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1. Introduction 

Graphene is the name given to a flat monolayer of carbon atoms tightly packed into a two-
dimensional honeycomb lattice (Novoselov et al., 2004), and is a rapidly rising star on the 
horizon of materials science and condensed matter physics. This two-dimensional material 
exhibits exceptionally high crystal and electronic quality and has already revealed a 
cornucopia of new physics and potential applications. Charge transport properties in 
graphene are greatly different from that of conventional two-dimensional electronic systems 
as a consequence of the linear energy dispersion relation near the charge neutrality point 
(Dirac point) in the electronic band structure (Geim & Novoselov, 2007; Novoselov et al., 
2005; Zhang et al., 2005).  
Theoretically, the energy band structure of a graphite monolayer had been investigated 
using the tight-binding approximation (Wallace, 1947). In the work of Wallace, the nearest- 
and next-nearest-neighbor interaction for the 2pz orbitals in graphene were considered, but 
the wave function overlap between carbon atoms was neglected. Since his aim is to show 
how the π-electron distribution is related to the electrical conductivity of graphite, he did 
not attempt to draw the band distribution. In 1952, Coulson & Taylor considered the overlap 
integrals between atomic orbitals in studying the band structure of the graphite monolayer. 
Their work suggested that the overlap was important for the electronic density of states and 
referred mainly to the π states, leading to a description of the conduction band (Coulson & 
Taylor, 1952). To study the valence bands in graphene, Lomer used the group-threoretical 
method to deal with the electronic energy bands based on the three atomic orbitals 2s, 2px, 
and 2py (Lomer, 1955). Because there are two atoms per unit cell, there are six basis functions 
to be considered, and in general the tight binding model must lead to a 6×6 determinantal 
secular equation for the energy. The method used group theory is able to solve it easily. 
Slonczewski and Weiss found that the Lomer’s work can be simplified greatly by a different 
choice of the location of the origin (Slonczewski & Weiss, 1958). A better tight-binding 
description of graphene was given by Saito et al. (Saito et al., 1998), which considers the 
nonfinite overlap between nearest neighbors, but includes only interactions between nearest 
neighbors. To understand the different levels of approximation, Reich et al. started from the 
most general form of the secular equation, the tight binding Hamiltonian, and the overlap 
matrix to calculate the band structure (Reich et al., 2002). But their work did not involve the 
effect of the non-nearest-neighbor interaction on the band structure. This work will be 
discussed in details in Section 2.  
Because there is no energy gap, perfect graphene sheets are metallic. How open the gap of 
graphene? According to the quantum size effect, graphene nanoribbons maybe achieve this 
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goal. Early in 1996, Fujita et al. started to study the electronic structure of graphene ribbons 
(Fijita et al.,1996; Nakada et al., 1996) by the numerical method. For perfect graphene 
ribbons, the armchair shaped edge ribbons can be either semiconducting (n=3m and 
n=3m+1, where m is an integer) or metallic (n=3m+2) depending on their widths. First-
principles calculations show that the origin of the gaps for the armchair edge nanoribbons 
arises from both quantum confinement and the deformation caused by edge dangling bonds 
(Son et al., 2006; Rozhkov et al., 2009). In low-energy approximation, the analytical 
electronic states of the nanoribbons are studied based on the Dirac equation (Brey & Fertig, 
2006). In 2007, Zheng et al. got an analytical expression of the electronic structure, including 
the boundary relaxation, for the armchair nanoribbon by the tight-binding approximation 
and hard-wall boundary condition, which only involves the nearest-neighbor hopping 
integrals (Zheng et al., 2007). In this chapter, we focus on the effects of the non-nearest-
neighbor hopping integrals and atomic wave function overlap on the electronic structure, 
and on the competition between the non-neighbor interaction and edge deformation. The 
tight-binding energy dispersion relations of graphene nanoribbons, including up to third 
neighbors, are introduced in section 3. In Section 4, the competition of both is discussed. The 
stretching deformation of graphene ribbons based on the elastic theory is presented in last 
section.  

2. The non-nearest-neighbor effect in graphene sheets 

In this section the tight-binding method is used to study the band structure of the π 

electrons in graphene. Although this method is simple, it provides a lot of important 

information for understanding the π electronic band structure. The first tight-binding 

description for graphene was given by Wallace (Wallace, 1947). He considered nearest- and 

next-nearest-neighbor interaction for the graphene 2pz orbitals, but neglected the overlap 

between wave functions centred at different atoms. To compensate for the lack of this work, 

the non-finite overlap between the basis functions was considered (Saito et al., 1998), but the 

interaction between nearest neighbors was taken only into account. A better tight-binding 

description including up to third-nearest neighbors for graphene was given by Reich et al. 

(Reich et al., 2002).  

Let us now consider the band structure from the viewpoint of the tight-binding 
approximation. The structure of graphene is composed of two types of sublattices A and B 

as shown in Fig.1. If ( )ϕ r is the normalized orbital 2pz wave function for an isolated carbon 

atom, then the wave function of graphene has the form 

 A A B BC Cψ ψ ψ= + , (1) 

where  

1
( )Ai

A A

A

e
N

ψ ϕ⋅= −∑ k R
r R , 

and 

 
1

( )Bi

B B

B

e
N

ψ ϕ⋅= −∑ k R
r R . (2) 
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The first sum is taken over A and all the lattice points generated from it by primitive lattice 

translation; the second sum is similarly over the points generated from B.  Here AC and BC  

are coefficients to be determined, AR and BR are the positions of atoms A and B, respectively, 

and N is the number of the unit cell in a graphene sheet. 
 

