured in endothelial differentiating medium containing 

VEGF and generated ECs of human origin in the central of SCID xenografts [50]. Ovarian 

cancer cells with stem-like properties can also transdifferentiate into ECs both in intro and in 

vivo. Interestingly, this transdifferentiating process was shown to be VEGF-independent, 

but IKK┚-dependent [51], suggesting either VEGF-dependent or VEGF-independent 

mechanisms are involved in the trans-endothelial differentiation of CSCs. 

4. CSCs contribute to vasculogenic mimicry 

It is a widely-accepted paradigm that tumor vasculature is mostly composed of non-
malignant endothelial cells originating from pre-existing blood vessels sprouting into tumor 
mass and recruitment of circulating endothelial progenitor cells (EPCs) mediated by 
angiogenic growth factors produced by host or tumor cells [52]. However, classical patterns 
of angiogenesis and vasculogenesis have been challenged by clinical investigation of tumor 
tissues because tumor vasculature can also be formed by vasculogenic mimicry (VM) [53]. 
VM is a structure through which tumor tissues nourish themselves, mimicking the pattern 

of embryonic vascular network. Tumor cells with high degree of differentiation plasticity 

may contribute to the de novo formation of tumor cell-lined blood channels [54]. These 

extracellular matrix-rich vasculogenic tumor cell networks were shown to conduct fluid. An 

interesting observation was that VM was most frequently observed in the boundary regions 

between the tumor and surrounding normal tissues [55]. Thus, VM may also play a role in 

tumor invasion by supplying immediate nutrition. Furthermore, angiogenesis inhibitors 

abrogate new vessels formed by human vascular endothelial cells in vitro, while under the 

same conditions did not affect tumor cell tuber network formation, and even induced the 

formation of VM as an escape route by tumor tissue for progressive growth [56]. Therefore, 

VM might represent an important survival mechanism contributing to the failure of current 

antiangiogenic therapy aimed to fully deprive tumors of blood supply [57]. Despite its 

clinical importance, the cellular and molecular events underlying the formation of VM are 

not well understood. Recent discovery of cancer stem cells (CSCs), with the capability of 

self-renewal and multi-potency of differentiation, has stimulated great interest in re-

defining tumor initiation and progression [58]. However, whether CSC theory can be 

applied to the formation of tumor cell-associated vasculogenesis, especially in respect to 

VM, remains unclear. Based on the present findings that most vessels in tumor may be 

originated from tumor cell themselves through the process of vasculogenesis [59], as well as 

that CSCs were able to serve as precursors of tumor stromal components such as tumor 

vasculogenic stem/progenitor cells (TVPCs) regulated by signals from 

microenvironment/niche surrounding these cells [60], it is plausible that CSC compartment 

of a tumor may be involved in VM formation, by differentiating/transdifferentiating into 

endothelial-like cells. Such a potential function of CSCs might represent one of the 
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mechanisms by which CSCs initiate neoplastic formation and promote tumor progression 

[61]. In this review, we will focus on the possible role of CSCs in VM formation and how the 

niche surrounding CSCs may affect VM formation.  

4.1 Current understanding of tumor VM 
In 1999, Maniotis et al. first described VM in aggressive melanoma with tumor cells 

expressing endothelial phenotype pasted on the surface of the basement membrane in 

tubular structure [62]. VM in the tumor mass is connected with host vessels for blood 

supply. Periodic acid-Schiff (PAS) staining is commonly utilized to identify VM. PAS-

positive channels were lined externally by tumor cells, lacking an inner lining of endothelial 

cells [63]. Although the functionality and contribution of VM channels to circulation were 

criticized initially, Frenkel et al. [64] demonstrated that blood circulated in VM tube with 

laser scanning confocal angiography in a patient with a choroidal melanoma. Therefore, VM 

is a new pattern that provides tumor mass with nutrition independent of conventional 

angiogenesis and vasculogenesis. Zhang et al. [65] proposed three-stage blood supply 

patterns in tumor including VM, mosaic vessels (MV) and endothelium-dependent vessels, 

in which all three patterns provide blood supply. The model proposes that VM is the 

dominant blood supply pattern in the early stage characterized by rapid tumor growth. 

