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1. Introduction    

With a worldwide cumulative incidence rate of 9.4%, colorectal cancer is the second 

leading cause of cancer deaths when both sexes are combined, and prostate cancer is the 

most commonly diagnosed malignancy and the second leading cause of cancer-related 

death in men (Jemal et al., 2009). Standard anti-cancer drugs often fail to provide a long-

term cure of epithelial tumors, which represent about 90% of human cancers. Thus, 

response rates in phase I oncology trials were as low as 2.5% over the last decade (Roberts 

et al., 04; Kamb et al., 07). Such limited effectiveness of standard anti-cancer therapies has 

been recently attributed to the existence of relatively rare, highly drug resistant, quiescent 

or slow proliferating tumor-driving cells - cancer stem cells (CSCs). Tumor cells with a 

stem cell-like properties, such as self-renewal and ability to differentiate into multiple cell 

types characteristic for particular tumor have recently been identified in all major human 

tumors, including prostate and colon cancers (reviewed in Dalerba et al., 07a; Mimeault et 

al., 07). Accumulated knoweledge suggests that majority, if not all tumors possess a minor 

subpopulation of stem cells and a major (or bulk) mass of progenitors at different stages 

of  their maturation. Malignant stem-like subpopulation within the tumors possesses 

exclusive tumor-initiating capacity in vivo (after serial transplantation to the  

immunodeficient mice) and high potential to induce 3D cancer spheroids in vitro (after 

serial passaging). Since CSCs are responsible for tumor initiation, development and 

metastasis, and are highly resistant to standard anti-cancer therapies, they are likely to be 

the most crucial target in the treatment of cancer. This new concept of carcinogenesis and 

new paradigm in anti-cancer therapy requires significant reconsideration of previously 

accepted criteria of the drug effectiveness and development of novel, physiologically and 

clinically more relevant experimental models. Although isolation and purification of the 

cancer-specific CSCs reamain to be problematic due to lack of the unique CSC surface 

markers and insufficient knowledge of the CSC biology, several methodological 

approaches allow for prospective isolation, purification and reasonable propagation of 

these cells. Applying these approaches, we and others previously have shown that 

prostate and colon tumor-initiating cells are functionally, genomically and 

morphologically different from their bulk tumor counterparts. In this chapter we will 

discuss novel criteria of the anti-cancer drug efficacy, and present our data on the CSC-

targeted activities of a new-generation taxoids.  
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2. Prostate and colon CSC phenotypes 

It is increasingly recognized now that, similarly to normal mammalilan tissues, tumors are 
organized hierarchically, comprising a minor population of the long-lived self-renewing 
stem cells, which also give rise to all the heterogeneous cell phenotypes due to ongoing 
differentiation. CSCs share some basic features and signal transduction pathways, such as 
Wnt, Shh, Notch, Bmi-1 and others with normal stem cells (Pardal et al., 2003; Reya & 
Clevers,   2005), and most of the CSC types have been identified and isolated using common 
cell surface markers. Although none of the currently available cell surface markers can be 
considered as universal or highly specific for CSCs, several markers were successfully used 
for prospective isolation of the tumor-initiating cells from diverse tumor types. Among them 
are the two most commonly used, CD133 (also known as AC133 and prominin-1) and CD44. 
Thus, several human cancer types, including brain tumors (Singh et al. 2003), kidney 
(Bussolati et al., 2005), prostate (Collins et al., 2005),  hepatocellular (Suetsugu et al., 2006; 
Yin et al., 2007), colon (O’Brien etal., 2007; Ricci-Vitiani et al., 2007), and pancreatic 
(Hermann et al., 2007; Li et al., 2007) carcinomas have minor population of CD133-positive 
cells which have much higher tumorigenic and clonogenic potentials compared to their 
CD133-negative counterparts or unsorted cells. Other markers, including CD166, Musashi-1, 
CD29, CD24 (Vermeulen et al., 2008), and leucine-rich repeat-containing G-protein-coupled 
receptor 5 (Lgr5; Barker et al., 2007) were also suggested for isolation of CSCs.  
CD133 is a cell-surface glycoprotein comprising five trans-membrane domains and two 
large glycosylated extracellular loops (Shmelkov et al., 2005). CD44 is also a multistructural 
and multifunctional cells surface adhesion molecule involved in cell-cell and cell-matrix 
interactions, stemness and tumour development, in part via β-catenin and Wnt signaling 
activation of the CD44 gene transcription (Ponta et al., 2003; Marhaba & Zoller, 2004). 

Although in many studies both CD44 and CD133 were used as a single cell surface markers 
and were reported as putative CSC markers, accumulated experimental data suggests that 
combination of several markers allows for better enrichment of cells with either exclusive or 
highly increased tumorigenicity in comparison to their bulk counterparts. Thus, the 
subfraction of prostate cancer cells with CD44+ǂ2ǃ1hiCD133+ phenotype  was first described 
by Collins and colleagues (Collins et al., 2005) as possessing the highest in vitro proliferative 
potential, self-renewal, and the lack of androgen receptor expression. Of note, since normal 
prostate stem cells are also androgen independent (Isaaks, 1985; Collins et al., 2001; 
Richardson et al., 2004), it suggests they may be the cells of origin of prostate cancer. It 
remains to be established whether cancer-specific CSCs represent homogeneous or 
heterogeneous phenotypic populations. It is also unclear whether some commonly used 
markers, such as CD133 and CD44, are of equal functional importance. A recent study has 
demonstrated the unique role of CD133 in the normal and malignant colon, showing that 
CD133+ normal stem cells at the base of crypts in the adult intestine (a stem cell niche) not 
only generate the entire intestinal epithelium, but give rise to all the neoplastic cells in mice 
colon tumors (Zhu et al., 2009a). However, another study has shown that only a knockdown 
of CD44, but not CD133, strongly prevented clonal formation and inhibited tumorigenicity 
in mice xenograft model (Du et al., 2008). Authors reported that CD44+ did not colocalize 
with CD133+ cells within colorectal cancer. Similar results reported by Horst and colleagues 
showed that the expression of CD133 correlates with that of CD166, while both do not 
correlate with CD44 (Horst et al., 2009). However, this data contradicts multiple reports 
showing not only the colocalization of the CD133 and CD44 in several types of human 
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cancer (Collins et al., 2005; Dalerba et al., 2007b; Haraguchi et al., 2008; Zhu et al., 2009b), but 
also suggesting their combined expression as the best CSC marker (Haraguchi et al., 2008; 
Zhu et al., 2009b). Since clinical specimens of solid tumors are highly heterogeneous, and 
membrane expression of CD133 and CD44 undergo a complex post-translational regulation, 
it may significantly contribute to controversial interpretation of experimental data obtained 
by diverse experimental approaches. 
Although the tumorigenic subset of colon cancer cells was initially identified as CD133-
positive (O’Brien et al., 2007; Ricci-Vitiani et al., 2007), in several established cell lines and 
some clinical specimens both CD133 and CD44 are quite abundant and can not solely 
  

