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1. Introduction

The analogies between phenomena occurring in two different physical systems open a route
to find new effects or to translate solution on techniques or devices, and quite often help
to understand both systems better (Dragoman & Dragoman, 2004). In particular, electronic
analogues of many optical behaviors such as reflection, refraction (Gaylord & Brennan,
1989), focusing (Sivan et al., 1990; Spector et al., 1990; van Houten et al., 1988), collimation
(Molenkamp et al., 1990), and interference (Ji et al., 2003; Yacoby et al., 1994) have been
achieved in two-dimensional electron gas (2DEG) enabling the systems as a basic platform
to study foundation problems in quantum mechanics as well as quantum information
processing. The close relation between optics and electronics results from the fact that the
electrons act as wave due to the ballistic transport properties of a highly mobility 2DEG
created in semiconductor heterostructures (Palevski et al., 1989). As a result, there is a growing
interest in the design and development of devices based on electron wave propagation, which
has given rise to a research field described as electron wave optics (Datta, 1996; Gaylord et al.,
1991).
Over the past six years, monolayer graphene has attracted much attention (Beenakker, 2008;
Castro Neto et al., 2009) since the graphitic sheet of one-atom thickness has been fabricated
experimentally by A. K. Geim et al. in 2004 (Novoselov et al., 2004). The valence electron
dynamics in such a truly two-dimensional (2D) material is governed by a massless Dirac
equation. Thus graphene has many unique electronic and transport properties (Beenakker,
2008; Castro Neto et al., 2009), including half-integer and unconventional quantum Hall effect
(Zhang et al., 2005), observation of minimum conductivity (Novoselov et al., 2005), and Klein
tunneling (Katsnelson et al., 2006).
The great progress on graphene has brought the analogy between ballistic electrons and light
propagations to a new level, and has lead to the Dirac electron wave optics. In the regard,
various electron optics phenomena, such as focusing (Cheianov et al., 2007), collimation
(Park et al., 2008), subwavelength optics (Darancet et al., 2009), Bragg reflection (Ghosh et
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al., 2009), and Goos-Hänchen effect (GH) (Beenakker et al., 2009; Zhao et al., 2010) provide
different ways to control the electronic wave propagations in different graphene-based
electron devices. One of the most important discoveries is that Cheianov et al. (Cheianov et al.,
2007) have recently demonstrated the negative refraction at the n-p graphene interface when
the incidence angle is less than the critical angle for total reflection and proposed the electron
focusing effect as a “perfect lens" in metamaterial. However, the propagations of electron
waves become quite different, when the evanescent waves are considered in total reflection.
Zhao and Yelin (Zhao et al., 2010) have once studied that the electron beam will experience
the so-called GH shift at the graphene interface, when the incidence angle is larger than the
critical angle. C. W. J. Beenakker et al. (Beenakker et al., 2009) have further found that the GH
effect at a n-p interface in graphene doubles the degeneracy of the lowest propagating mode.
In addition, following the seminal paper on the negative refraction and electron focusing,
Garcia-Pomar et al. (Pomar et al., 2008) have also proposed an n-p-n graphene transistor
to realize the valley beam splitter or collimation. So the manipulation of electron beam
propagation can benefit from all these optical-like phenomena by applying an external electric
or magnetic field to alter the flowing of electrons (Wang and Liu, 2010).
From a somewhat different but relevant perspective, a growing interest has appeared
regarding the simulations of Dirac equation and relativistic effects by many controllable
physical setups, for instance, cold atom in optical lattice (Zhu et al., 2007), spin-1/2 particles
in single trapped ion (Lamata et al., 2007), ultrarelativistic atom with internal energy levels
in a tripod configuration (Juzeliunas et al., 2008), and light in fiber Bragg gratings (Longhi,
2010). It is worthwhile to point out that R. Gerritsma et al. (Gerritsma et al., 2010) have
lately implemented for the first time a quantum optical simulation of a tunable relativistic
quantum mechanical system. In the optical field, the Dirac point (DP) in photonic crystals
for the Bloch states is also of significance and interest, based on the similarity of the
photonic bands of the two-dimensional photonic crystals (2DPCs) with the electronic bands
of solids. Consequently, the conical diffraction (Peleg et al., 2007), “pseudodiffusive" scaling
(Sepkhanov et al., 2007), and photon’s Zitterbewegung (Zhang, 2008) have been found near
the DP in photonic crystals. As we know that, compared to solids, atomic and quantum
optical systems, pure optical systems offer clean and easy controlled way to test theoretical
predictions. Stimulated by the realization of the DP with a double-cone structure for optical
field in the negative-zero-positive index metamaterial (NZPIM) (Wang et al., 2009 , a;b), the
pseudodiffusive property, Zitterbewegung effect, Bragg-like reflection, and the unique GH
effect (Chen et al., 2009 , b) inside the NZPIM slab are extensively investigated. Taking into
account the close relation between Klein paradox and negative refraction (Guney & Meyer,
2009), the novel phenomena in the NZPIM will definitely motivate the further work to
simulate many exotic phenomena in graphene with relatively simple optical system.
This chapter presents a review on the propagation of electron waves in monolayer graphene
and optical simulations with NZPIM. The chapter is organized as follow. In Sec. 2, the
transmission gap (corresponding to Bragg-like reflection) and GH effect are discussed in
single graphene barrier. Similar to the transmission gap, the zero-averaged wavenumber
gap associated with new DP in monlayer graphene superlattice is also studied in Sec. 3 by
the transfer matrix method. In Sec. 4, the optical simulations of the relevant phenomena
mentioned above are made by the NZPIM with the DP. Finally, we make brief conclusion
in Sec. 5.
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2. Transmission gap, Bragg-like reflection and Goos-Hänchen effect in monolayer

graphene barrier

As we know, one of the most interesting phenomena is the perfect transmission, in particular,
for normal incidence, through arbitrarily high and wide graphene barriers, referred to as Klein
tunneling (Katsnelson et al., 2006). Therefore, such important property may lead to the design
of various graphene-based device. Until recently, the transport properties of massless Dirac
fermions, including Klein tunneling and perfect transmission, have been extensively studied
in single graphene barriers (Katsnelson et al., 2006), n-p-n junctions (Cheianov et al., 2007),
graphene-based double barriers (Perira et al., 2007) and even graphene superlattice (Bai et al.,
2007; Barbier et al., 2008; 2010; Bliokh et al., 2009). In the meanwhile, inhomogeneous magnetic
fields on the nanometer scale have been suggested to circumvent the Klein tunneling and
produce confined graphene-based structures (Anna et al., 2009; Martino et al., 2007). It was
found that the angular range of the transmission through monolayer and bilayer graphene
with magnetic barrier structures can be efficiently controlled and gives the possibility to
construct a direction-dependent wave vector filter (Masir et al., 2008 , a;b).
In the following section, we shall firstly investigate the transmission properties of Dirac-like
electron waves in single monolayer graphene barrier, when the ballistic electrons are obliquely
incident on the monolayer graphene barrier. It is shown that the transmission at non-zero
incidence angle has a gap, which can be considered as Bragg-like phenomenon. This
controllable transmission gap is quite different from the perfectly transparent for the angles
close to the normal incidence (Katsnelson et al., 2006) and does result from the evanescent
waves in two cases of classical motion and Klein tunneling due to the effect of parallel wave
vector. Based on the tunable transmission gap (Chen & Tao, 2009), GH shifts for Dirac fermions
in transmission through a two-dimensional (2D) monolayer graphene barrier can be enhanced
by transmission resonances, and can also be negative as well as positive. So these lateral
shifts, associated with the transmission gap and Bragg-like reflection, lead to the significant
difference from the conventional GH shift in total reflection.