 

Fig. 1. Structure of a graphene sheet, consisting of sublattices A and B. a1 and a2 are the unit-
cell vectors of graphene with a lattice constant a = 0.246 nm. A carbon atom A0 has three 
nearest neighbors B1i, six next-nearest neighbors A2i, and three second-nearest neighbors 
B3i.(Reich et al., 2002) 

Under the tight-binding approximation, the Hamiltonian of the perfect system is 

 0 1 2

( , ) (( , )) ((( , )))i i j i j i j

H i i i j i j i jε γ γ γ= − − −∑ ∑ ∑ ∑ , (3) 

where ( , )i j , (( , ))i j , and ((( , )))i j  denote the nearest, next-nearest, and third neighbors, 

respectively, ε  is the self-energy of the site atom, and 0γ , 1γ , and 2γ are the nearest-, next-

nearest-, and third-neighbor hopping energies. Substituting Eq. (1) in 

 H Eψ ψ= , (4) 

and carrying out a simple derivation and finishing, we obtain the secular equation 

 
* *

( ) ( ) ( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( ) ( ) ( )

AA AA AB AB

AB AB AA AA

H E S H E S

H E S H E S

− −
=

− −
k k k k k k

k k k k k k
, (5) 

where ( )E k  are the electronic energy eigenvalues and S is the overlap matrix. In Eq.(5), we 

have made use of the equivalence of the A and B carbon atoms in the graphene sheet. The 
solution to Eq.(5) is  

 
2

0 1 0 1 2 3

3

( 2 ) ( 2 ) 4
( )

2

E E E E E E
E

E
±

− − + ± − + −
=k , (6) 

with 
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0 ,  AA AAE H S= * *

1 ,AB AB AB ABE S H H S= +  

 2 *

2 ,AA AB ABE H H H= −  2 *

3 .AA AB ABE S S S= −  (7) 

The plus sign denotes the conduction band and the minus sign is the valence band. To 

calculate the Hamiltonian and overlap matrix elements, we derive the third-neighbor tight-

binding description. We see from Fig.1 that a carbon atom A has three nearest neighbors 1iB , 

six next-nearest neighbors 2iA , and three second-nearest neighbors 3iB , all of which belong 

to the other sublattice.  

For third-neighbor interaction the Hamiltonian matrix element AAH  can be written as 

 

{ }3 5 61 2 4

( )

1

1
( ) ( )

1
( ) ( )

1
( ) ( )

1

A A

A A

A

Ai

A Ai

A A AA A A

A

AA A A

i

A A

R R

A A

i

A A Ai

i i ii i i

H H

e H
N

H
N

e H
N

e e e e e e
N

ψ ψ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ε γ

′⋅ −

′

⋅

⋅ ⋅ ⋅⋅ ⋅ ⋅

=

′= − −

= − −

+ − − −

= + + + + + +

∑ ∑

∑

∑

∑

k R R

R

k R

R ,R

k R k R k Rk R k R k R

R

r R r R

r R r R

r R r R R

 (8) 

where AiR is the position vectors of six next-nearest neighbor atoms iA with respect to atom 

A. Here ε is called the 2 p orbital energy, or self-energy, of the site atom, which is given by 

 ( ) ( )A AHε ϕ ϕ= − −r R r R ,  (9) 

and 1γ is the next-nearest-neighbor hopping integral ofπ electrons and defined as follows 

 1 ( ) ( )A A AiHγ ϕ ϕ= − − −r R r R R , =( 1,2,3, 4,5,6)i . (10) 

In Eq.(8) the maximum contribution to the matrix element AAH  is the first term, which 

comes from the orbital energy of A A
′ =R R . The next order contribution to AAH is the second 

term coming from terms of A A
′ = +

Ai
R R R . The other order contribution to this matrix 

element is very small compared to the first term, which can be neglected. If we define the 

function 

 
π π π

= ⋅ + ⋅ + ⋅ −

= + + −

1 2 1 2

1 2 1 2

( ) 2 cos 2 cos 2 cos ( )

2 cos2 2 cos2 2 cos2 ( ),

u

k a k a a k k

k k a k a k a a
   (11) 

 

where 2i ik π= ⋅k a are the components of a wave vector k in units of the reciprocal lattice 

vectors 1k and 2k , and 1 2 0.246= = =a a a nm is the lattice constant of graphene, then Eq.(8) 

can be rewritten as 

 1 ( )AAH uε γ= + k . (12) 
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Let us next calculate ABH . For this, we shall consider interactions between nearest, and third 

neighbors in the lattice, the nearest and third neighbors of atoms of type A being always 

atoms of type B. Therefore, the matrix element ABH is 

 

ψ ψ

ϕ ϕ

γ γ

⋅ −

⋅ ⋅ ⋅ ⋅⋅ ⋅

=

= − −

= + + + + +

∑ ∑ k R R

R R

k R k R k R k Rk R k R 13 31 32 3311 12

( )

0 2

1
( ) ( )

( ) ( ),

B A

A B

B B B BB B

AB A B

i
A B

i i i ii i

H H

e H
N

e e e e e e

r R r R  (13) 

where the hopping energies are given by 

 γ ϕ ϕ= − − −0 1( ) ( )A A B iHr R r R R  =( 1,2,3)i , (14) 

 γ ϕ ϕ= − − −2 3( ) ( )A A B iHr R r R R  =( 1,2,3)i . (15) 

Here 1B iR and 3B iR are the vectors pointing from atom A to atoms 1iB and 3iB , respectively. 