 

Fig. 1. Phenotypic analysis of colon and prostate cancer cells obtained from patient samples 
(left column), established cell lines (middle column) and 3D spheroids induced by 
CD133hi/CD44hi subpopulations (right column). Majority of colon cancer cells of different 
origin are positive for CD133, CD44 (+/+). In contrast, bulk prostate cancer cells are 
negative for CD133, and negative or low positive for CD44. However, both cancer types 
possess minority subpopulations with high expression of each marker (CD133hi; CD44hi), or 
high combined expression (CD133hi/CD44hi). Both colon and prostate cancer spheroids 
induced by CD133hi/CD44hi populations in general express much higher levels of these 
markers compared to parental cell lines, and much larger populations of cells with 
CD133hi/CD44hi.  

demarcate the tumor-initiating cells. Clinical specimens often display highly variable levels 
of these markers, and in such cases combination of CD44 and CD166 with the epithelial-
specific antigen (ESA; also known as the epithelial cell adhesion molecule, EpCAM) was 
suggested as more specific for colon CSCs (Dalerba et al., 2007b; Dylla et al., 2008). In 
addition, in some metastatic colon cancers and long-term maintained cell lines, such as 
HCT116, both CD133+ and CD133-negative cell populations can induce tumors in 
NOD/SCID mice (Schmelkov et al., 2008; Botchkina et al., 2009). There is also some 
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misinterpretation of the terminology concerning colon cancer cells, which may be positive for 
particular CSC markers, but only minority populations enriched with CSCs can express high 
levels of these markers. Thus, majority of cells in invasive long-term maintained HCT116 cell 
lines is positive for CD133, CD44 and CD166 (Figure 1; upper row; marked as +/+), which 
were considered as a good single markers for isolation of the minor subpopulation of 
tumorigenic cell in multiple cancer types and established cell lines. In contrast to the colon 
cancer cell lines, majority of the prostate PC-3 cells and their metastatic derivatives are 
negative for CD133, and only minor subpopulations express high levels of both CD133 and 
CD44 (Figure 1; lower row; Figure 2, upper row). However, only cells with highest levels of 
CD133 and CD44 (marked as CD133hi and CD44hi) grown under stem cell-promoting 
conditions (type I collagen-coated surfaces, serum-free medium, low cell number and 
repeated cell sorting) allows for significant enrichemnt of prostate and colon CSCs and 
increase of their tumor-initiating and clonogenic capacities (Rowehl et al., 2008; Botchkina et 
 

 

Fig. 2. Phenotypic (A, B), tumorigenic (C-E) and clonogenic (F-H) analyses of the prostate 
cancer cells. Subpopulation of CD133hi/CD44hi cells is larger in repeatedly sorted cells (B; 
upper right). Mice tumor xenograrfts induced by 1x107 of the unsorted (bulk) cancer cells 
(C), 1.5x103 of one-time MACS sorted CD133+ cells (D), and by 1.5x103 of repeatedly sorted 
and grown on type I collagen cells with higher ratio of CD133hi/CD44hi phenotype (E). The 
FACS-sorted CD133hi/CD44hi cells possess significantly higher sphere-forming capacity (H) 
in contrast to the unsorted (F) and MACS-sorted (G) cells. 

al., 2009). Prostate and  colon cancer spheroids induced by CD133hi/CD44hi cell populations 
expressed much higher levels of these markers in general, and much more cells were highly 
positive for CD133 and CD44. Since cells with higher levels of expression of these cell 
surface markers (after repeated cell sorting and culturing under stemness-promoting 
conditions) possess significantly increased tumorigenic and clonogenic potentials (Figure 2; 
prostate cancer PC3MM2 cells are shown), it suggests that these cell populations are 
enriched with putative CSCs.   
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3. Cancer models  