2.1 Transmission and reflection in the graphene barrier

We consider the incident electron wave propagates with Fermi energy E at angle φ with
respective to the x axis through a single 2D graphene barrier, as shown in Fig. 1, where V0
and d are the height and width of the potential barrier, respectively. From the view point of its
electronic properties, graphene is a two-dimensional zero-gap semiconductor with the linear
dispersion relation, E = h̄kFυF , thus the low-energy quasi-particles are formally described by
the Dirac-like Hamiltonian (Katsnelson et al., 2006), Ĥ0 = −ih̄υFσ∇, vF ≈ 106m · s−1 is the
Fermi velocity, kF is the Fermi wave vector, and σ = (σx, σy) are the Pauli matrices. So the
wave function of the incident electrons is assumed to be

Ψin(x, y) =

(

1
seiφ

)

ei(kxx+kyy), (1)

the wave function of the transmitted electrons can be expressed as follows,

Ψt(x, y) = t

(

1
seiφ

)

ei(kxx+kyy), (2)

where s = sgn(E), kx = kF cos φ and ky = kF sin φ are the perpendicular and parallel wave
vector components outside the barrier. According to the boundary conditions, transmission
coefficient is determined by
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Fig. 1. Schematic diagram for a single monolayer graphene barrier with height V0
and width d.

t ≡ 1
f

eiϕ =
1

cos(qxd) − i(ss′ sec φ sec θ − tan φ tan θ) sin(qxd)
, (3)

where s′ = sgn(E − V0), qx = (k
′2
F − k2

y)
1/2, k′F = |E − V0|/h̄vF , and θ = arctan(ky/qx). The

critical angle φc for total reflection can be defined by

φc = arcsin
( |V0 − E|

E

)

, (4)

so that when φ > φc, the wave function in the propagating case becomes evanescent wave by
replacing qx by iκ, where κ = (k2

y − k
′2
F )1/2. Next, we will discuss the transmission in two cases

of Klein tunneling (E < V0) and classical motion (E > V0) to show the unique transmission
properties of electron waves in monolayer graphene barrier.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

E (meV)

T

E=V
0

Fig. 2. (Color online) Transmission gap as the function of incident energy E, where d = 80
nm, V0 = 120 meV, solid and dashed curves correspond to φ = 25◦ and φ = 15◦ , respectively.

Case 1: Klein tunneling (ss′ = −1). The transmission probability T can be given by Eq. (3),

T ≡ |t|2 =

[

cos2(qxd) +
(k2

y + kFk
′
F)2

k2
xq2

x
sin2(qxd)

]−1

. (5)

It is clear that the angular-dependent transmission probability T becomes equal to 1 under
the resonance condition, qxd = Nπ, (N = 0,±1, ...). However, when the angle of incidence
satisfies φ > φ′

c, where the critical angle (4) tends to φ′
c = sin−1 (V0/E − 1), with the
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necessary condition E < V0 < 2E, the tunneling of the Dirac-like electron through the
monolayer graphene barrier occurs, thus the transmission probability damps exponentially
in the following form: T ≈ 4k2

xκ2e−2κd/[k2
xκ2 + (k2

y + kFk
′
F)2].

Case 2: Classical motion (ss′ = 1). The transmission probability can be rewritten as

T =

[

cos2(qxd) +
(k2

y − kFk
′
F)2

k2
xq2

x
sin2(qxd)

]−1

. (6)

Similarly, when the incidence angle φ is less than the critical angle, φ′′
c = sin−1 (1 − V0/E)

given by the critital angle (4), the transmission probability T in this case depends periodically
on the width d of barrier. On the contrary, when φ > φ′′

c , wave vector qx becomes imaginary
number, thus the transmission probability tends to T ≈ 4k2

xκ2e−2κd/[k2
xκ2 + (k2

y − kFk
′
F)2] .

Figure 2 shows that the transmission as the function of incidence energy E has a gap, where
d = 80nm, V0 = 120meV, solid and dashed curves correspond to φ = 25◦ and φ = 10◦. The
energy region of the transmission gap, V0 − h̄vFky < E < V0 + h̄vFky, since q2

x < 0. Thus the
width of transmission gap is given by

∆E = 2h̄vFky, (7)

which depends strongly on the parallel wave vector ky, and can be controlled by the incidence
angle, as shown in Fig. 2, where the center of transmission gap is E = V0. It is clear that
the transmission gap becomes narrower with the decrease of the incidence angle, and even
vanishes at normal incidence. Since the transmission gap results from the evanescent wave in
two cases of Klein tunneling and classical motion, the incidence angle, the height and width
of potential barrier play important roles in the transmission gap. Especially, the transmission
gap will become deeper with increasing the barrier width, due to the decrease of the the decay
factor exp (−2κd) in the evanescent case. Here we shall point out that the transmission gap
can be tunable by changing the gate-voltage, which can realize the electron wave energy filter
by the shift of transmission gap.
The tunable transmission gap implies Bragg-like reflection, which usually happens only in
the single potential barrier, instead of multiple barriers. It turns out that Dirac-like electrons
can perfectly reflected by the graphene barrier in the region of energy. This perfect reflection
is similar to but different from the Bragg reflection in magnetic barrier in graphene (Ghosh et
al., 2009). Actually, this Bragg-like phenomenon discussed here can also be applied to select
electron energy by the reflection window.
Next, we will study the total conductance (G) and Fano factor (F) in the single graphene
barrier. Using the Büttiker formula (Datta, 1996), the total conductance of the system at zero
temperature is given by

G = G0

∫ π/2

−π/2
T(EF , EF sin φ) cos φdφ, (8)

with the Fermi energy EF and the units of conductance G0 = (2e2/h̄)(ℓ/πh̄vF), where ℓ is the
length of the structure along the y direction. Furthermore, we can also study the Fano factor
(F) (Tworzydlo et al., 2006), which is given by

F =

∫ π/2
−π/2 T(1 − T) cos φdφ

∫ π/2
−π/2 T cos φdφ

. (9)
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Fig. 3. (Color online) Conductance G/G0 and Fano factor F as the function of incident energy,
where d = 80 nm (blue solid line), d = 50 nm (green dashed line), d = 30 nm (red dotted
line), and other parameters are the same as in Fig. 2.