Consequently, to maintain expansion of tumor mass, endothelial cells differentiate and 

proliferate, and the mosaic vessels appeared as a transitional pattern. Endothelium-

dependent vessels then replace VM and mosaic vessels to become a major pattern of blood 

supply in the late stage of tumor growth. Thus, VM may be the main source of blood supply 

at the early stage of rapid tumor growth, when endothelium-dependent vessels, which 

require the sprouting and recruitment of endothelial cells, are insufficient to sustain 

aggressive tumor growth. Based on PAS staining, VM are divided into seven categories: 

straight channels, parallel straight pattern, parallel straight pattern with cross link, arcs (not 

closed), arcs with branching, closed loops, and networks [66].  

VM has been detected in melanoma, breast carcinoma, prostate carcinoma, ovarian 

carcinoma, astrocytoma, and Ewing sarcoma, etc.[67-70]. Microarray analysis indicates that 

VM-positive tumor cells of aggressive melanoma expresses elevated levels of genes 

associated with undifferentiated embryonic-like phenotype [54]. Intra-peritoneally 

implantation of human ovarian cancer cell line SKOV3ip showed that the cells, expressing 

CD31 and Factor VIII of vascular epithelial markers, had plasticity to engage in VM 

formation in vivo [71]. These findings suggest that the plasticity of cancer cells enable them 

to mimic the activities of endothelial cells and participate in the process of VM formation. 

Recent findings of “plastic” endothelial-like phenotype of tumor cells provide additional 

evidence for the role of tumor cells in VM formation.  

There are striking parallels between tumor cells and stem cells: tumors and normal tissue 

are comprised of phenotypically heterogeneous cell populations, and many characteristics 

of stem cells, for example, stem cell plasticity, which is also pertinent to tumor growth [72]. 

Cellular plasticity in stem cells may facilitate the formation of primary vascular network 

during embryonic development. Mesodermal progenitor cells differentiate in situ into 

endothelial cells that are organized into a primitive network to supply nutrition for the 

developing early embryo [73]. The subsequent remodeling of vascular network into more 

complex vasculature appears through the process of angiogenesis. These processes are 
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similar to the formation of tumor vasculature and the plasticity of tumor cells may be 

important for the formation of VM. 

4.2 Differentiation plasticity of CSCs and VM formation 
CSCs are functionally defined by their capacity to regenerate tumors in xenograft mouse 

models [74, 75]. Similar to normal stem cells, CSCs can reproduce the heterogeneous 

phenotype of the parental cancer from which they are derived in transplantation, reflecting 

the multipotent differentiation capacity of CSCs. Plasticity defines the capacity of stem cells 

to differentiate or transdifferentiate into many cell types [76]. During development, 

multilineage differentiation plasticity is one of the characteristics of embryonic stem cells 

(ESC) [77]. CSCs are characterized by their stem/progenitor properties: self-renewal and the 

capability of differentiation into heterogeneous tumor cell populations [11]. Therefore, the 

differentiation plasticity of normal stem cells is also a similar property of CSCs. Bian et al. 

proposed a concept of CSC plasticity (CSCP) in which CSCs possess inducible and reversible 

properties in self-renewal, multipotent differentiation and invasion. For CSCs, 

differentiation plasticity refers to the ability of tumor cells to give rise to phenotypically 

diverse populations including non-tumorigenic cancer cells and stromal cells. In fact, 

aggressive melanoma cells forming VM appear to express genes relevant to multiple cellular 

phenotypes and stem cells including epithelial, endothelial, muscle, neuronal, and other cell 

types. The multipotent, plastic, and embryonic-like phenotype of these melanoma cells has 

also been considered as a defined property of putative malignant melanoma stem cells 

(MMSCs) [78]. Therefore, melanoma stem cells possess the differentiation plasticity 

(transdifferentiation) and this property may play a critical role in VM. Recently, a 

transdifferentiative capability has been demonstrated for bone marrow macrophages, which 

form VM in multiple myeloma. Thus, at least in melanoma, VM channel was believed to be 

due to the transdifferentiation of MMSC subset inside the aggressive tumor. In a study of 

breast cancer, CSCs in endothelial differentiating medium were capable of differentiating 

into endothelial cells, which formed both vessels and tumor [79]. It is conceivable that 

CSCs/tumor initiating stem cells of solid tumor have the competence of differentiation 

plasticity, which further supports the hypothesis that CSCs/tumor initiating stem cells 

possess the properties of normal stem cells important for tumor growth and vascularization.  