Using the same treatment we can obtain the overlap matrix element 

 
2

( )

2

1

1
( ) ( )

1
1 ( ) ( )

1 ( )

A A

A A

A i

A

AA A A

i

A A

i

A A A i

S

e
N

e
N

s u

ψ ψ

ϕ ϕ

ϕ ϕ

′⋅ −

′

⋅

=

′= − −

= + − − −

= +

∑ ∑

∑ ∑

k R R

R R

k R

R i

r R r R

r R r R R

k

 (16) 

with 

 1 2( ) ( )A A A is ϕ ϕ= − − −r R r R R  ( 1,2,3,4,5,6)i = ,  (17) 

where 2A iR are the vectors pointing from atom A to atoms 2iA , and 1s is the overlap of atomic 
wave functions between next-nearest neighbors. Similarly, we have 

 

ψ ψ

ϕ ϕ⋅ −

⋅ ⋅ ⋅ ⋅⋅ ⋅

=

= − −

= + + + + +

∑ ∑ k R R

R R

k R k R k R k Rk R k R 13 31 32 3311 12

( )

0 2

1
( ) ( )

( ) ( ),

B A

A B

B B B BB B

AB A B

i
A B

i i i ii i

S

e
N

s e e e s e e e

r R r R  (18) 

where 0s and 2s are the overlap integrals between nearest, and third neighbors, which are 
given by 

 ϕ ϕ= − − −0 1( ) ( )A A B is r R r R R   =( 1,2,3)i , (19) 

and 

 ϕ ϕ= − − −2 3( ) ( )A A B is r R r R R   =( 1,2,3)i . (20) 

Substituting Eqs.(12), (13), (16), and (18) into Eq.(7) yields 
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 0 1 1[ ( )][1 ( )]E u s uε γ= + +k k , (21) 

 1 0 0 0 2 2 0 2 22 [3 ( )] ( ) ( ) 2 [3 (2 )]E s u s s g s uγ γ γ γ= + + + + +k k k , (22) 

 2 2 2

2 1 0 0 2 2[ ( )] [3 ( )] ( ) [3 (2 )]E u u g uε γ γ γ γ γ= + − + − − +k k k k , (23) 

 2 2 2

3 1 0 0 2 2[1 ( )] [3 ( )] ( ) [3 (2 )]E s u s u s s g s u= + − + − − +k k k k , (24) 

where 

1 2 1 2( ) 2 ( ) (2 , 2 )g u u k k k k= + − −k k . 

Inserting 0E to 3E into Eq.(6) we can obtain the tight-binding energy dispersion relation in the 
third-neighbor approximation.  
To give the numerical results of energy dispersion, we must know the values of the hopping 
energies and overlap integrals. We take the parameters 0.28ε = − eV, 0 2.97γ = − eV, 

1 0.073γ = − eV, 2 0.33γ = − eV, 0 0.073s = , 1 0.018s = , and 2s =0.026 (Reich et al., 2002). The 
computed results for some high-symmetry points (KΓM) are shown in Fig. 2, where the solid 
line denotes the nearest-neighbor result, the dashed line represents the next-nearest-
neighbor, and the dotted line is the third-neighbor. It is clear that the next-nearest-neighbor 
hopping integrals and overlap between atomic wave functions will play an important role 
on the band width at Γ point, which can largely reduce the bandwidth, and the third-
neighbor interaction can slightly enhance the bandwidth. But the role of both is just opposite 
for M point. It is worth pointing out that when we take only into account the nearest 
neighbor hopping integral and let both the overlap s0 and the site energy ε  be zero, the 
energy bands are symmetric with respect to the Fermi level. The nearest neighbor result in 
Fig. 2 is to include the overlap s0, so the energy bands become asymmetric, leading to the  
 

 

Fig. 2. Tight-binding energy bands of graphene for high-symmetry points. The solid line 
denotes the nearest neighbor, the dashed line represents the next-nearest neighbor, and the 
dotted line is the third neighbor. 
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Fermi level down slightly. This means that the overlap integral is important for the band 
structure. Hence, the non-nearest neighbor hopping and overlap integral need to be 
considered in calculations of the energy band. Since there is no energy gap at K point (Dirac 
point), the graphene sheet is metallic.  

3. The non-nearest-neighbor effect in graphene nanoribbons 

3.1 Armchair nanoribbons 

As mentioned in Section 2, for a graphene sheet there are no energy gaps at the Dirac points. 

How to open the energy gaps of graphene? One method is to deduce the size of graphene 

and let it become a narrow ribbon, compared to the length of the ribbon. From this, the band 

gaps will change with their widths (Son et al., 2006), and the more narrow the width is, the 

larger the gap.  Another effective approach is to change the bond length of graphene by 

exerting a strain force. Besides, we can also open the gap by using absorption atoms on 

graphene or doping impurity in. For an armchair ribbon, the analytical solution of electronic 

dispersion has been given based on the tight-binding approach, but the dispersion obtained 

is in the framework of the nearest-neighbor interaction (Zheng et al, 2007). In this section we 

only discuss the electronic dispersion of perfect graphene nanoribbons without any edge 

deformation within the tight-binding approximation and the third-neighbor interaction is 

taken into account.  