Figure 3 illustrates the dependence of the conductance and Fano factor on the incidence
energy E, where the physical parameters are the same as in Fig. 2. Obviously, it is shown that
the visible kinks of the conductance due to transmission resonance are closely related to the
quasi-bound state. More importantly, all conductance curves indicate a pronounced forbidden
region, which is the region of almost zero conductance corresponding to the transmission gap.
In addition, the behavior of Fano factor resembles Bragg reflection. Also the interesting point
is that Fano factor will approach the maximum value 1/3 in the transmission gap. In a word,
the transmission gap has great effect on the electron transport in monolayer graphene, but
also provides a novel phenomenon to design various electron wave devices.

2.2 Quantum Goos-Hänchen shift

As mentioned above, Cheianov et al. (Cheianov et al., 2007) have found the negative refraction
and electron focusing in graphene p-n junction, when the incidence angle is less than the
critical angle for total reflection. However, when the incidence angle is larger than the critical
angle, the quantum GH effect in total reflection has been investigated (Beenakker et al., 2009;
Zhao et al., 2010) at a p-n interface in graphene, which is analogous to the lateral shift of the
light beam totally reflected from a dielectric interface (Goos & Hänchen, 1947; 1949). Here we
would like to discuss the negative and positive GH shifts for Dirac fermions in transmission
through a 2D monolayer graphene barrier, based on the tunable transmission gap.
To calculate the lateral shifts, we consider the incidence beam as

Ψin(x, y) =
∫ ∞

∞
dky A(ky)ei(kxx+kyy)

(

1
seiφ

)

, (10)

where the angular-spectrum distribution A(ky) is sharpen distribution around ky0, which can
be simply assumed to be Gaussian function A(ky) = wy exp[−(w2

y/2)(ky − ky0)
2 with wy =

w sec φ0, and the half width of the incident beam at waist w. Accordingly, the transmitted
beam can also expressed as

Ψt(x, y) =
∫ ∞

∞
dkyt(ky)A(ky)ei(kxx+kyy)

(

1
seiφ

)

, (11)
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For the well-collimated beam, that is, δφ = λ f /(πw) ≪ 1, the lateral shifts can be defined,
according to the stationary phase method (Beenakker et al., 2009; Zhao et al., 2010), as

st = − ∂ϕ

∂ky0
, (12)

where the subscript 0 denotes the values taken at ky = ky0 corresponding to the central
incidence angle φ = φ0. It is noted that the lateral shifts of up and down components are
both the same as st in transmission at the interface x = d, whereas on the total reflection the
shifts of up and down components are different due to the phase in the spinor wave function,
and the GH shift is thus defined as their average value in the literature (Beenakker et al., 2009).

0 5 10 15 20

−10

0

10

20

30

q
x0

 d

s
t/λ

Fig. 4. (Color online) Dependence of the lateral shifts in the propagating case on the barrier’s
width d, where φ0 = 20◦, V0 = 120 meV, d is re-scaled to qx0d, E = 80 meV (solid line), and
E = 200 meV (dashed line).

Figure 4 shows the most impressive behavior that in the propagating case the lateral shift can
be negative for Klein tunneling, E < V0, and also be enhanced by the transmission resonances,
whereas for classical motion, E > V0, the shift is always large and positive. On the contrary,
when the incidence angle φ0 is larger than the critical angle φc, the lateral shifts become in
the order of Fermi wavelength due to the evanescent wave, which is similar to those in total
reflection at a single graphene interface (Beenakker et al., 2009; Zhao et al., 2010). Instead of the
enhancement by the transmission resonances shown in Fig. 4, Fig. 5 illustrates that the lateral
shifts for Klein tunneling and classical motion saturate respectively to negative and positive
constants with increasing the barrier’s width in the evanescent case, where (a) φ0 = 40◦ and
(b) 70◦ (which are both larger than the critical angle for total reflection).
Similarly, we shall discuss the properties of the lateral shifts in two cases of Klein tunneling
and classical motion.
Case 1: Klein tunneling (ss′ = −1). When the incidence angle φ0 is less then the critical angle
φc, where φ′

c = sin−1 (V0/E − 1), the lateral shifts are given by

st =
d tan φ0

f 2
0

{[

2 +

(

k2
0

k2
x0

+
k2

0

q2
x0

)]

sin(2qx0d)

2qx0d
− k2

0

q2
x0

}

, (13)

where k0 = (kFk′F + k2
y0)

1/2. Obviously, lateral shifts obtained above can be positive as well as

negative because of | sin(2qx0d)/(2qx0d)| ≤ 1. So for the thin barrier d → 0, that is, the lateral
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shifts can be positive, while the lateral shifts become negative for an enough thick barrier. It is
also interesting that the negative lateral shifts can be enhanced by the transmission resonances.
The exotic behaviors of negative and positive shifts are analogous to those of the transmitted
light beam though a left-handed metamaterial slab (Chen et al., 2009 , b).

0 1 2 3 4 5
0

0.5

1

κ
0
 d

s
t/λ

0

0.2

0.4

0.6

(a)

(b)

Fig. 5. (Color online) Dependence of the lateral shifts in the evanescent case on the barrier’s
width d, where (a) φ0 = 40◦ and (b) φ0 = 70◦, d is re-scaled to κ0d, E = 80 meV (solid line),
and E = 200 meV (dashed line).

On the contrary, when φ0 > φ′
c, the lateral shifts become

st =
d tan φ0

f 2
0

{[

2 +

(

k2
0

κ2
0
− k2

0

k2
x0

)]

sinh(2κ0d)

2κ0d
+

k2
0

κ2
0

}

. (14)

In the limit of opaque barrier, κ0d → ∞, the lateral shifts tend to the constants as follows,

st =
tan φ0

κ0

2k2
x0κ2

0 − k2
0(k2

x0 − κ2
0)

k2
x0κ2

0 − k4
0

, (15)

which are proportional to 1/κ0, and imply that the shifts in the evanescent case are in the
same order of electron wavelength as GH shifts in a single graphene interface (Beenakker
et al., 2009; Zhao et al., 2010). More interestingly, the saturated lateral shifts are negative
when the incidence angle satisfies φ′

c < φ0 < φ∗, where the critical angle is defined by
φ∗ = arcsin

√

sin φ′
c. But the shifts in this case will become positive when φ0 > φ∗. The sign

change of the lateral shifts described by Fig. 5 (b) appears at the incidence angle φ0 = φ∗,
which is similar to the result of the quantum GH effect in graphene, taking the pseudospin
degree into account (Beenakker et al., 2009).
Case 2: classical motion (ss′ = 1). When the incidence angle is less than the critical angle for
total reflection, φ0 < φ′′

c , the lateral shifts can be written as

st =
d tan φ0

f 2
0

{[

2 −
(

k′20
k2

x0
+

k′20
q2

x0

)]

sin(2qx0d)

2qx0d
+

k′20
q2

x0

}

, (16)

where k′0 = (kFk′F − k2
y0)

1/2. Similarly, the lateral shifts for classical motion also depend
periodically on the barrier’s width, and can be enhanced by the transmission resonances.