The relevance of the in vivo and in vitro cancer models to patient tumors remains to be a 
topic of controversy. Human cancers represent an extremely heterogeneous class of 
diseases, and each clinical case is unique pathologically and highly heterogeneous 
biologically in terms of gene expression patterns and levels, the tumor/host interactions, 
interecations between cells and the extracellular matrix, and many other. It is crucial to 
isolate tumorigenic cells from each cancer type and, ideally, from maximal possible number 
of clinico-pathologically different cases for their precise molecular characterization and 
designing of individual treatment strategies. In addition, cancer cells in general have high 
rates of genetic and epigenetic changes (Hill et al, 1984; Hill et al., 2006).  It is established 
that long-term culturing can change a malignant phenotype of particular cell line, and same 
is true for in vivo passaging of human cancer xenografts as solid tumors in nonsyngenic host 
- immunodeficient mice. In this context, transplantation of the tumor cells directly derived 
from patients into immunodeficient mice (early passages without in vitro passaging) should 
recapitulate original tumors relatively closely. However, biopsy material is usually limited 
and contaminated with normal stem cells, therefore isolation of the rare putative CSCs is 
still problematic due to the lack of specific CSC markers. In contrast, established cancer cell 
lines do not have any normal stem cells, because they quickly loose their stemness and 
differentiate in standard culture condition. Therefore, cancer cell lines could be an attractive 
alternative source of cells for CSC research and drug development.  
It is clear now that traditionally used monolayer of adherent cancer cells has a very limited 
relevance to the hierarchically organized in vivo tumors, because such cultures have 
unnatural cell-to-cell and cell-to-matrix contacts, which can significantly affect their 
phenotype, signal transduction pathways and drug response. Since monolayer cultures are 
directly exposed to medium content and are readily accessible to oxygen, which is an 
important signal for stem cell self-renewal, apoptosis, differentiation and migration 
(reviewed in Friedrich et al., 2009), biological and therapeutic studies on two-dimensional 
cancer cell cultures have limited clinical relevance and may lead to inaccurate conclusions. 
This model is even less suitable for stem cell-based studies, because even highly purified 
CSCs can undergo relatively fast differentiation after being placed in adherent culturing 
conditions. On the other hand, standard cancer cell lines represent virtually unlimited 
resource, therefore, it would be useful to have standardized experimental conditions for 
obtaining a highly tumorigenic and drug resistant CSCs in sufficient quantities, which is a 
prerequisite for preliminary screening/development of potentially effective CSC-targeted 
drugs, as well as for investigation of general properties of CSCs.  
An alternative 3D model of free-floating cancer spheroids was established by Sutherland 
and colleagues long before the discovery of CSCs (Inch et al., 1970;  Sutherland et al., 1971). 
This model is more closely related to original tumors with respect to cell morphology, 
metabolic and proliferative gradients, oxygen and drug penetration, cell-cell junctions, 
kinases activation and other parameters, compared to the cancer cell monolayers (Friedrich 
et al., 2009). Spheroid cells have an enhanced resistance to many of the commonly used anti-
cancer drugs (Dessoize et al., 2000; Yoshida et al., 2008), showing dramatically lower 
cytotoxicity against 3D cancer spheroids compared to monolayer cultures, and exhibit 
chemoresistance which recapitulates this resistant phenotype in vivo (Dubessy et al., 2000; 
Durand et al., 2001; Friedrich et al., 2009). Increased resistance of spheroid cells to ionizing 
radiation was first demonstrated by Sutherland and colleagues (Inch et al., 1970; Sutherland 
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et al., 1971). The floating cancer spheroids are organized hierarchically, similarly to the in 
vivo tumors, containing relatively small (although usually increased compared to the 
parental tumor) population of the tumorigenic cells and a large spectrum of their 
progenitors, the bulk tumor cells at different stages of differentiation. They can be passaged 
for many generations, suggesting that they contain a population of cells with extensive self-
renewal capacity. Thus, the cancer spheroids induced by primary colon carcinoma cells 
select for cells that coexpress multiple CSC markers, including CD133, CD166, CD44, CD24, 
CD29 (Vermeulen et al., 2008) and Lgr5 (Barker et al., 2007). We found that both mice tumor 
xenografts and 3D spheroids induced by more purified phenotypic populations of cancer-
specific tumorigenic cells (CD133high/CD44high for prostate and colon cancer) have higher 
tumorigenic and clonogenic potentials, and much higher ratio of cells with original 
phenotype, even after several weeks in 3D culture (Rowehl et al., 2008; Botchkina et al., 
2009). Striking correlation between ability to form compact 3D spheroids and invasive 
potential was recently demonstrated on ovarian cancer cells (Sodek et al., 2009). Although 
3D cancer cell cultures were developed several decades ago, earlier studies focused on 
analyses of drug responses were usually limited to the relatively short-term gross evaluation 
of the inhibition of spheroid growth and apoptosis, but specific stem cell-related responses 
of spheroid cells  were not studied. Recently, several mechanisms were suggested as a 
mediators of the CSC drug resistance, including replication quiescence, high expression of 
ABC transporters, active DNA repair, activation of anti-apoptotic pathways, down-
regulation of the apoptotic machinery and others (Dean et al., 2005; Donnenberg et al., 2005; 
Mimeault et al., 2007). 
Therefore, taking into account all of the above, early passage cancer floating spheroids 

induced by purified cancer-specific CSCs and early passage patient-derived mice tumor 

xenografts can be suggested as relatively suitable models for studying CSC-targeted drug 

efficacy. Both mice tumors and spheroids induced by purified CSCs contain higher ratios of 

cells with original transplanted phenotypes compared to parental sources. Since CSCs 

represent a dynamic population with dual potential, self-renewal versus generation of the 

committed progenitors, which eventually will differentiate into all mature cell phenotypes, 

isolated CSC phenotypes should be cultured, tested and treated under conditions designed 

to retain their “stemness” and preclude differentiation to the bulk tumor cells. The isolated 

cell phenotypes should be functionally tested for at lest major stem cell properties, including 

self-renewal capacity in vivo (ability of the particular cell phenotype to induce tumors in 

NOD/SCID mice after serial transplantations of the low cell number); self-renewal capacity 

in vitro (ability of the particular cell phenotype to induce  3D colonospheres during serial 

passaging under non-adherent, serum-free culture conditions), and plasticity (ability to 

produce all the differentiated cell phenotypes characteristic for particular tumor under 

standard culture conditions). In addition to standard methods of analysis of cytotoxicity, 

CSC-targeted drug activities should be also evaluated by functional analyses of stem cell-

related properties, as well as by comparative genomic and molecular analyses.  