We choose the ribbon to be macroscopically large along the x direction but finite in the y 

direction, which leads to a graphene nanoribbon with armchair edges. Since the ribbon is 

very long compared to its width and has the translational symmetry along the x direction, 

we can choose the plane-wave basis along the x direction and take the stationary wave in 

the y direction because the electronic bahavior is limited to the space between two edges. 

The structure of armchair nanoribbons consists of two types of sublattices A and B, and the 

unit cell contains n A-type carbon atoms and n B-type atoms as illustrated in Fig.3.  

 

 

Fig. 3. Structure of an armchair graphene ribbon with sublattices A (empty) and B (solid). 
The ribbon width is denoted by numbers n. Every unit cell has n numbers of A and B 
sublattices. Assume that the edges of the ribbon are a hard wall. 
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Within the tight-binding approximation, the wave functions of A and B sublattices can be 

written as 

 
1

1
( ) ( )

x Aj

j

Aj

n
ik x

A A A

j xA

e j
N

ψ φ ϕ
=

= −∑ ∑ r R , (25) 

 
1

1
( ) ( )

x B j

j

B j

n
ik x

B B B

j xB

e j
N

ψ φ ϕ
=

= −∑ ∑ r R ,  (26) 

where AN and BN are the normalized coefficients, ( )A jφ and ( )B jφ are the components for A 

and B sublattices in the y direction and satisfy the following hard-wall boundary conditions 

(0) (0) 0A Bφ φ= = ,                                      

 ( 1) ( 1) 0A Bn nφ φ+ = + = . (27) 

Assume that the stationary wave has the form 

 
1

( ) ( ) sin 3
2

A B yj j ak jφ φ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

, ( 1,2, , )j n= ⋅ ⋅ ⋅  (28) 

leading to a discretized wave vector in the y direction 

 
2

( )
3 ( 1)

y

q
k q

a n

π
=

+
, ( 1,2, , )q n= ⋅ ⋅ ⋅ . (29) 

To find out the normalized coefficients in Eqs.(25) and (26), we introduce the normalization 

condition 

 1A A B Bψ ψ ψ ψ= = , (30) 

from which, we get  

( 1) 2A B xN N N n= = + , 

where xN is the number of unit cells along the x direction. Therefore, the total wave function 
of the graphene ribbon can be written as 

 ( )

( )
1

1

2
sin 3 2 ( )

( 1)

2
sin 3 2 ( )  .

( 1)

x Aj

j

Aj

x B j

j

B j

A A B B

n
ik x

A y A

j xx

n
ik x

B y B

j xx

C C

C e j k a
N n

C e j k a
N n

ψ ψ ψ

ϕ

ϕ

=

=

= +

= −
+

+ −
+

∑ ∑

∑ ∑

r R

r R

 (31) 

Substituting Eqs.(3) and (31) into the Schrodinger equation leads to an energy dispersion 

relation of the form 
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2

0 1 0 1 2 3

3

( 2 ) ( 2 ) 4
( , )

2
x

E E E E E E
E k q

E
±

− − + ± − + −
= ,   (32) 

where  

 0 1 1( , ) { [ ( , ) 3]}{[1 [ ( , ) 3]}x x xE k q f k q s f k qε γ= + − + − , (33) 

 1 0 0 0 2 2 0 2 2( , ) 2 ( , ) ( ) ( , ) 2 ( , )x x x xE k q s f k q s s g k q s h k qγ γ γ γ= + + + , (34) 

 2 2 2

2 1 0 0 2 2( , ) { [ ( , ) 3]} ( , ) ( , ) ( , )x x x x xE k q f k q f k q g k q h k qε γ γ γ γ γ= + − − − − , (35) 

 2 2 2

3 1 0 0 2 2( , ) {1 [ ( , ) 3]} ( , ) ( , ) ( , )x x x x xE k q s f k q s f k q s s g k q s h k q= + − − − − , (36) 

and 

23
( , ) 1 4cos cos 4cos

1 2 1

x
x

q k a q
f k q

n n

π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, 

( ) 22 2
( , ) 1 4cos cos 3 4cos

1 1
x x

q q
h k q k a

n n

π π⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
, 

3 3 3 3
( , ) 2 ( , ) 2cos 2cos 2cos(3 ) 6

2 1 2 1

x x
x x x

k a q k a q
g k q f k q k a

n n

π π⎛ ⎞ ⎛ ⎞= + + + − + −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
. 

The electronic dispersion given by Eq. (32), in form, is exactly the same as that found for a 
graphene sheet, but both have the difference in nature (Jin et al., 2009). The 

region 3 3π π− ≤ ≤xk a is within the first Brillouin zone. These results are valid for various 

energy ranges. 
Since the electronic structure of perfect armchair graphene nanoribbons depends strongly 
on the width of the ribbon, the system, for instance, is metallic when n=3m+2 (m is an 
integer) and is insulating otherwise. To give a graph of energy bands, we still use the same 
parameter values as taken in a graphene sheet. The electronic energy bands of the armchair 
nanoribbons with three different widths are plotted in Fig.4, where (a) is n=3m=6, (b) 
n=3m+1=7, and (c) n=3m+2=8. Labels (1), (2), and (3) denote the nearest, next-nearest, and 

third neighbors, respectively. As 6=n and 7=n , the armchair ribbons appear insulating. 