440 Physics and Applications of Graphene - Theory

www.intechopen.com



However, these lateral shifts in classical motion are always positive. When φ0 > φ′′
c , the shifts

in the evanescent case will become

st =
d tan φ0

f 2
0

{[

2 −
(

k′20
κ2

0

− k′20
k2

x0

)]

sinh(2κ0d)

2κ0d
− k′20

κ2
0

}

. (17)

Then the lateral shifts in the limit, κ0d → ∞, are given by

st =
tan φ0

κ0

2k2
x0κ2

0 + k′20 (k2
x0 − κ2

0)

k2
x0κ2

0 − k′40
, (18)

which are always positive constants.
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Fig. 6. (Color online) The lateral shifts as the function of incident energy E, where d = 80 nm,
and V0 = 120 meV, φ0 = 25◦ (red solid line), φ0 = 20◦ (blue dotted line), and 15◦ (orange
dot-dashed line).

Based on the properties in two cases of Klein tunneling and classical motion, the lateral shifts
as the function of incidence energy E are shown in Fig. 6. It is shown that the lateral shifts are
closely related to the transmission gap ∆E = 2h̄kyvF , as descried in last subsection. Figure 6
indicates that the lateral shifts change the sign near the DP E = V0, and can also be enhanced
by the transmission resonances near the boundaries of energy gap. Actually, the sign change
of the shifts does result from the fact that the DP E = V0 means the transition between Klein
tunneling (E < V0) and classical motion (E > V0), which correspond to the negative and
positive group velocities, respectively.
Obviously, the lateral shifts considered here are quite different from the GH shifts in total
reflection. The lateral shifts can be enhanced by the transmission resonances, thus can be easily
modulated by various parameters such as potential heights and incidence angles. Actually, the
periodical dependence of negative and positive lateral shifts on the gap provides an efficient
way to modulate the spatial position in a fixed graphene barrier, which is useful for the
manipulation of electron beam propagation in graphene (Wang and Liu, 2010).

3. Electronic Band gaps and transport properties inside graphene superlattices

Most recently, there have been a number of interesting theoretical investigations on the
graphene supperlatices with periodic potential structures, which can be generated by different
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methods. As a matter of fact, it is well known that the superlattice are very successful in
controlling the electronic structures of many convectional semiconductor material [For review,
see Ref. (Tsu, 2005)]. The peculiar properties of localized superlattice states including such
as the effect of the Bragg confinement of electron in coupled superlattice and the formation
of above-barrier quasi-bound states at the junction of superlattices are of significance for
both the fundamental research and various devices (Steslicka et al., 2002). In this section,
we will present the result on a new DP which is exactly located at the energy corresponds
to the zero-averaged wavenumber inside the one-dimensional (1D) periodic potentials. It
is emphasized here that the gap for the zero-averaged wavenumber is quite different from
the Bragg gap, which is analogous to the case of the 1DPCs containing left-handed and
right-handed materials (Bliokh et al., 2009; Wang & Zhu, 2010 , b).

3.1 Transfer Matrix method for mono-layer graphene superlattices

First of all, we will develop the transfer matrix method for such system in this subsection.
The Hamiltonian of a low-energy electron moving inside a mono-layer graphene in the
presence of the electrostatic potential V(x), which only depends on the coordinate x, is given
by

Ĥ = vFσ · p̂ + V(x) Î, (19)

where p̂ = (px , py) = (−ih̄ ∂
∂x ,−ih̄ ∂

∂y ) is the momentum operator with two components,

Î is a 2 × 2 unit matrix. This Hamiltonian acts on a state expressed by a two-component
pseudospinor Ψ = (ψ̃A, ψ̃B)T, where ψ̃A and ψ̃B are the smooth enveloping functions for
two triangular sublattices in graphene. Due to the translation invariance in the y direction,
the wave functions ψ̃A,B(x, y) can be written as ψ̃A,B(x, y) = ψA,B(x)eikyy. Therefore, from Eq.
(19), we obtain

dψA

dx
− kyψA = ikψB, (20)

dψB

dx
+ kyψB = ikψA, (21)

where k = [E − V(x)]/h̄vF is the wavevector inside the potential V(x). Obviously, when E <

V(x), the wavevector inside the barrier is opposite to the direction of the electron’s velocity,
which is relevant to the negative refraction in the graphene (Cheianov et al., 2007).
In what follows, we assume that the potential V(x) is comprised of periodic potentials of
square barriers as shown in Fig. 7. Inside the j th potential, Vj(x) is a constant, therefore, from
Eqs. (20) and (21), we can obtain

d2ψA

dx2 + (k2
j − k2

y)ψA = 0, (22)

d2ψB

dx2 + (k2
j − k2

y)ψB = 0. (23)

Here the subscript "j" denotes the quantities in the j th potential. The solutions of Eqs. (22)
and (23) are the following forms: ψA(x) = aeiqjx + be−iqjx and ψB(x) = ceiqjx + de−iqjx, where

qj =sign(kj)
√

k2
j − k2

y is the x component of the wavevector inside the j th potential Vj for

k2
j > k2

y, otherwise qj = i
√

k2
y − k2

j ; and a (c) and b (d) are the amplitudes of the forward and

backward propagating spinor components. Following the calculations in the literature (Wang
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Fig. 7. (Color online) (a) Schematic representation of the finite periodic potentials of square
barriers in x − y plane. Grey regions denote the electrodes to apply the periodic potentials on
the graphene, where θ0 (θe) denotes the incidence (exit) angles of the carriers passing through
the graphene superlattice. In the inset, θA (θB) denotes the angles of the carriers in the
barriers A and B for the cases with VB < E < VA. (b) The whole profiles of the periodic
potentials applied on the monolayer graphene.