Evidence for direct involvement of tumor cells in VM was also obtained in human 

neuroblastoma (NB) [59]. Microvessels formed by MYCN-amplified NB tumor cells 

displayed an open lumen and consistently contained RBCs, indicating that these vessels 

were functional. Moreover, these tumor cell-derived vascular endothelial-like cells were 

different from normal endothelial cells in phenotype and function [59]. Although the study 

only tested MYNC-amplified tumor cells, it is possible that formation of tumor-derived 

endothelial cells is a characteristic feature of a subset of cells in neuroblastoma. In addition 

to neuroblastoma, tumor-associated endothelial microvessels are also found in human B-cell 

lymphomas and multiple myeloma [80]. It is also hypothesized  that precancerous stem cells 

(pCSCs) representing the early stage of developing CSCs may serve as tumor vasculogenic 

progenitor cells (TVPCs) capable of differentiating into tumor vasculogenic endothelial cells 

[60]. Based on observations in animal models as well as human tumor xenografts, a model 

for pCSC or CSC participation in tumor vasculature formation was proposed, in which 

firstly, CSCs and their progenies aggregate to form a mass in tumorigenic 
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microenvironment; secondly, with the extension of aggregates, a CSC subset with properties 

of tumor vasculogenic endothelial cells differentiate/transdifferentiate and line up to form 

branching lumens and tubes, resembling vascular network; and finally, the tubes extend and 

elongate, and the vasculature merges with host vessels from sprouting of pre-existing blood 

vessels and recruitment of circulating endothelial progenitor cells surrounding tumor mass. 

This model emphasizes the intrinsic property of CSCs in tumor vasculogenesis, and explains 

why most anti-angiogenic clinical trials fail to completely eradicate tumor, because the 

drugs tested may be effective on normal endothelial cells but not endothelial-like cells 

derived from CSCs [81]. Our recent studies also observed that glioma stem cells (GSCs), 

isolated from primary glioma sample [82] and a human glioblastoma cell line U87 [83], are 

capable of multipotent differentiation. In stem cell medium, such GSCs form spheroids, and 

in differentiation conditions they form tumor masses that contain fissure and branching 

lumen as revealed by electron microscope. These novel findings support the premise that 

VM positive tumor cells possess a multipotent phenotype and such cells with embryonic 

stem cell-like properties should be considered as antiangiogenic therapeutics.  

4.3 Microenvironmental niche as a regulator of VM formation 
The vasculogenesis and/or angiogenesis, which are necessary for tumor development and 

progression, involve the interaction of tumor and other cell types in the 

microenvironment or niche [84]. A pertinent role of the microenvironment in VM 

formation has been demonstrated in melanoma [85]. Collagen matrices preconditioned by 

aggressive melanoma cells capable of forming VM primed the lesser aggressive melanoma 

cells, which are initially unable to form VM, to express vasculogenic genes and to form 

VM in vitro. These observations illustrate the remarkable influence of microenvironment 

on the phenotype of tumor cells and provide a new perspective for the formation of VM, 

in which factors secreted by tumor cells or other niche components play a critical role in 

cancer cell plasticity, including dedifferentiation and transdifferentiation. In addition, the 

microenvironmental niche has been demonstrated to support normal stem cells in early 

co-culture and transplantation studies [86]. One of the mechanisms by which 

microenvironmental niche determines normal stem cell fate is the control of symmetric 

(producing two identical daughter cells) versus asymmetric (producing one identical and 

one differentiated cell) division [87]. Cancer stem cells, like normal stem cells, also depend 

on interaction with physiologically differentiated cell types or on non-tumorigenic cancer 

cell populations in the same tumor microenvironment to sustain their features and 

destiny [88]. Tumor environment creates a niche favoring the survival, proliferation, and 

differentiation of CSCs. CSCs utilize a specialized microenvironment/niche termed tumor 

stroma, consisted of a combination of different cell lineages, i.e. epithelial, vascular, fat, 

glial, fibroblast, and immune cells along with extracellular matrix, enzymes, and other 

secreted molecules produced by these cells [89]. It has been demonstrated that endothelial 

cells surrounding CSCs appear to directly generate specific microvasculature niche 

and/or secrete factors that promote the formation and/or maintenance of brain CSCs [90]. 