Fig.4 shows that the next-nearest-neighbor hopping and overlap integral would give rise to 
change of the energy band width. This is because the energy levels of the conduction band 
top are squeezed, which correspond to the stationary waves with small q values. The third 
neighbors not only affect the energy gaps, such as n=6 and n=7, but also the band widths. 
The influence on the band width mainly is because the bands related to the standing waves 
with small q values in conduction and valence band produce a larger bend and this effect 
was particularly evident when n=7,8. However, the effect on the energy gaps is because the 

bands corresponding to larger q go down slightly. It is worth noting that when 7n = , there 

is a flat conduction or valence band, taking not into account the third neighbors, which 
corresponds to the quantum number q=(n+1)/2. Such a flat band is independent of wave 

vector kx and in general exists only when n is equal to odd. As for 8=n , the lowest 
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conduction band and the upmost valence band touch at Dirac point, which leads to the 
metallic behavior of the armchair ribbon. 
 

 

 

 
Fig. 4. Energy bands of perfect armchair graphene nanoribbons with widths (a) n=6, (b) n=7, 
and (c) n=8. Labels (1), (2), and (3) represent the nearest, next-nearest, and third neighbors, 
respectively. 

3.2 Zigzag nanoribbons 
The spectrum of graphene nanoribbons depends on the nature of their edges: zigzag or 
armchair. In Fig. 5, we show a honeycomb lattice having zigzag edges along the x direction 
and armchair edges along the y direction, where the solid cycles denote the sublattice A and 
the empty is B. If we choose the ribbon to be infinite in the x direction, we produce a 
graphene nanoribbon with zigzag edges. It is interesting to note that the atoms at each edge 
are of the same sublattice (B on the top edge of Fig. 5 and A on the bottom).  
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Fig. 5. The structure of a zigzag graphene nanoribbon, having the translational symmetry 
along the x direction. Atoms enclosed in the vertical rectangle represent the unit cell. n is the 
row number of atoms. The solid cycles denote the sublattice A and the empty is B. 

We now calculate the electronic energy bands of the zigzag ribbon as shown in Fig.5 by 

using the tight-binding approach including up to third-nearest neighbors. To do this, let us 

label the sublattices A and B with number, respectively, and let 1A , 2A ,…, nA correspond to 

odd labels 1,3,5,…,2n-1 and 1B , 2B ,…, nB to even labels 2,4,…,2n. From this, the Hamiltonian 

becomes a 2n×2n matrix, which is given by 

 

2 0 1 2

0 2 3 1

1 3 2 0 1 2

2 1 0 2 3 1

1 3 2 0 1 2

2 1 0 2 3 1

0 0 ... ...

0 0 ... ...

... ...

... ...

0 0

0 0

... ... ... ... ... ... ... ...

f f f

f f f f

f f f f f

f f f f f

f f f f f

f f f f f

γ

γ
γ

γ
γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

H , (37) 

where 0f , 1f , 2f ,and 3f are the Hamiltonian matrix elements, which are given by 

 0 0

3
2 cos

2

x
j i

k a
f Hψ ψ γ

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
     ( 1)j i= − ,  (38) 

    1 1

3
2 cos

2

x
j i

k a
f Hψ ψ γ

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
    ( 2)j i= ± , (39) 

 ( )2 12 cos 3j i xf H k aψ ψ ε γ= = +       ( )j i= , (40) 

 ( )3 0 22 cos 3j i xf H k aψ ψ γ γ= = +       ( 1)j i= + . (41) 
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0γ , 1γ , and 2γ are the nearest-, next-nearest-, and third-neighbor electronic hopping 
amplitudes, respectively. Similarly, the overlap matrix S can be written as 

 

2 0 1 2

0 2 3 1

1 3 2 0 1 2

2 1 0 2 3 1

1 3 2 0 1 2

2 1 0 2 3 1

0 0 ... ...

0 0 ... ...

... ...

... ...

0 0

0 0

... ... ... ... ... ... ... ...

g g g s

g g g g

g g g g g s

S s g g g g g

g g g g g s

s g g g g g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, (42) 

where 

 0 0

3
2 cos

2

x
j i

k a
g sψ ψ

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
  ( 1)j i= − , (43) 

 1 1

3
2 cos

2

x
j i

k a
g sψ ψ

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
  ( 2)j i= ± , (44) 

 ( )2 11 2 cos 3j i xg s k aψ ψ= = +   ( )j i= ,  (45) 

 ( )3 0 22 cos 3j i xg s s k aψ ψ= = +   ( 1)j i= + . (46) 

Here 0s , 1s , and 2s are the nearest-, next-nearest-, and third-neighbor overlap integrals 

between the 2 zp orbitals, respectively. Substituting Eqs.(36) and (37) into the following 

secular equation 

 [ ]det 0E− =H S ,   (47) 

we can obtain all n eigenvalues of Ei (kx) (i=1,…,2n) for a given wave vector kx. The electronic 
dispersion relations (or energy bands) of zigzag nanoribbons are shown in Fig. 6.  
In order to conveniently compare with the third-neighbor result, we also give the nearest- 

and next-nearest-neighbor electronic energy bands together with it. In Fig. 6(a) and (b), the 

left is the nearest-neighbor result, the middle is the next-nearest-neighbor, and the right is 

the third-neighbor for the ribbon widths n=4 and n=10. We see from Fig.6 that the zigzag 