& Zhu, 2010 , b), we obtain the relation between (
ψA(xj−1)

ψB(xj−1)
) and (

ψA(xj−1+∆x)

ψB(xj−1+∆x)
) can be finally

written as:
(

ψA(xj−1 + ∆x)

ψB(xj−1 + ∆x)

)

= Mj(∆x, E, ky)

(

ψA(xj−1)

ψB(xj−1)

)

, (24)

where the matrix Mj is given by

Mj(∆x, E, ky) =

⎛

⎝

cos(qj∆x−θj)
cos θj

i
sin(qj∆x)

cos θj

i
sin(qj∆x)

cos θj

cos(qj∆x+θj)
cos θj

⎞

⎠ . (25)

It is easily to verify the equality: det[Mj] = 1. Here we would like to point out that in the case
of E = Vj, the transfer materix (25) should be recalculated with the similar method and it is
given by

Mj(∆x, E, ky) =

(

exp(ky∆x) 0
0 exp(−ky∆x)

)

. (26)

With help of the above equations (25) and (26), we manage to build up the boundary condition
in order to obtain the transmission and reflection coefficients. As shown in Fig. 7, we assume
that the Dirac fermions of E is incident from the region x ≤ 0 at any incidence angle θ0. In this
region, the wave function is the superposition of the incident and reflected waves, so we have
the following equation:

(

ψA(xe)
ψB(xe)

)

= X

(

ψA(0)
ψB(0)

)

, (27)

with

X=

(

x11 x12
x21 x22

)

=
N

∑
j=1

Mj(wj, E, ky). (28)
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After some algebraic calculations, we find the reflection and transmission coefficients given
by (Wang et al., 2010; Wang & Chen, 2010)

r(E, ky) =
(x22eiθ0 − x11eiθe)− x12ei(θe+θ0) + x21

(x22e−iθ0 + x11eiθe) − x12ei(θe−θ0) − x21
, (29)

t(E, ky) =
2 cos θ0

(x22e−iθ0 + x11eiθe) − x12ei(θe−θ0) − x21
, (30)

where we have used the property of det[X] = 1. In the following subsection, we will discuss
the properties of the electronic band structure and transmission for the graphene-based
periodic potentials of square barriers.

3.2 New Dirac point and zero-averaged wavenumber gap

In this section, we would like to discuss some unique properties of the band structures in the
graphene-based periodic-potential systems by using the above transfer matrix method.

3.2.1 Infinite periodic structure

Firstly, let us investigate the electron’s bandgap for an infinite periodic structure (AB)N , where
the periodic number N tends to infinity. The magnitude and width of the potential A (B) are
with the electrostatic potential VA(B) and width wA(B), as shown in Fig. 7. According to the
Bloch’s theorem, the electronic dispersion at any incident angle follows the relation

2 cos[βxΛ] = 2 cos[qAwA + qBwB] +
[2 cos(θA − θB) − 2]

cos θA cos θB
sin(qAwA) sin(qBwB). (31)

Here Λ = wA + wB is the length of the unit cell. When the incident energy of the electron
satisfies VB < E < VA, we have θA < 0, qA < 0, θB > 0, and qB > 0 for the propagating
modes. The angles for θA and θB are schematically shown in the inset of Fig. 7 (a). Then if
qAwA = −qBwB, the above equation (31) becomes

cos[βxΛ] = 1 +
[1 − cos(2θA)]

cos2 θA
| sin(qAwA)|2. (32)

This equation indicates that, when qAwA = −qBwB �= mπ and θA �= 0, there is no real
solution for βx , i.e., existing a bandgap; Additionally, this bandgap will be close at normal
incident case (θA = 0) from Eq. (32). Therefore, the location of the touching point of the bands
is exactly given by qAwA = −qBwB at θA = 0, i. e., kAwA = −kBwB, or (VA − E)wA =
(E − VB)wB, which is consistent with the condition qAwA = ±ΩB at θA = 0 for the location
of the touch point of the band in the limiting case of a periodic δ-barrier structures, called as
the Kronig-Penney model (Barbier et al., 2009) or the Dirac comb (Arovas et al., 2010) with
wB → 0 with VBwB → ±h̄vFΩB finite (ΩB is a dimensionless positive quantity). Therefore the
above condition for the periodic δ-barrier structures with wB → 0 and VBwB → ±h̄vFΩB is
simplified into kAwA = ±ΩB.
Figure 8 shows clearly that a band gap opens exactly at energy E = 25meV under the inclined
incident angles (i.e., ky �= 0), where the condition qAwA = −qBwB �= mπ is satisfied. At the
case of normal incidence (θA = θB = 0), the upper and lower bands linearly touch together
and form a new double-cone DP. The location of the new DP is governed by the condition,
kAwA = −kBwB, or (VA − E)wA = (E − VB)wB. For the graphene-based periodic-barrier
structure with VA �= 0 and VB = 0, the distribution of the periodic potentials as an example is
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Fig. 8. (Color online) Electronic band structures for (a) wA = wB = 20nm, (b) wA = wB = 30
nm and (c) wA = wB = 40 nm, with VA = 50 meV and VB = 0. The dashed lines denote the
"light cones" of the incident electrons, and the dot line denotes the location of the new DP.

Fig. 9. (Color online) Electronic band structures for (a) wA/wB = 1, (b) wA/wB = 3/2, and (c)
wA/wB = 2, with VA = 50 meV, VB = 0 and wB = 20 nm in all cases. The dashed lines
denote the locations of the new DP.

shown in Fig. 7 (b), and in this case the new DP is exactly located at E = VA/(1 + wB/wA). It
turns out that the location of the new DP has nothing to do with the lattice constants; and the
position of the opened gap associated with the new DP is not only independent of the lattice
constants but also is weakly dependent on the incident angles. Figure 9 further illustrates that
the locations of both the new DP and the opened gap are determined by the ratio of wA/wB

for the cases with the fixed heights VA of the potentials. From the above discussions, we find
that the volume-averaged wavenumber at the energy of the new DP is zero, therefore such
an opened gap associated with the new DP may be called as the zero-averaged wavenumber
gap, which is very similar to that in the 1DPCs containing the left-handed metamaterials (Li
et al., 2003), where the so-called zero (volume) averaged index gap is independent of the
lattice constant but only dependent on the ratio of the thicknesses of the right- and left-handed
materials. For a special case of the graphene-based periodic-potential structures with VA =
−VB and wA = wB, the usual DP is located at the energy E = 0 with ky = 0. This result is

445Propagation of Electron Waves in Monolayer
Graphene and Optical Simulations with Negative-Zero-Positive Index Metamaterials

www.intechopen.com



the same as the discussion in Ref. (Barbier et al., 2010), and it is also similar to that for the
cos-type modulated electric-potential structure in Refs. (Brey & Fertig, 2009; Ho et al., 2009).
As a matter of fact, the properties of these novel zero-averaged wavenumber states are similar
to those of the zero-energy states in the previous work (Brey & Fertig, 2009), and semimetallic
properties are induced due to the effect of the modulated electric potential (Ho et al., 2009).