4. Genomic characteristics of the prostate and colon CSCs  

Genome-wide Gene Expression Profiling   

We studied the genome-wide gene expression profiles of prostate and colon CSCs using 
high-density oligonucleotide microarrays (Affymetrix Gene Chip HG-U133 Set). To increase 
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the discriminating power of the gene microarray assay, either repeatedly MACS-CD133 
sorted and grown on type I collagen-coated surfaces at low density prostate PC3MM2 and 
colon HCT116 cells, or floating spheroids induced by CD133high/CD44high phenotypes in 
serum-free MSCB medium were analyzed in comparison to their bulk adherent  
counterparts. In prostate tumorigenic cells, we have determined 213 genes with 10-100 fold 
increased activity out of 8994 differentially expressed ones, and 87 genes with 5-50 fold 
decreased activity (Rowehl et al., 2008). Among the most up-regulated genes were anti-
apoptotic genes, including BIRC5 (survivin), CDC2, TOP2A, MYBL2, HELLS, ANGPTL and 
others. Another largest population of genes was related to the cell cycle regulation and 
proliferation, including cyclin B, CCNB1, CDC2, CDCA 2, 3, 5 and 8, BUB1, ANLN, ATM, 
FOXM1, TACC3, PLK4, SHCBP1, GTSE1 and others. Several “stemness” genes involved in 
developmental pathways, including MYBL and SOX4 were also significantly upregulated. 
Of interest, the ASPM gene, which is responsible for accelerated human brain evolution and 
also is overexpressed in some human cancers (34) displayed 128-fold higher expression in 
prostate CSCs compared to the bulk tumor cells. Among significantly downregulated genes 
were those involved in regulation of apoptosis (NUPR1, BCL2L1, TRIB3); cell 
cycle/proliferation (CDKN2B, TRIM13; SLC3A2) and cell-cell and cell-matrix signaling 
(S100A9, S100P, GDF15).  
In colon tumor-initiating cells, we have found that the microarray assay has much higher 

discriminating power in analysis of cells from floating spheres. Thus, we have determined 

more than 500 of significantly (3-120 fold) upregulated genes out of 4351 differentially 

expressed ones, and 436 genes which were downregulated by 3-1500 folds in colon CSCs 

grown as floating spheroids (Botchkina et al., 2009). For comparison, analysis of single-time 

MACS-CD133+ cells versus unsorted cells has shown only 988 differentially expressed genes 

with 162 signifficantly up-regulated ones. It can be explained by constitutively high 

expression of CD133 by the majority of colon cancer HCT116 cells, which predominantly 

represent progenitor cells. We have determined that, similarly to the prostate CSCs,  majority 

of the most upregulated genes were those related to anti-apoptosis (APP, Bcl3/NFkappa B2 

complex, BDNF, BIRC3, BIRC4, BTRC3, CBX4, CCAR1, CCPG1, CD74, DHCR24, FOXO3, 

HSPA1B, IGFBP3, IF16, NFKB1A, TBX3, TNFAIP3, TRIB3 and others); cell cycle/cell 

proliferation (FOSB, IL-8, CCNG2, IGFBP3, TGFBP1, MXD1, INSIG1, EHF, CD74, CDC25A, 

HSMPP8); and transcription factors (ID2, ID2B, DENR, MXD1 and many others). Several 

stemness genes were also upregulated (NOTCH pathway; APP, MIB1; Wnt receptors TGFB1I1, 

CSNK1D). High number of genes regulating Ca2+ homeostatis and calmodulin binding also 

revealed significantly altered expression which is most likely connected with the altered 

induction and regulation of apoptosis in CSCs. The most significantly downregulated genes in 

HCT floating spheres were HLI4 (1500-fold) which is responsible for heterophilic cell adhesion; 

apoptosis-related cytochrom c, COX6A1 gene (300-fold), and BCL2L1 which regulates the 

release of cytochrom c from mitochondria; CXCL14 gene involved in cell-cell signaling (100-

fold). Among other significantly downregulated genes were apoptosis-related AP15, BAX, 

CASP2, CFL1, ENO1, FXR1, HSPD1, HSP90B1, FAS, Fas-binding (FBF1, NPM1), MVEGFA, 

RAD21, RHOB, SOCS2, VDAC1, and many others; cell cycle/cell proliferation (ras RHOB, 

CDV3, CDK8, NFYC); genes involved in negative regulation of cell growth (DCBLD2, POSTN, 

CDH11); signal transduction (ATP binding: SPARC, MAP3K2, HSP90AB1); and heat shock 

protein genes (HSP90B1, HSPD1) which are required for antigen presentation. This data is in 

line with current knowledge that chemo- and radioresistance of CSCs is attributed to up-
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regulation of anti-apoptotic genes, down-regulation of pro-apoptotic ones, active DNA repair, 

reactivation of some developmental signaling cascades, and other mechanisms (Dean et al., 

2005; Mimeault et al., 2007).  