graphene nanoribbons are metallic and the energy bands are wide (more than 10eV), and 

the spacing between the energy bands is decreased as increasing of the width n. When the 

nearest neighbor interaction is taken only into account, the energy band structure is 

symmetrical (see Fig.6 (1)). But the next-nearest-neighbor hopping and overlap can make the 

energy bands become nonsymmetrical, i.e. the conduction band becomes narrowed and the 

valence band is widened. It is obvious that the top of the conduction band is pressed 

downward and the bottom of the valence band is pulled downward. However, the effect of 

the third neighbors on the band structure is the same as that of the next-nearest neighbors, 

but the latter is stronger than the former. 
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Fig. 6. Energy bands of zigzag nanoribbons with widths (a) n=4 and (b) n=10. Labels (1), (2), 
and (3) refer to the nearest, next-nearest, and third neighbors, respectively. 

On the other hand, we see that the highest valence band state and the lowest conduction 

band state for the zigzag ribbons are always degenerate at kx = 1.277. A pair of almost flat 

bands appears within the region of 0.851≤|kx|≤ 1.277 where the bands sit in the very 

vicinity of the Fermi level. This phenomenon arises only in the nearest neighbor result and 

does not occur in the non-nearest neighbor case. The degeneracy of the center bands at kx = 

1.277 does not originate from the intrinsic band structure, and the corresponding wave 

functions are completely localized on the edge sites (Nakada et al., 1996). 

Based on the above discussion, we conclude that the effect of the third-neighbor terms on 

the energy band of the zigzag ribbon is large compared to that of the next-nearest-neighbor 

terms. Therefore, it is important to include the third neighbors when we calculate the bands. 

This is because the distance between the next-neighbor carbon atoms is very close to that 

between the third-neighbor atoms.  

4. Competition between the non-neighbor interaction and edge deformation 

4.1 Energy gaps in armchair nanoribbons 

We now discuss the change of the energy gaps in armchair graphene nanoribbons. The 

results of first-principles calculations (Son et al., 2006) show that the differences among three 

widths (n=3m, n=3m+1, and n=3m+2) are quite apparent.  

Our aim is to take into account the non-neighbor hopping integral and overlap and to 

understand their contribution to the band gap. To do this, we need to derive the formulas of 

the band gaps from Eq. (31). After a simple derivation, we easily obtain the following band 

gap formulas (Jin et al., 2009) 
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2
0 00

2
0

2 ( )

1

s f

s f

γ ε− +
Δ = −

−
,  (48) 

 

2
0 1 1 0 0 1 0 0 1 01

2 2 2 2 2
1 1 1 1 1 0

2 ( 3 3 )

6 2 9 6 1

f fs s s f s s f

s f fs fs s s s f

γ γ ε γ γ γ+ − − − +
Δ = −

− + + − + −
, (49) 

 

2 2 2 2 2 2
1 2 1 2 5 5 1 0 0 2 2 2 32

2
2 3

4 4 4( )( )

( )

u u u u u u u f g h u u

u u

γ γ γ γ− + − − − − −
Δ =

−
, (50) 

where 

1 1( 3)u fε γ= + − , 

 

 

Fig. 7. The variation of band gaps of armchair graphene nanoribbons for n=3m as a function 
of width m. (a) Band gap curves for the nearest, next nearest, and third neighbors. (b) Band 
gap differences between the nearest and next nearest, and third neighbors. 
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2 11 ( 3)u s f= + − , 

2 2
3 0 0 2 2u s f s s g s h= + + , 

4 0 2 2 0( )u s s gγ γ= + , 

5 0 0 4 2 22 2u s f u s hγ γ= + + . 

Here 0Δ , 1Δ , and 2Δ represent the band gaps of the nearest-, next-nearest-, and third-
neighbor interaction, respectively. Quantities f, h, and g have been defined in Section 3. Since 
f, h, and g depend on the ribbon width n, the different width has the different band gap.  
In order to illustrate the problem, we take n=3m as an example to discuss the change of the 
gap with width. The results are summarized as function of width m, as shown in Fig.7, 
where the energy gap differences between the nearest and next-nearest neighbors and third 
neighbors are given together with. If we only consider the second-nearest-neighbor hopping 
and overlap, the difference between the nearest and next nearest neighbors is small for large 
m, but larger for small m. However, when we account to third neighbors, their contribution 
to the energy gap is large compared to that of the second neighbor, especially for small m. 

4.2 Effect of the edge deformation on the energy gap 

Because every carbon atom on the edge has one dangling bond unsaturated, the edge atoms of 
armchair nanoribbons are passivated by hydrogen atoms in general so that the σ bonds 
between hydrogen and carbon and the on-site energies of the carbons at the edges would be 
different from those in the middle of the ribbon. The bonding distances and angles between 
carbon atoms at the edges are also expected to change dramatically, which leads to 
considerable variations of electronic structure, especially within the low-energy range (Son et 
al., 2006). The bond lengths between carbon atoms at the edges are predicted to vary about 3-
4% when hydrogenerated. Correspondingly, the hopping integral increases about 12% 
extracted from the analytical tight-binding expression (Son et al., 2006; Porezag et al., 1995). 
To see the consequence of such effects more clearly, we introduce a simpler edge-deformed 
model, in which the Hamiltonian of the ribbon with deformation on the edge can be written as 

0 0 1 1 2 2

( , ) (( , )) ((( , )))

( ) ( ) ( )i ij ij ij

i i j i j i j

H i i i j i j i jε γ δγ γ δγ γ δγ= − + − + − +∑ ∑ ∑ ∑ .  (51) 

As mentioned above, the variation of the next-nearest and third neighbor hopping integrals 

can be neglected for smaller deformation, i.e., 1 2 0ij ijδγ δγ= = . Let the variation of the 

hopping integral and the on-site energy of the ith carbon atom be 0ijδγ and iε , respectively. 