3.2.2 Finite periodic-barrier systems

Next, we turn to the study on the transmission, conductance and Fano factor in the finite
periodic-barrier system. To illustrate the robust transmission gap, we plot the transmission as
a function of incident energy in Fig. 9 for the finite structures, for example, (AB)25, where (a)
different lattice constants with a fixed ratio wA/wB = 1 and an incident angle θ0 = 10◦ and
(b) different incident angles with the fixed lattice parameters wA = wB = 30nm. Compared
to the novel zero-averaged wavenumber gap, the other bandgap structures, that is, Bragg
gap, are not only dependent on the lattice constants but also strongly dependent on different
angles. Further calculations can demonstrate that the higher opened gap is destroyed by
strong disorder, but the zero-averaged wavenumber gap survives. The robustness of the
zero-averaged wavenumber gap comes from the fact that the zero-averaged wavenumber
solution remains invariant under disorder. It should be emphasized again that the position
of the zero-averaged wavenumber gap near the new DP is insensitive to both the incidence
angles and the disorder. Moreover, we can also consider the effect of a defect barrier on
the property of the electron’s transport inside the zero-averaged wavenumber gap. One can
compare the two cases of the defect modes respectively occurring inside the zero-averaged
wavenumber gap and the higher bandgaps. As discussed in Ref. (Wang & Zhu, 2010 , b),
the location of the defect mode inside the zero-averaged wavenumber gap is very weakly
dependent on the incident angle but the defect mode in the higher bandgap is strongly
sensitive to the incident angle.
Accordingly, the zero-averaged wavenumber gap has great effect on the electronic properties
of graphene. Figure 10 shows the electronic conductance and its Fano factor as a function of
energy inside the finite graphene-based superlattices. It is clearly seen that the conductance
becomes minimal at the new DP of E = 25meV, and the corresponding Fano factor has a value
of 1/3. Near this new DP the conductance is almost decreasing linearly for the energy below
the DP and increasing for the energy above the DP. More interestingly, the Fano factor may
become larger than 1/3 for the higher gap (Bragg gap) due to the fact that the higher band gap
is highly shifted to the higher energy at the non-zero incidence angles. All the results can be
applicable to the gapped graphene superlattice, as we discussed in Ref. (Wang & Chen, 2010).
From all above discussions, we can draw the conclusion that the physical meaning of
the zero-averaged wavenumber gap in the graphene superlattice is very similar to the
transmission gap in the monolayer graphene, as mentioned in last section. The transmission
properties do result from the Klein tunneling in graphene, which is analogous to the negative
refraction in the left-handed metamaterials. These phenomena can be applied to predict novel
effect in electron wave optics, thus design various electron waves devices. Following the
optical analogy in 1DPCs containing left-handed metamaterials (Wang & Zhu, 2010 , a),
the one thing that we can do is to investigate the negative and positive GH shifts in the
graphene superlattice with the zero-averaged wavenumber gap, where the condition for the
extra Dirac points in the graphene-based superlattices is the same as that for the band-crossing
effect in 1DPCs consisted of left-handed material and right-handed material. More interesting
optical analogies or simulations of the phenomena in graphene will be discussed in the next

446 Physics and Applications of Graphene - Theory

www.intechopen.com



Fig. 10. (Color online) Transmission probabilities of the finite periodic-potential structure
(AB)25 under (a) different lattice constants with a fixed ratio wA/wB = 1 and θ0 = 10◦ and
(b) different incidence angles with the fixed lattice parameters wA = wB = 30 nm.

Fig. 11. (Color online) The dependence of the electronic conductance and Fano factor on the
energy in the graphene superlattices with the periodic-barrier structures (AB)25, where the
parameters are wA = wB = 20 nm, VA = 50 meV and VB = 0 meV.

section, according to the link between Klein tunneling in graphene and negative refraction in
metamaterial.

4. Optical simulations with negative-zero-positive index metamaterial

Compare to solids, optical systems offer clean and easy controlled way to test theoretical
predictions. The experimental test in electronic systems is usually hindered by the difficulty
to maintain system homogeneity. Our central study is to emphasize that the DP with the
double-cone structure for the light field and its applications can be realized in a homogenous
negative-zero-positive index (NZPI) medium, instead of the 2DPCs (Zhang, 2008).

447Propagation of Electron Waves in Monolayer
Graphene and Optical Simulations with Negative-Zero-Positive Index Metamaterials

www.intechopen.com



4.1 Dirac point with double cones in optics

It is well known that that Maxwell’s equations for light field reduce to Helmholtz equation,
which could be written as ℘Ez(x, y, ω) + k2(ω)Ez(x, y, ω) = 0, with a wavenumber k and
℘ = (∂2/∂x2 + ∂2/∂y2) in two dimensional case for an homogenous material when the
polarization of the light field is in the z direction. In general, the Helmholtz equation is written
as the Dirac equation,

[

0 −i( ∂
∂x − i ∂

∂y )

−i( ∂
∂x + i ∂

∂y ) 0

]

Ψ = k(ω)Ψ, (33)

where Ψ =

(

Ez1(x, y, ω)
Ez2(x, y, ω)

)

are the eigenfunctions of the electric fields with the same k(ω).

It is amazing that when the index of the homogenous optical medium varies from negative
to zero and then to positive with frequency (Wang et al., 2009 , a), k(ωD) = 0 and the
higher-order terms in the series of k(ω) = k(ωD) + (ω − ωD)/vD + β(ω − ωD)2 can be
neglected, where ωD > 0 is the frequency of the DP (corresponding wavelength is λD =
2πc/ωD) and group velocity v = (dω/dk)|ω=ωD . In this case, the homogenous material with
linear dispersion

k(ω) = (ω − ωD)/vD , (34)

is called as NZPI media. In this case, it is seen from the transmission spectral at point L = 40λD

that two bands touch each other forming a double-cone structure, see Fig. 12. Thus, the light
transport near the DP obeys the massless Dirac equation as follows:

[

0 −i( ∂
∂x − i ∂

∂y )

−i( ∂
∂x + i ∂

∂y ) 0

]

Ψ =

(

ω − ωD

vD

)

Ψ, (35)

In fact, these two eigenfunctions near DP correspond to the two eigenvalues, ±|ω − ωD|/vD

of k(ω), which can be respectively realized by NZPIM in the cases of ω > ωD and ω < ωD. So
the combination of these eigenfunctions for the same k(ω) will result in the same properties
of transmission and reflection as those in 1DPCs, as discussed below. For example, we take
the Drude model as the parameters for both the relative permittivity and permeability of the
NZPIM (Wang et al., 2009 , a;b): ε1(ω) = 1 − ω2

ep/(ω2 + iγeω), µ1(ω) = 1 − ω2
mp/(ω2 +

iγmω), where ω2
ep and ω2

mp are the electronic and magnetic plasma frequencies, and γe and
γm are the damping rates relating to the absorption of the material. Here we can assume
γe = γe = γ ≪ ω2

ep, ω2
mp. It is important that when ωep = ωmp = ωD and γ = 0 (no loss),

then both ε1(ωD) and µ1(ωD) may be zero simultaneously. In this case, we find k(wD) ≈ 0
and vD ≃ c/2, where c is the light speed in vacuum (Wang et al., 2009 , b). So far, we find out
the condition to have the Dirac dispersion for light field in the homogenous media, and also
provide the candidate material to implement it. Clearly, the difference from the DP in 2DPCs
is that the eigenfunctions of the light fields in our system are not the Bloch states in periodic
structures but the electromagnetic fields itself in the homogenous NZPIM.