Stem Cell-Related Gene Expression Profiling 

We analyzed the floating spheroids induced by CD133high/CD44high cell populations derived 
from the three independent colon cancer cell lines, including HCT116, HT29 and DLD-1 
with the stem cell pathway-specific PCR Array assay (SABiosciences). Each array contains 
SYBR Green-based real-time PCR gene-specific assays for a set of 84 genes. Using filtering 
criteria of a 1.5 or greater fold-change in expression, we have analyzed differentially 
expressed genes in these three types of floating colonospheres compared to their bulk 
differentiated adherent counterparts (Botchkina et al., 2010). The most profound differences 
were observed in HCT116 spheroids grown from CD133high/CD44high cells (Figure 4 A; left 
histogram), which is in line with their higher sphere-forming and tumor-initiating capacities 
compared to cells of the same phenotype isolated from HT29 and DLD-1 lines. About one-
fourth of the analyzed stem cell-related genes, including Wnt and Notch pathway genes 
responsible for self-renew and cell cycle regulation, were commonly up-regulated in all 
types of spheroids, with significantly higher levels of expression in  HCT116 ones. Thus, 6 of 
6 analyzed genes responsible for stem cell self-renewal (SOX1, SOX2, MYST1, MYST2, 
NEUROG2 and HSPA9), and 3 of 5 genes regulating symmetrical/asymmetricasl cell 
division (NOTCH1, NOTCH2 and PARD6A) were significantly up-regulated in the HCT116 
CD133/CD44-high colonospheres compared to their bulk counterparts. The most 
significantly up-regulated genes in HT29 spheroids were ACAN, ALPI, APC, ASCL2, 
CCND2, CD3D, CD4, CD8A, CD8B, COL2A1, COL9A1, DHH, DLL3, DTX1 FGF1, GJA1, 
S100B,SOX2, T, TERT and WNT1; and in DLD-1 spheroids - ALDH1A1, ASCL2, CCND2, 
CD4, COL1A1, DLL1, DTX1, FGF1, GJA1, IGF1, JAG1, MME, NCAM1, and NOTCH1. 
In metastatic prostate cancer PC3MM2 cell line, majority of the analyzed stemness genes 
were also dramatically up-regulated in spheroids induced by CD133high/CD44high cells 
compared to their bulk counterparts (Fig.4 B; left histogram), wich is in line with the 
Affymetrix microarray data. Multiple developmental genes, including NOTCH1, NOTCH2, 
NUMB, DTX2, DLL3, JAG1, WNT1, MYC, SOX1, SOX2, and genes involved in general 
regulation of stem cells self-renewal and maintenance, including NEUROG2, MYST1, 
MYST2, HSPA9B, DLL1, PPARD, FRAT, CD44, COL2A1, DVL1, TERT, ASCL2, BTRC and 
others were overactivated. The ABC transporters-related gene, ABCG2 was also up-
regulated in prostate spheroids compared to the corresponding adherent cell cultures, 
which together with the upregulated anti-apoptotic and down-regulated pro-apoptotic 
genes might explain dramatic increase in the resistance to drug treatment of 3D spheroids 
versus adherent cancer cell cultures.  
Accumulated data suggest that recently discovered transcription factors essential for stem 
cells self-renewal and maintenance of pluripotency, including OCT4, SOX2, c-Myc and Klf4 
(Takahashi et al., 2006; 2007), are closely related to cancer invasion, metastasis and CSC 
maintenance. Thus, expression of the SOX2 and OCT4 was associated with less 
differentiated phenotype, distant recurrence and poor prognosis for colorectal cancer 
(Tsukamoto et al., 2005; Saigusa et al., 2009). It was shown that some prostate cancers 
overexpress several genes typically associated with stem cells, including Bcl-2, OCT3/4, 
BMI1, ǃ-CATENIN, SMOOTHENED and others, which indicates that these tissues may 
contained some significant ratios of the CSCs (reviewed in Mimeault & Batra, 2006). We 
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have found that floating cancer spheroids contain a minority cell populations (about 3-4%of 
the  spheroid cells) with high levels of expression of several  transcription factors, including 
c-Myc, Oct4, Sox2 and NANOG. The flow cytometry data were confirmd with western blot 
analysis shown the presence of these proteins in total lysates of the spheroid cells, as well as 
in repeatedly sorted cells with CD133high/CD44high phenotype. 

5. CSC-targeted activities of the new-generation taxoids 

It is largely accepted now that effective anti-cancer drugs should be targeted toward the 
cancer-specific tumor-initiating cells, not only the bulk tumor cells. For advanced prostate 
cancer, androgen deprivation therapy remains the most widely used treatment modality. 
However, although it induces remission in about 90% of patients, in ~18 months all patients 
relapse with a hormone-refractory drug resistant disease, which is invariably fatal (overall 
median survival is 23-37 months). Such resistance to hormonal therapy was associated with 
the lack of androgen receptors on the putative prostate CSCs (Isaaks, 1999; Taplin & Balk, 
2004; Maitland & Collins, 2008). Colon cancer is inherently drug-resistant due to multiple 
mechanisms that are still poorly characterized, so both CSCs and the progenitor cells can 
potentially contribute to chemotherapy tolerance.  
Numerous studies have demonstrated that both CD133- and CD44-positive fractions in many 
cancer types are exceptionally resistant to standard anti-cancer therapies (Frank et al., 2003; 
Frank et al., 2005; Bao et al., 2006; Liu et al., 2006; Hong et al., 09; Vlashi et al., 09). Moreover, 
there is growing evidence that conventional therapeutic modalities focused on the tumor 
debulking may actually promote cancer progression by stimulating quiescent CSCs to divide 
symmetrically (self-renewal) and repopulate the tumor mass with undifferrentiated cells (Bao 
et al, 2006; Dirks, 2006 ; Eramo et al., 2006; Woodward et al., 2007; Todaro et al, 2007; Bleau et 
al., 2009). Multiple evidence indicate that the ratio of CD133+ cells correlates with tumor 
aggressiveness, histologic grade and clinical outcome (Al-Hajj et al, 2003; Liu et al., 2006; 
Zeppernick et al., 2008; Maeda et al., 2008; Horst et al., 2008; Wang et al., 2009). In colorecral 
cancer, elevated levels of CD133 expression were associated with distant recurrence (Yasuda et 
al., 2009) and resistance to chemo- and radiotherapy (Saigusa et al., 2010). The proportion of 
CD133+ cells in colon cancer metastases is higher than in primary tumors (Puglisi et al., 2009). 
Similar data were reported for CD44-positive cells (Hong et al, 09). There is also growing data 
that CSCs, in particular CD133-positive cells, express several pluripotency markers (Chen et 
al., 2008), which was linked to their chemo- and radioresistant properties. The expression of 
CD133, Sox2 and Oct4, was increased after treatment with chemo- (Levina et al., 2008) and 
radiation therapy (Saigusa et al., 2009), and was also associated with an unfavorable clinical 
outcome (Wang et al., 2009). Taken together, it can explain the well known fact that metastatic 
lesions are more resistant to treatment compared to primary tumors. Since CSCs, similarly to 
other types of stem cells, have almost unlimited ability to self-renew, treatment strategies can 
be focused either to direct elimination of tumor-initiating cells, abrogation of their stemness, or 
promotion of their differentiation. This new paradigm of cancer treatment requires 
development of novel drug molecules and additional, stem cell-relevant criteria to assess CSC 
drug responses. 
Paclitaxel (Taxol®, Bristol-Myers Squibb) and its semisynthetic analog Docetaxel (Taxotere®, 
Aventis) are the most commonly used anti-cancer drugs and standard chemotherapy of 
colon and hormone-resistant prostate cancers. These taxanes bind to the ǃ-tubulin subunit, 
accelerate the polymerization of tubulin, thereby stabilizing the microtubules and inhibiting 
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their depolymerization, which results in the arrest of the cell division cycle and consequent 
apoptosis. Although both paclitaxel and docetaxel possess potent antitumor (debulking) 
activity, most treated patients ultimately manifest resistance to the drugs and recurrence of 
the disease, which is known to be associated with a more malignant phenotype and high 
mortality rates (Mimeault et al., 2007). Thus, two large phase III trials (TAX 327 and SWOG 
9916; Southwest Oncology Group) have demonstrated that these drugs increased an overall 
survival in patients with hormone-refractory metastatic prostate cancer from 16-17 months 
to only 17.5-18.9 months (Roberts et al., 2004). To develop new taxane anticancer agents with 
fewer side effects, superior pharmacological properties, and improved activity against drug-
resistant human cancers, extensive structure-activity relationship studies on taxol and its 
congeners have been performed in different laboratories. Several novel second- and third-
generation taxoids with systematic modifications at the C2, C10, and C3’N positions were 
synthesized in Dr. Ojima’s group (reviewed in Ojima & Das, 2009). It was determined that 
(i) the C3’-phenyl group was not an essential component for their potent activity and (ii) the 
modifications of the C10 position with certain acyl groups as well as the replacement of the 
phenyl group with an alkenyl or alkyl group at the C3’ position made compounds 1–2 
orders of magnitude more potent than the parent drugs (paclitaxel and docetaxel) against 
drug resistant human breast cancer cell lines. These highly potent taxoids were termed 
“second-generation taxoids”. Furthermore, we found that introduction of a substituent (e.g., 
MeO, N3, Cl, F, etc.) to the meta position of the C2-benzoyl group of the second-generation 
taxoids, enhanced the activities 2–3 orders of magnitude higher than the parent drugs 
against different types of the drug-resistant cancer cells (Ojima & Das, 2009).  
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Fig. 3. Chemical structure of taxol (A) and new-generation taxoid, SB-T-1214 (B). 