Therefore, Eq.(51) cab be rewritten as 

 0i iH H H= + ,  (52) 

where 

 0 0 1 2

( , ) (( , )) ((( , )))

i i

i i j i j i j

H i i i j i j i jε γ γ γ= − − −∑ ∑ ∑ ∑ , (53) 
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 0

( , )

i ij

i j

H i jδγ= −∑ . (54) 

The energy dispersion relation corresponding to the Hamiltonian 0iH still is the same as 

Eq.(32) in form, whereε is replaced by iε . For convenience, we rewrite Eq.(32) as follows 

 0 ( , )xE k q α λ± = ± , (55) 

whereα andλ are dependent of the parameters iε , 0γ , 0s , 1γ , 1s , and so on. Since iH is 

small compared to 0iH , we can solve Eq.(52) by using the perturbation approach. Thus, a 

new dispersion relation is  

 ( , )xE k q β λ δλ± = ± + ,  (56) 

where β is the energy shift originating from the variation of the on-site energy andδλ is the 

shift originating in the hopping integral variation. If the nearest neighbor interaction is 

involved only (Zheng et al., 2007), then β andδλ are given by 

 2

1

2
sin

1 1

n

i

i

q
i

n n

πβ ε
=

⎛ ⎞= ⎜ ⎟+ +⎝ ⎠
∑ , (57) 

 

2
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1

/ 2
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/ 2
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2
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1 1

       sin sin ( 1)
1 1

       sin sin ( 1)
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x
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x

n
ik a

A i B i

i

ik a
A i B i

ik a
A i B i

q
i e

n n

q q
i i e

n n

q q
i i e

n n

πδλ δγ

π πδγ

π πδγ

−

=

−

+

⎡ ⎛ ⎞= − ⎜ ⎟⎢+ +⎝ ⎠⎣
⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎤⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎥+ +⎝ ⎠ ⎝ ⎠ ⎦

∑

. (58) 

These results are valid for small edge deformations, atoms or molecules attached to edge 
carbon atoms. As long as given the deformation distribution function, we can obtain the 
energy dispersion relation of the edge deformation.  
Assume that the deformation is very small and localized along two edges (Son et al., 2006), 
from Eqs.(55) and (56), we can obtain the differences between the energy gaps to the first 

order in 0δγ  andε  for different width ribbons as follows(Son et al., 2006; Zheng et al., 2007) 

 0 20
3 3 3

8
sin

3 1 3 1
e m m m

m

m m

δγ π
Δ = Δ −Δ = −

+ +
,  (59) 

 0 20
3 1 3 1 3 1

8 ( 1)
sin

3 2 3 2
e m m m

m

m m

δγ π
+ + +

+
Δ = Δ −Δ =

+ +
, (60) 

 0 0
3 2 3 2 3 2

2

1
e m m m

m

δγ
+ + +Δ = Δ −Δ =

+
. (61) 
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Fig. 8. The energy gap differences before and after deformation for armchair graphene 
ribbons. Solid, dashed, and dotted lines are the results of n=3m+1, n=3m, and n=3m+2, 
respectively. 

Here the energy gap refers to the difference between the lowest conduction band and the 

highest valence band. 0
3mΔ , 0

3 1m+Δ , and 0
3 2m+Δ  are the energy gaps of non-deformed ribbons. 

This result shows that all armchair graphene ribbons with edge deformation have nonzero 

energy gaps.  
For smaller deformation, we set the hopping integral change 0 0 0.12δγ γ = (Son et al., 
2006). A graph of the gap difference vs. width m is shown in Fig.8. This implies that the 12% 
increase of the hopping integrals between carbon atoms at the edges opens the gaps of the 
(3m+2) armchair ribbons and decreases (increases) the gaps of 3m-armchair ribbons ((3m+1)- 
armchair ribbons). In order to facilitate comparison, we take n=3m as an example. By 
comparing Fig.8 with Fig.7 (b), we see that the next-nearest neighbor effect is able to make 
the gap increase slightly with respect to the nearest neighbor case and the third-neighbor 
interaction would lead to decrease of the gap, and the smaller edge deformation would 
reduce the gap. Therefore, the competition results of both are that the effect of the boundary 
relaxation opposes the change of the next-nearest-neighbor interaction and strengthens the 
change of the third-neighbor interaction. The n=3m+1 situation is just opposite to the n=3m. 
For n=3m+2, the non-neighbor interaction does not change the gap and keeps this zero gap 
unchanged. Hence, there is no competition between the both. In fact, the edge deformation 
would have a penetration depth (Zheng et al., 2007). Since the depth is very small, our 
conclusions obtained above still are valid for this case. 

5. Stretching deformation of graphene ribbons 

In this section, we discuss the deformation of graphene due to an external force and effect of 
the deformation on the band gap. Assume that the length L of a graphene sheet is long 
compared to its width W, i.e. L > W, a wider ribbon satisfying translational symmetry in the 
length and width directions, and the force between carbon atoms satisfies Hook’s law. We 
exert a tension force on the two edges of the graphene, as illustrated in Fig.9.  
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Fig. 9. Force on wider graphene ribbons with (a) zigzag and (b) armchair edges. 