4.2 Pseudodiffusive property and Zitterbewegung effect

As discussed in the above subsection, for NZPI media, we have the DP with a double-cone
structure. When frequency ω is close to ωD, owing to k2 = k2

x + k2
y → 0, kx becomes an

imaginary number for real ky, so that the field along the x direction between the interval
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Fig. 12. (Color online) (a) Schematic of a NZPIM slab. (b) Distribution of spectral
transmittance for a slab with L = 40λD . Blue area denotes the high transmission and white
area denotes the prohibition of light. The parameters of the NZPIM are
ωep = ωmp = ωD = 10 × 2π GHz and γ = 10−5 GHz.

between 0 and L have the following relation: t(L, ky) = E(L)/E(0) = exp (−|ky|L). Then the
total energy transmittance is

Ttotal(L, ky) =
∫ ∞

−∞
|t(L, ky)|2dky =

1
L

, (36)

which implies that the propagation of light field at ωD has the 1/L scaling law a main
characteristic of diffusion phenomenon, which has been studied for electron transport in
graphene (Katsnelson, 2006) and light transport in photonic crystals (Sepkhanov et al., 2007).
Consider the 1/L scaling law in a semi-infinite NZPI media, as indicated in Fig. 12 (a). Such
a structure may reduce but cannot completely eliminate the non-ideal interface effect x = 0.
As a simple proof, ε1 and µ1 are assumed to be real. The transmission coefficient at x = L
is t(ky, ω) = α exp (ikx L), where α = 2(qqm)1/2/(q + qm) is determined by the boundary
condition, qm = kx1/(µ1k0), q0 = (k2

0 − k2
y)

1/2/k0 for k0 > ky and otherwise q0 = i(k2
y −

k2
0)

1/2/k0, where k0 = ω/c, kx1 is the x-component wave number in the metamaterial. Near
the DP , we have t(ky, ω) = α exp (−|ky|L). Usually, α depends on ky. For the large distance
L, this function decreases quickly with increasing ky. In this sense we assume that α does’t
depend on ky (when an ideal interface is considered). Then the total transmittance is |α|2/L,
which is different from Eq. (36) only by a value α due to the interface. Therefore the light
transport near DP, namely ω = ωD, is proportional to 1/L inside the NZPIM.
Figure 12 (b) shows the transmission spectrum at L = 40λD insider the NZPIM, as shown in
Fig. 12 (a). We see that both the upper and lower passbands touch at ωD = 2π × 10 GHz and
nearby the dispersion is linear. With increasing the distance L, the touch at ωD is an ideal point.
Note that t(ky, ω) at the DP is close to one even if the metamaterial has a small absorption.
To demonstrate the 1/L scaling law near the DP, a characteristic quantity ξ = Sr L is defined
to describe the light propagation inside the medium, where Sr ≡ S(x, y = 0)/S0 is a relative
energy flow along the x axis, and S0 ≡ S(x = 0, y = 0) depends on the coupling strength.
Instead of the semi-infinite structure, we would like to discuss the propagation of light
through a homogenous slab system which is the realistic case. Figure 13 (a) shows the change
of the characteristic quantity ξ as a function of the distance inside different slabs with different
thicknesses d. It is clearly seen that as d increases, the change of ξ inside the slab approaches
to the limit of d → ∞ (i. e., the semi-infinite structure). For the finite thickness d, the value ξ
always initially increases and then gradually decays in order to match the second boundary
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Fig. 13. (Color online) Change of ξ as a function of the propagating position x inside the finite
slab systems with different thicknesses, with the light frequency ω = ωD = 10 GHz. The
crossed points denote the exit positions x = d for different slabs. (b) Dependence of the
energy flows S0 on the slab thickness d. The incident beam is with 10λD and other
parameters are the same as in Fig. 12 except for γ = 10−4 GHz.

condition at x = d [the crossed point in Fig. 13(a)]. From Fig. 13 (a), it is expected that for a
sufficient thick slab, the light energy transport obeys the 1/L scaling law. Meanwhile, from
Fig. 13 (b), it is found that for the small d, the coupling strength of the light field inside the
finite slab is strong (with large S0 ). With the increasing of the slab thickness d, the value S0
gradually decreases to the limit of d → 0 (the semi-infinite structure). It indicates that the
effect of the second interface on S0 becomes weaker and weaker, therefore the light energy
transport obeys the 1/L scaling law.
We emphasize here that although the light field doesn’t obey very well the 1/L scaling
law inside the finite homogenous slab with small d, the static property of the light field is
still clear demonstrated, as shown in Fig. 14. From Fig. 14, it turns out that the evolutions
of the total electric field and the Poynting vector for a narrow Gaussian beam E(ky, 0) =

W/
√

2 exp (−W2k2
y/4) with a half-width W inside the finite slab system possess the diffusive

property. The light fields near the DP have no phase delay and diffuse inside the medium.
In addition, we have also demonstrated the Zitterbewegung effect for optical pulses during
the propagation inside the a homogenous NZPIM slab. As we know, Zitterbewgung effect
refers to the interference between the positive- and negative-states in the relativistic electron’s
wave packet. The initial finite pulse is considered to be Gaussian shape both in the transverse
spatial domain and in the longitudinal temporal domain. The dynamics of the finite optical
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Fig. 14. (Color online) Evolutions of the total electric fields for a narrowed Gaussian beam
passing through the finite slab system at ωD = 10 GHz with W = 10λD , where γ = 0.05 GHz
other parameters are the same as in Fig. 12. The arrows denote the direction and relative
magnitude of the energy flow �S.

pulse through the slab shows that before reaching the slab, the pulse propagates in the free
space, and after entering the slab, it gradually diffuses and oscillates as the propagating
distance increases. Thus, the output pulse at the exit of the slab has the oscillation with
the characteristic frequency independent of the slab thickness. The physical origin of such
oscillation comes from the interference between the upper and lower high-transmission bands
near the DP of the NZPIM slab. Actually, the finite pulse can be divided into two parts: one
(ω > ωD) belongs to the upper band and the other one (ω < ωD) belongs to the lower
band (see Fig. 12), and each part undergoes the opposite phase change due to the opposite
properties of the two bands. For instance, in the upper band the wave number k is positive so
the phase shift is positive, while in the lower band the phase shift is negative due to negative
k. Therefore the two parts interfere with each other, which leads to the oscillatory property. At
the DP, the light field obeys the diffuse equation, thus the pulse behavior also has the diffusion
property. Moreover, for the pulse with a fixed transverse spatial width W, the oscillation
frequency is proportional to the pulse spectral width near the DP, and for the pulse with a
fixed time duration, the oscillation frequency decreases with the increasing of W. From the
experimental viewpoint, it is suggested that smaller transverse spatial width and/or shorter
pulse duration of the finite pulse make the optical Zitterbewegung effect easier to be observed
experimentally.