Critical signaling molecules, such as bone morphogenic proteins (BMPs) derived from the 

niche that govern embryonic vascular development, have been linked to melanoma cell-

driven vasculogenesis, i.e. VM [94]. In human glioblastomas, BMP4-BMPR1a signaling 

pathway regulates the differentiation and proliferation of CSC population [92, 93]. Based 
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on these findings, it is plausible that the niche surrounding CSCs controls the 

differentiation plasticity of CSCs, which is responsible for tumor vasculogenesis including 

VM formation.  

In addition to being conditioned by niche components, CSCs may also reciprocally influence 

the niche through secretion of autocrine and/or paracrine factors or through direct cell-cell 

contact to benefit the maintenance of their stemness including self-renewal, multipotent 

differentiation, and tumor-initiation. We and others have suggested that CSCs from U87 cell 

line and primary human brain tumors secrete higher levels of endothelial growth factor 

(VEGF) than their non-tumorigenic counterpart cells that promoted the formation of tumor 

blood vessels [94, 29]. In breast cancer model, VEGF induces CSCs to express endothelial 

markers in vitro and incorporate in tumor vasculature in vivo [79]. Accumulating evidence 

shows in addition to vascular endothelial (VE)-cadherin, laminin 5┛2 chain, and VEGF 

receptor (R)-2, angiogenic factors, including VEGF, angiogenin-1, and ephrinA1, also play a 

critical role in the formation of VM by tumor cells [95]. In healthy individuals, stimulation 

by VEGF, cells of the monocyte lineage (another mesodermal-derived cell) display an 

endothelial phenotype and form a functional capillary-like mesh permeable by blood cells, 

recapitulating embryonic vasculogenesis. VEGF also stimulated macrophages of a patient 

with active multiple myeloma to undergo phenotypic and functional adaptation, expressing 

markers of endothelial cells, i.e. VE-cadherin, VEGFR-2, and FVIII-RA, retained their own 

CD14 and CD68 markers, and these cells can form vessel-like structures on the Matrigel 

surface. Therefore, VEGF can induce macrophages to transdiferentiate into endothelial-like 

cells to form VM, which functionally, phenotypically and morphologically are similar to 

endothelial cells, yet maintain the expression of macrophage markers. Thus, VEGF in the 

niche, which may be derived mainly from CSCs, directly influences the phenotype of CSCs 

and promotes CSCs-associated VM formation. 

There are three factors determining the formation of VM channel: the plasticity of VM-

associated tumor cells, remodeling of extracellular matrix, and the connection of VM with 

host microcirculation [96]. The remodeling of extracellular matrix provides the space needed 

for VM and is regulated by matrix metalloproteinases (MMP) [97]. Matrix MMP-9 and 

MMP-2 play a critical role during the formation of VM in aggressive melanoma. Our recent 

study showed that the expression of MMP-9 and MMP-2 is up-regulated in glioma stem 

cells (GSCs) derived from U87 cell line [98]. The formation of VM also involves migration of 

VM-derived tumor cells. We observed that migration associated molecules, including two 

G-protein coupled chemoattractant receptors formylpeptide receptor (FPR) and CXC 

chemokine receptor-4 (CXCR4) were over-expressed in GSCs isolated from human 

glioblastoma and U87 cell line [84, 37]. FPR and CXCR4 expressed on GSCs, when activated 

by corresponding agonists, mediate directional migration, calcium mobilization, and 

production of VEGF by GSCs. Our recent observations further suggest that activation of 

CXCR4 on GSCs elicits phosphoinositide 3-kinase (PI3K) pathway which is an important 

regulator of VM through MMP-2 [99]. The relationship between CSCs and VM formation 

through stimulatory signals in the niche is important for differentiation plasticity of CSCs. 