Let the force on each atom and lattice spring constant be f and k, respectively. The bond 

lengths and angles will change with the force and thereby lead to the change of hopping 

integrals, which causes the variation or opening of the energy gap. For zigzag edge ribbons, 

when an external force is much less than the stationary spring force between two neighbor 

atoms, the relation between the force f on each atom and bond half-angle α can be obtained 

 
0

3 cot 2cosN

f
f

kd
α α= = −  (62) 

Here 0d is the original bond length, Nf is the dimensionless force on each atom. For small 

deformation, the bond half-angle is given by 

 23
(1 ) 1 14

3 6
N N Nf f f

πα ⎡ ⎤= + + − + +⎣ ⎦ . (63) 

Based on elastic mechanics, the deformed bond lengths are written as 

1 0 (1 )Nd d f= + ,                                    

 2

2 3 0

3 3
sin (1 ) 1 14

2 3 6
N N Nd d d f f f

π⎛ ⎞⎡ ⎤= = + + − + +⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠
. (64) 

Here 1d is the bond length parallel to the direction of force f. Similarly, for armchair edge 

ribbons, we have 

1 0

1
(1 )

6
Nd d f′ = − , 

   20
2 3

1
cos ( 3 2 ) ( 3 2 ) 8 3

2 3 2
N N N

d
d d f f f

π⎛ ⎞⎡ ⎤′ ′= = − + − + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
. (65) 
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Fig. 10. Energy gaps of wider graphene ribbons with (a) zigzag and (b) armchair edges at K 
points as function of the dimensionless tensile force fN. 

Here 1d ′ is the bond length perpendicular to the direction of force f. To calculate hopping 

integrals, we choose the hydrogen-like atom wave functions as 2pz orbitals, which is given 

by 

 
5

( )  cos  rr e λλϕ θ
π

−=r .   (66) 
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Here λ is the Slater orbital index, taken to be 2.18 in calculations. Substituting Eq.(66) into 

Eqs. (10), (14), (15), (17), (18) and (19) and noting that the bond lengths between carbon 

atoms are different from the undeformed graphene, we can obtain the analytical expressions 

for the hopping and overlap integrals (Wei & Tong, 2009). Because the bond lengths are 

dependent of force f, the hopping and overlap integrals depend on the force. Fig.10 shows 

the change of the energy gap with tensile force fN at Dirac points K, where the third neighbor 

is included. The Dirac points will vary with the force, for zigzag ribbons given by  

2
2

2 1 2 2 1

sin
,

cos 2 sin 2( cos )

d
K

d d d d d

π π π α
α α α

⎞⎛
⎟= −⎜ ⎟+ +⎝ ⎠

, 

 2
2

2 1 22 1

sin
,

cos 2 sin2( cos )

d
K

d d dd d

π π α π
α αα

⎞⎛
′ ⎟= −⎜ ⎟+ +⎝ ⎠

.  (67) 

It is clear that a pulling force may make Dirac points opening an energy gap, and which 

varies nonlinearly as the force. When the force is small, the change of the gap nearly is 

linear. But as the force becomes large, this change appears nonlinear. By comparison, we see 

that the gap of zigzag edges is more than that of armchair edges under the same force. This 

means that the gap of wider graphene ribbons with zigzag shaped edges is easily opened by 

an external force with respect to the armchair edges. 

6. Conclusion 

In this chapter, we study in details the electronic energy dispersion relations of graphene 

and its nanoribbons within the tight binding model, including up to the third-neighbor 

interaction. For a graphene sheet, there are no energy gaps at high-symmetry points K. The 

next-nearest-neighbor hopping integrals and wave function overlap between carbon atoms 

impact strongly on the bandwidth, i.e., their effects make the bandwidth become narrow 

with respect to the nearest neighbor result. The third neighbors can increase the bandwidth 

slightly and decrease the energy difference between the lowest conduction and highest 

valence bands greatly. The electronic dispersion of armchair edge graphene nanoribbons is 

given analytically based on the tight binding approach and hard-wall boundary condition. 

For the armchair nanoribbon, different widths have different dispersion relations. When 

n=3m and n=3m+1, the second neighbor terms are able to reduce the bandwidth and slightly 

increase the band gap at Γ point. In general, smaller quantum number q impacts on the 

bandwidth and larger q affects the band gap. The effect of the third neighbor interaction is 

opposite to that of the second neighbor, but a flat band disappears when we involve the 

third neighbors. As for n=3m+2, the non-neighbor interaction can not open the gap at Dirac 

point. We also evaluate the influence of the edge deformation on this ribbon and compare 

the competition between both the non-neighbor interaction and edge deformation in energy 

gaps. For zigzag nanoribbons, there is no energy gap and the non-neighbor interaction 

impacts only on the bandwidth. In addition, the energy gaps of graphene ribbons with 

armchair or zigzag edges can be opened by an external force. Opening the gap of the zigzag 

edge ribbon is easier with respect to the armchair ribbon. 

www.intechopen.com



The Non-Neighbor Effect in Graphene Ribbons   

 

91 

The problem we discussed above is the ideal graphene nanoribbons. If we consider the 

warping of the edges and the non-flat ribbon, the energy dispersion would how to change? 

These issues are worthy of further study. 
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