4.3 Optical Goos-Hänchen shift in Bragg-like reflection

In this subsection, we will take an example of the optical simulations in NZPIM with DP.
Similar to the Sec. 2.2, we start to investigate the GH shifts of the light beam reflected from
the slab of NZPI medium. Firstly, we assume that the incident plane wave is Ein

z (x, y) =
exp [i(kxx + kyy)], where kx = k0 cos θ0, ky = k0 sin θ0, k0 = (ε0µ0)

1/2ω/c is the wave number
in the air, ε0 and µ0 are the relative permittivity and permeability of the air, the reflected

and transmitted plane waves can be expressed by E
re f
z (x, y) = r exp [i(−kxx + kyy)] and
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Etr
z (x, y) = t exp {i[−kx(x − d) + kyy]}, where the reflection coefficient r

r =
exp(iπ/2)

4g2

(

µ0

µ1

k1x

kx
− µ1

µ0

kx

k1x

) [

sin 2k1xd + i

(

µ1

µ0

kx

k1x
+

µ0

µ1

k1x

kx

)

sin2 k1xd

]

, (37)

and the transmission coefficient is t = eiφ/g with geiφ = cos k1xd + i
2

(

µ1
µ0

kx
k1x

+
µ0
µ1

k1x
kx

)

sin k1xd,

k1x =
√

k2
1 − k2

y and k1 = (ω − ωD)/vD near the DP. As mentioned above, the upper

and lower bands have different properties. Thus, we will discuss the unique properties of
reflection and transmission in two cases of ω > ωD and ω < ωD. The details can be seen in
the literature (Chen et al., 2009 , b).
Similar to the transmission in graphene barrier, the transmission as the function of frequency
ω has a gap. The only difference is that the width of transmission gap has the following form:
∆ω = 2kyvD . To avoid the repetition, we concentrate on the reflection case here. The reflection
behaves Bragg-like reflection. Figure 15 indicates the dependence of corresponding reflection
probability R on the wavelength λ = 2πω/c, where θ0 = 20◦ and ωD = 10 × 2π GHz.
Solid and dashed line correspond to a = 100 mm and a = 10 mm. It is interesting that
the light beam can be perfectly reflected by such single NZPIM slab at certain range of the
wavelength. As indicated in Fig. 15, the wavelength window for perfect reflection will become
narrower with the increase of the width of slab. These frequency or wavelength passing-bands
in reflection discussed here are similar to but different from the Bragg reflection in the 1D PCs.
This so-called Bragg-like reflection discussed here is exactly due to the linear Dirac dispersion,
which results in the evanescent waves in two cases of ω > ωD and ω < ωD, corresponding
to the two eigenfunctions of electric fields with the same k(ω).
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Fig. 15. (Color online) The reflection probability R as the function of the wavelength λ, where
θ0 = 20◦, ωD = 10 × 2π GHz, d = 100 mm (red solid line), and d = 10 mm (blue dashed line).

Next, we have a look at the optical GH shifts inside the optical NZPIM slab. It is noted that
the GH shift in transmission is the equal to that in reflection inside such symmetric slab
configuration, because the values of the derivation of the phase shifts with respect to ky are
the same. Here we just only consider the GH shift in reflection.
Figure 16 demonstrates that the GH shifts can be positive and negative. Due to the properties
of DP, it is reasonable that the GH shifts are negative in the case of ω < ωD, while they are
positive in the case of ω > ωD is positive. More interestingly, the GH shifts near the DP can
change from positive to negative with the increase (decrease) of the wavelength (frequency). In
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addition, it is also shown that the GH shifts near the DP have only the order of wavelength due
to the evanescent waves. The smallness of the GH shifts are similar to those in total reflection
or frustrate-total-internal-reflection structure (Chen et al., 2009 , a).
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Fig. 16. (Color online) The GH shifts as the function of the wavelength, ω, where d = 100
mm, and other parameters are the same as in Fig. 15. Solid, dashed and dotted curves
correspond to θ0 = 30◦ , θ0 = 20◦ , and θ0 = 10◦ .

However, these GH shifts don’t change sign with increasing the angle of incidence. This is
similar to the quantum GH effect in graphene on the total reflection (Zhao et al., 2010), but
it is quite different from the result given in the literature (Beenakker et al., 2009), where the
sublattice (or “pseudospin") degree of freedom is considered. Anyway, we have managed to
simulate the quantum GH in graphene barrier by the optical metamaterial with the DP.

4.4 Further work on optical Dirac point in metamaterials

Finally, we would like to point out other interesting work on the optical DP in metamaterials.
Motivated by the realization of the optical Dirac dispersion in the homogenous NZPIM, we
make a theoretical investigation on the properties of thermal emission in layered structures
containing the NZPI medium (Wang et al., 2010). When the thermal emission frequency is
close to the DP, the spectral hemisperical power of thermal emission in such a structure is
strongly suppressed and the emission can become a high directional source with large spatial
coherence.
In addition, the guided modes and nonlinear surface waves near the DP have been also
studied, respectively (Shen et al., 2010 , a;b). In the simple model of optical waveguide, our
theoretical results show that due to the linear Dirac dispersion, the fundamental mode is
absent when the angular frequency is smaller than the DP, while the behaviors of NZPIM
waveguide are similar to the conventional dielectric waveguide when the angular frequency
is larger than the DP. The unique properties of the guided modes are analogous to the
propagation of electron waves in graphene waveguide (Zhang et al., 2009), corresponding
to the classical motion and the Klein tunneling. It is amazing that electron guiding as the
analogue of an optical fiber has been experimentally demonstrated in graphene by tuning the
carrier type and density using local electrostatic fields (Williams et al., 2010). This timely work
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will definitely simulate us to design various novel optic-like devices in graphene according to
the Dirac-like properties of graphene.

5. Conclusion

In summary, there are a lot of optic-like phenomena of electron wave in graphene, which
leads to novel Dirac electron wave devices. The field covered here is vast, and we pay special
attention to work done by the authors, while making effort to to offer a global perspective.
In this chapter, we have presented the propagation of electron waves in monolayer graphene
and optical simulations with NZPIM. The specific electronic analogies of Bragg-like reflection
(transmission gap), zero-averaged wavenumber gap, and GH effect have been respectively
discussed in single and multiple monlayer graphene barriers. The key point is that the
transmission gap has great effect on the electronic transports including electric conductance
and Fano factor. More importantly, all these results suggest that the electron wave propagation
and their optical counterparts in NZPIM not only give the deeper understanding of several
exotic phenomena in graphene, but also predict richer phenomena in different physical
systems.
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