Based on the existing observations, it is conceivable that CSCs take part in the VM formation 

through autocrine and/or paracrine manner thereby establishing a vessel niche suitable to 

protect and nourish CSCs. Therefore, VM-targeted therapies should be a new strategy 

aimed at eliminating CSCs.  
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4.4 VM-targeted therapeutic strategy: new perspectives  
CSCs are considered as the root of tumor initiation, metastasis, and reoccurrence. If CSCs 

are proven to be critical for VM formation, there will be significant implications in the 

design of novel anti-tumor therapies. As discussed earlier, VM is the dominant blood 

supply pattern in the early stage of tumor formation and CSCs are capable of 

differentiating/transdifferentiating and lining up to form branching lumens and tubes, a 

process resembling the formation of VM. Traditional anti-angiogenesis drugs, such as 

angiostatin and endostatin, which target normal endothelial cells, have little effect on VM 

due to the absence of normal endothelial cells [100]. In contrast, VEGF-specific inhibitor 

Bevacizumab can conspicuously decrease the number of self-renewing cancer cells from 

orthotopic models of medulloblastoma and glioma, resulting in tumor growth arrest. Direct 

evidence was obtained from aggressive melanoma in that LY294002, a specific inhibitor of 

PI3K, inhibited the ability of undifferentiated embryonic melanoma cells to engage in VM 

on three-dimensional type I collagen matrices [100]. Furthermore, the unique structure of 

VM channels, in which tumor cell line up the inner surface, directly exposes tumor cells to 

blood vessel and facilitates the metastasis of tumor cells. VM frequently is seen in the 

regions between the tumor and surrounding normal tissues, and its appearance in tumor is 

associated with poor prognosis in clinical patients. Therefore, VM-targeted therapies may 

destroy the niche that maintains CSCs, block the metastasis passage of tumor cells, and 

reduce the recurrence of cancer.  

5. Conclusion 

Based on these findings, we conclude that CSCs might initiate and promote 

neovascularization at the early stage of tumor tumorigenesis and progression. There are at 

least three potential mechanisms involved in this process: (1) CSCs induce 

neovascularization through secreting VEGF, which is further induced by hypoxia or 

activation of chemokine receptors; (2) CSCs might participate in angiogenesis through 

transdifferentiating into endothelial cells and/or endothelial progenitor cells; (3) CSCs could 

generate cells that form vasculogenic mimicry and provide nutrition and oxygen directly to 

the tumor mass (Figure 1). On the contrary, the tumor vasculature nourishes CSCs and 

maintains their survival and characteristics of “stemness”. 

Cancer stem cell hypothesis requires elimination of CSCs for more effective treatment of 

cancer. If CSCs exclusively generate heterogeneous tumor cells, elimination of these cells 

will result in arrested tumor growth and eventual eradication. The fact that CSCs contribute 

greatly to tumor neovascularization indicates that restraint of CSCs would impair tumor 

vessels. On the other hand, vascular niches support self-renewal, proliferation and 

differentiation of CSCs, and protect CSCs from chemo- and radiotherapies [90, 101, 102], 

suggesting the necessity to interfere or deplete vascular niches of CSCs. Anti-angiogenic 

drugs indeed reduced markedly the MVD in xenografts and arrested tumor growth [103, 

104]. Thus, a combination of targeting CSCs and their vascular niche will provide more 

effective therapy for tumor treatment. Furthermore, differentiation induction strategy 

targeting the poor-differentiated CSCs may also facilitate cancer treatment [105]. However, 

there is a long way to go for developing the methods targeting CSCs and their vascular 

niche to treat cancers. 
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Fig. 1. Proposed mechanism of cancer stem cells (CSCs) in tumor neovascularization. CSCs 
self-renew and generate cancer cells (A) as well as VM-forming cells (B). The VM-forming 
cells can form functional lumens, incorporating with the endothelial cells either from 
transdifferentiation of CSCs or sprouting of endothelial cells from pre-existing vessels 
(known as angiogenesis), provide blood and nutrition for the tumor mass (C and D). 
Furthermore, proangiogenic factors produced by CSCs and cancer cells promote recruitment 
of circulating EPCs to the tumor tissue and integration into tumor vessels, forming new 
microvessels known as vasculogenesis. 
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Cancer Stem Cells Theories and Practice does not 'boldly go where no one has gone before!' Rather, Cancer

Stem Cells Theories and Practice boldly goes where the cutting edge of research theory meets the concrete

challenges of clinical practice. Cancer Stem Cells Theories and Practice is firmly grounded in the latest results

on cancer stem cells (CSCs) from world-class cancer research laboratories, but its twenty-two chapters also

tease apart cancer's vulnerabilities and identify opportunities for early detection, targeted therapy, and

reducing remission and resistance.
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