The antitumor activity of SB-T-1214 (Figure 3), one of the leading candidates among the new 
generation taxoids studied in our laboratory, was assayed in vivo against a Pgp+ DLD-1 
human colon tumor xenograft in SCID mice, as well as against highly drug-resistant 
CFPAC-1 pancreatic tumor xenografts. The drug was administered intravenously in three 
doses 3 times using a 3-day regimen, starting from day 5 after DLD-1 subcutaneous tumor 
implantation. As anticipated, paclitaxel was ineffective against this highly drug-resistant 
(Pgp+) tumor at its optimal dose (60 mg/kg total dose). In contrast, SB-T-1214 has shown 
profound antitumor activity, with the best result at 60 mg/kg total dose, 20mg/kg x 3, 
wherein complete regression of the DLD-1 tumor was achieved in five of five mice (tumor 
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growth delay was >201 days). Systemic toxicity profile has shown that there was only a 3-
5% weight loss during the period of day 15 to day 20, and the drug was well tolerated by 
animals (Kuznetsova et al., 2006). Histopathological analysis of the hematoxylin and eosin 
stained tissue sections of the tumor xenografts recovered from the control (vehicle treated) 
mice revealed a large tumor areas with densely packed tumor cells (Botchkina et al., 2010), 
which uniformly expressed membrane-bounded immunoreactivity for human epithelial cell 
adhesion molecule, hEpCAM. Several small clusters of cells with high levels of CD133 
expression were found predominantly within the outer areas of the tumors corresponding to 
the tumor invasive front, whereas scattered CD133+ cells were detected across the entire 
tumor areas. Flow cytometry analysis of the dissociated and immunomagnetically (MACS-
hEpCAM) sorted mice tumor xenografts confirmed the presence of a minor population 
(about 4%) of human cancer cells with high combined expression of the CD133 and CD44. 
After three consequent treatments with the SB-T-1214, we observed a complete reduction in 
tumor volume. Residual tissues showed multiple inflammatory infiltrates and fibrosis, and 
were negative for human EpCAM and CD133. Since tumor growth delay was comparable 
with the lifespan of SCID mice, we hypothesized that this compound could affect 
timorigenic cell populations by modulation of some stemness genes and signaling pathways.  
To test this hypothesis, the CSC-specific effects of SB-T-1214 were studied on previously 
characterized  three independent invasive colon cancer cell lines (HCT116, HT29 and DLD-1), 
as well as on highly metastatic derivative of the prostate PC-3 cell line, PC3MM2,  which was 
kindly provided by M. D. Anderson Cancer Center (USA). The tumor-initiating cells were first 
isolated and enriched with a fluorescence activated cell sorting (FACS) based on highest 
combined expression of the CD133 and CD44. We have found that majority of cells in all 
selected colon cancer cell lines grown at standard adherent conditions expressed moderate 
levels of CD133, CD44 and CD166. However, all three cell lines possessed minority cell 
populations with highest expression of CD133, which coincided with high expression of CD44 
(CD133high/CD44high). Then selected cell subpopulations were subjected to further purification 
and propagation using several approaches, which include repeated cell sorting, short-term 
culturing at low cell density on type I collagen-coated surfaces, growing cells in serum-free 
stem cell medium and others. To confirm that selected cell phenotypes posess the stem cell-
related characteristics, they were subjected to functional and genomic analyses as we 
previously described (Rowehl et al., 2008; Botchkina et al., 2009). We have determined that 
even without additional purification, the acutely isolated CD133high/CD44high cells derived 
from all three colon cancer cell lines possessed relatively high efficiency in forming dense 
floating multicellular spheroids in non-adherent cultures with serum-free medium in contrast 
to their corresponding bulk counterparts, which produced a few loose flat colonies. 
Dissociated spheroid cells retained an original cell phenotype and expressed all the studied 
commonly used stem cell surface markers, including CD133, CD44, CD166, hEpCAM, CD49b, 
and CD117. Immunohistochemical analysis of spheroid cells revealed a minority cell 
population expressing high levels of nuclear β–catenin.  
In our previous studies we have found that short-term culturing of repeatedly sorted cells 
on type I collagen-coated surfaces in serum-free stem cell medium led not only to the 
retaining, but to significant increase of the ratios of the tumor-initiating cell phenotypes. 
This data is in line with a recent study showing that human colorectal carcinoma cells 
grown on type I collagen in serum-free medium undergo an epithelial-mesenchymal-like 
transition and downregulation of E-cadherin and ǃ-catenin at cell-cell junctions (Kirkland et 
al., 2009). Authors have found that collagen type I inhibited cell differentiation, increased 

www.intechopen.com



 Cancer Stem Cells Theories and Practice 

 

146 

clonogenicity and promoted expression of CD133 and Bmi1, indicating that it promoted 
expression of a stem cell-like phenotype in colon cancer cells. Therefore, the CSC-targeted 
effects of the SB-T-1214 were tested under two experimental conditions: a) using purified 
CSCs grown adherent to the type I collagen, which promote stemness and retain selected 
cell phenotypes in undifferentiated state; and b) using 3D spheroid cultures induced by the 
purified CSCs, which also allow for enrichment of CSCs and retaining of the 
undifferentiated phenotype in major cell population. As we mentioned above, spheroid cells 
are highly resistant to standard treatment modalities, possess high tumorigenic and 
clonigenic potentials, and express many markers of stemness, including CD133, CD166, 
CD44, CD24, CD29 (Rowehl et al., 2008; Vermeulen et al., 2008; Botchkina et al., 2009) and 
Lgr5 (Barker et al., 2007). As discussed above, these features are characteristic for the most 
aggressive clinical cases with poor prognosis and, therefore, selected approach seems 
clinically relevant and adequate for search of drugs with the potential to eradicate cancer.  
Administration of 0.1-1μM SB-T-1214 for 48 hours induced a loss of integrity of the floating 
spheroids and apoptosis in about 90% of the sphere cells (Botchkina et al., 2010), with higher 
rates of cell death in adherent type I collagen cultures. Although about 11% of cells survived 
this treatment regimen, such cells displayed multiple abnormalities, including a greatly 
enlarged size, multiple nuclei, a significant increase in the number of long and knobby 
projections, and severe vacuolization. Many cells displayed a clear sign of the mitotic 
catastrophe. Most importantly, viable cells which survived this treatment regimen 
significantly lost the ability to form secondary spheroids, which indicates that colon CSC 
population was critically affected. Thus, 1000 of untreated HCT116 primary spheroid cells 
induced 125±6 secondary spheroids, HT29 - 75±7, and DLD-1 gave rise to 93±6 secondary 
spheroids, whereas the SB-T-1214-treated dissociated spheroid cells produced only 1.5±0.3, 
4±0.6, and 3±0.4 secondary spheroids, correspondently (P<0.01). After placement on type I 
collagen surfaces, cells that survived drug treatment, displayed profound morphological 
abnormalities similar to those described above. 
The CD133high/CD44high-induced colon and prostate cancer spheroids were further tested 
for the expression of stem cell-related genes before and after treatment with SB-T-1214 using 
PCR array assay (SABiosciences). Each array contains SYBR Green-based real-time PCR 
gene-specific assays for a set of 84 genes. Using filtering criteria of a 1.5 or greater fold-
change in expression, we have analyzed differentially expressed genes in three types of 
floating colonospheres compared to their bulk differentiated adherent counterparts, as well 
as before and after treatment with SB-T-1214. The most profound differences were observed 
in HCT116 spheroids grown from CD133high/CD44high cells (Figure 4; left panel), which is in 
line with their higher sphere-forming and tumor-initiating capacities. About one-fourth of 
the analyzed stem cell-related genes, including Wnt and Notch pathway genes responsible 
for self-renew and cell cycle regulation, were commonly up-regulated in all types of 
spheroids, with significantly higher levels of expression in  HCT116 ones. Thus, 6 of 6 
analyzed genes responsible for stem cell self-renewal (SOX1, SOX2, MYST1, MYST2, 
NEUROG2 and HSPA9), and 3 of 5 genes regulating symmetrical/asymmetricasl cell 
division (NOTCH1, NOTCH2 and PARD6A) were significantly up-regulated in the HCT116 
CD133/CD44-high colonospheres compared to their bulk counterparts. The most 
significantly up-regulated genes in HT29 spheroids were ACAN, ALPI, APC, ASCL2, 
CCND2, CD3D, CD4, CD8A, CD8B, COL2A1, COL9A1, DHH, DLL3, DTX1 FGF1, GJA1, 
S100B,SOX2, T, TERT and WNT1; and in DLD-1 spheroids - ALDH1A1, ASCL2, CCND2, 
CD4, COL1A1, DLL1, DTX1, FGF1, GJA1, IGF1, JAG1, MME, NCAM1, and NOTCH1.  
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Fig. 4. Drug-induced alteration in the stem cell-related gene expression profiles (PCR Array 
assay) in colon and prostate cancer spheroids induced by CD133high/CD44high cell 
populations. A majority of the stemness genes were up-regulated in floating spheroids 
grown from CD133high/CD44high cells (upper half of each histogram) derived from colon 
HCT116, HT29and DLD-1 (A), as well as from PC3MM2 (B) cell lines in comparison with 
their corresponding bulk counterparts (lower half of each histogram). Treatment with 
100nM SB-T-1214 for 24 or 48 hr induced down-regulation of a majority of the stem cell-
related genes (right column). Importantly, relatively low concentrations of SB-T-1214 
(100nM-1μM for 24 or 48 hr) induced dramatic down-regulation of the majority of stem cell-
related genes in all three types of colonospheres, as well as in the prostate PC3MM2 
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Fig. 5. Drug-induced alterations in the expression of the markers of pluripotency.  
FACS analysis shows the presence of minor subpopulations of colon cancer cells within the 
3D spheroids (left column), which express the three key pluripotency genes (Sox2, Oct4, and 
c-Myc). After treatment with SB-T-1214 percent of these cells was decreased (right column). 

spheroids (Figure 4, right panel). The most significant drug-induced down-regulation of gene 

expression was detected: 1) in HCT116 colonospheres for SOX1, RPL13A, BMP3, NEUROG2, 

GJB1, GJA1, ASCL2, CTNNA1, GDF2, ALPI, S100B, CD8B1, ACTB, CCND1, FGF1, PARD6A, 

DVL1, GDF3, ISL1, CD3D, MME, FGFR1, RB1, BMP1, AIN1, ALDH1A1, CD8A, PPARD, 

FZD1, NUMB, ABCG2; 2) in HT29 colonospheres for ACAN, ALPI, BMP3, CD3D, CD4, 

CD8A, CD8B, CDH2,COL2A1, COL9A1, DHH, DLL1, DLL3, DTX1, FGF1, FGF3, FZD1, GDF2, 

IGF1, MME, MYOD, NCAM1, NEUROG2, S100B, SOX2, and TERT; 3) in DLD-1 

colonospheres for CD4, CDH2, COL1A1, DLL1, DTX1, IGF1, FGF3, FZD1, JAG1, KRT15, 

MSX1, NCAM1 and NOTCH1. Of note, many of these genes were related to the stem cells 

self-renewal, regulation of symmetric/asymmetric division and pluripotency.   

We have found that the colonospheres induced by HCT116 cells with CD133high/CD44high 

phenotype contained minority cell populations with high levels of expression of several 
markers, which are essential for pluripotency and self-renewal of embryonic stem cells (iPS-
related genes) including c-MYC, SOX2, OCT3/4, LIN28, and NANOG (Botchkina et al., 
2010). To analyze possible drug-induced alterations in the expression of these stem cell-
specific transcription factors, which are low in abundance and present in a minority of colon 
cancer cell populations, we treated floating spheroids with 100nM of SB-T-1214 for 24 hours 
to induce such alterations, but avoid profound cell death. Importantly, both FACS and 
western blot analyses have shown that the expression of Oct-4, Sox-2, Nanog, Lin-28 and c-
Myc was inhibited after a single treatment with relatively low drug concentration (Figure 5; 
FACS analysis is shown). These data are promising in light of a recent clinical study, which 
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has demonstrated that expression of several iPS-related genes, in particular, LIN28 and 
SOX2 is significantly associated with lymph node metastasis (Saiki et al., 2009). It was 
recently demonstrated that treatment with 5-FU and oxaliplatin, a standard therapy for 
metastatic colon cancer, induced up to 30-fold enrichment of CD133+ and up to 2-fold 
enrichment of CD44+ cells in HT29 cell line (Dallas et al., 2009). These data are in line with 
our observation that after a single treatment with 100µM Paclitaxel for 24 hours, the 
clonogenic potential of the dissociated HT29 and DLD-1 spheres cells was significantly 
increased, so we can assume that post-treatment spheroids contained a higher proportion of 
putative colon CSCs compared to untreated spheroids.  
Therefore, SB-T-1214 efficiently suppressed the majority of stem cell-related genes, 

including Wnt and Notch, and in particular, several essential markers of pluripotent 

embryionic stem cells, including SOX-2, Oct-4 and c-Myc, on both transcriptional and protein 

levels. Importantly, WNT activity is known to regulate the self-renewal of prostate cancer 

cells with stem cell characteristics independently of androgen receptor activity (Bisson & 

Prowse, 2009); while c-myc gene (c-Myc is a Wnt target) amplification has been associated 

with the appearance of hormone-independent prostate cancer (Nupponen et al., 1998; 

Bernard et al., 2003), and a significant increase of c-myc amplification has been observed as a 

consequence of anti-androgen treatment (Kaltz-Wittmer et al., 2000). Of note, c-Myc is not 

essential for normal stem cells (Oskarsson et al., 2006), which makes it an even more 

attractive target for therapeutic intervention. Therefore, inhibition of WNT and NOTCH 

signaling by SB-T-1214 can reduce the self-renewal of prostate cancer stem cells and 

improve therapeutic outcomes. Since we have studied the SB-T-1214 induced alterations in 

the stemness gene expression profiles using total cell lysates (equal amounts of the total 

RNA for PCR arrays and total protein for western blot analyses), the significant inhibition of 

the stem cell-related genes induced by SB-T-1214 is promising. 

6. Conclusions  

Taken together, our data strongly support the suggestion that prostate and colon cancers 

cells with high combined expression of CD133 and CD44 represent stem-like cells with high 

tumorigenic and sphere-forming potentials, and significantly up-regulated multiple 

developmental pathways characteristic for pluripotent stem cells. Several mechanisms, 

including up-regulation of the anti-apoptotic and down-regulation of pro-apoptotic 

pathways, as well as high levels of expression of ABC transporters, active DNA repair and 

others, can contribute to the resistance of CSCs to standard treatment. Our findings provide 

first evidence that a new-generation taxoid, SB-T-1214, possesses significant activity against 

3D colon and prostate cancer spheroids induced by, and enriched with, drug resistant 

tumorigenic CD133high/CD44high cell populations, and efficiently inhibits the expression of a 

majority of stem cell-related genes, including several key regulators of pluripotency and 

self-renewal of embryonic stem cells. Therefore, our data indicate that the long-term efficacy 

of SB-T-1214 against drug resistant tumors in vivo (Kuznetsova et al., 2006; Ojima &Das, 

2009) may be explained by down-regulation of multiple stem cell-related genes in 

tumorigenic cell populations, in addition to known efficacy of taxoids as a mitotic poisons 

due to their binding to microtubules (Jordan & Wilson, 2004) in the proliferating pool of 

cancer cells. These findings should be further tested across a large series of clinical 

specimens of primary and metastatic lesions of prostate and colon cancers.  
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