
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

13

Reordering of Location Identifiers for
Indexing an RFID Tag Object Database

Sungwoo Ahn and Bonghee Hong
Pusan National University

Republic of Korea

1. Introduction

Radio frequency identification (RFID) has become one of the emerging technologies for a

wide area of applications such as automated manufacturing, inventory tracking, and supply

chain management. RF technologies make it possible to identify individual items in real-

time by means of automatic and fast identification. Besides the real-time identification, RF

technologies give additional advantages for monitoring of field-based operation by tracking

and tracing the location of tags attached to items. By using queries on trajectories of RFID

tag data, RFID applications can get events about field-based situation and then respond to

them.

To store and retrieve tag data efficiently, it is important to provide an index for the

repository of tag data. The EPCglobal, being in charge of a standards management and

development for RFID related technologies, proposes EPC Information Service (EPCIS) as

the repository for tag events. The EPCIS is a standard interface for access and persistent

storage of tag information. Tag data stored in the EPCIS consists of the static attribute data

and the timestamped historical data. Historical information is continuously collected and

updated whenever each tag is identified by an RFID reader. The EPCIS usually stores them

at the base table of a database for efficient management of those data. It is necessary to

execute queries on the EPCIS whenever applications want to retrieve the location history of

specific tags. However, it is inefficient to look up all the records of the table because a large

amount of historical information for tags is to be accumulated in the base table.

For efficient query processing of tracing tags, an index structure can be constructed based on

tag events generated when a tag goes in and out a location where a reader places. Among

timestamped historical information contained in tag events, an RFID application uses the

location identifier (LID), the tag identifier (TID), and the identified time (TIME) as

predicates for tracking and tracing tags. To index those values efficiently, we can define the

tag interval by means of two tag events generated when the tag enters and leaves a specific

location, respectively. The tag interval could be represented and indexed as a time-

parameterized line segment in a three-dimensional domain which is constituted by LID,

TID, and TIME axes.

Tag intervals in a three-dimensional index are sequentially stored and accessed in one-

dimensional disk storage. Since logically adjacent tag intervals are to be retrieved together at

a query, they should not be stored far away from each other in the disk to minimize the cost

www.intechopen.com

 Advanced Radio Frequency Identification Design and Applications

246

of disk accesses. Logical closeness has been studied to determine the distance between

domain values representing the coordinate of those objects. A logically adjacent object to a

specific object on the data space has the shortest distance to that object by using some

distance measure. Note that the change of the order of domain values results in the variation

of distances between objects because of a different distribution of objects on the data space.

Thus, domain values should be ordered properly in each domain in order to keep logical

closeness between objects.

Most works for clustering spatial objects have used the spatial distance in the spatial domain
as the distance measure. To diminish the number of disk accesses at answering spatial
queries, they stored adjacent objects sequentially based on the spatial proximity. In addition
to the spatial proximity, moving object databases M.F. Mokbel and Y. Theodoridis have
applied the temporal proximity to the characteristic for the distance measure in the time
domain. Previous works assumed that all domains on the data space provide the proper
proximity about measuring the distance between domain values.
Since an LID represents the location where a tag stays or passes, the LID domain should
provide logical closeness for the dynamic flow of tags along locations. The problem is that
there is no rule of assigning LIDs to RFID locations in order to keep this property. If LIDs
are arbitrarily arranged in the domain without considering tag flows, tag intervals would be
scattered into the data space irrespective of logical closeness. Because this situation causes
random disk accesses for searching logically adjacent tag intervals, the cost of query
processing will be increased.
To solve this problem, we propose a reordering method for arranging LIDs in the LID
domain. The basic idea is to compute the distance between two LIDs for preserving logical
closeness of tag intervals. To do this, we define the proximity function based on a new LID
proximity between two LIDs. The proximal distance between LIDs can be computed by the
tag movements. To determine LID proximity, we need to examine the path of tag flows which
is generated by tag movements. Then, we define the LID proximity function which computes
the distance between LIDs with the dynamic flow of tags. To determine a sequence of LIDs
based on LID proximity, we construct a weighted graph and generate the ordered LID set. It
is possible to store logically adjacent tag intervals close to each other in the disk because our
reordering method can keep the correlation between the distance and logical closeness of
tag intervals. To prove this, we evaluate the performance of the index scheme using LIDs
based on LID proximity as domain values. We also compare it with the index scheme using
the numerical order of LIDs.
The reminder of this paper is organized as follows. Section 2 defines the problem of an LID
as the domain value for tag intervals and describes the needs of reordering LIDs. Section 3
examines the path of tag flows based on the characteristics of RFID locations and tag
movements, and then defines the LID proximity function. In Section 4, we propose a
reordering scheme of LIDs using a weighted graph that is constructed by LID proximity.
Section 5 presents some experimental results of performance evaluation for the proposed
reordering scheme. A summary is presented in Section 6.

2. Problem definition

2.1 Target environment

Whenever the tag attached to an item passes through an RFID reader, the reader collects the
tag’s information within its interrogation zone. In an RFID middleware system, gathered

www.intechopen.com

Reordering of Location Identifiers for Indexing an RFID Tag Object Database

247

information are represented as EPCIS tag events and stored at the persistent storage in order
to answer tag related queries. Since a tag event contains several timestamped historical
information, it could represent the dynamic flow of tagged items between RFID locations
placed along tag routes. If an RFID application wants to know a history of these items, a
query processor can make an answer to the application by retrieving suitable tag events in a
repository of tag events.
In timestamped historical information, a query processor usually employs the tag identifier

(TID), the location identifier (LID), and the timestamp (TIME) as the predicates of queries

for tracing tag locations. For efficient query processing of tracing tags, the tag trajectory

should be modeled and indexed by using these predicates.

Note that RFID locations are different from the spatial locations to represent real positions

on the map. There are two types of location related to EPCIS tag events according to a

business perspective for an RFID location. One is the physical position which identifies the

tag. We denote this position as the read point (RP). The read point does not provide the

information where a tag visited or stays by itself because it designates only the place at

which a tag was detected. The other is the region where a tag stays. We denote this region as

the business location (BizLoc). The business location represents the place where a tag is

assumed to be until a subsequent tag event is generated by a different business location.

Since most of RFID applications trace a business flow of tagged items, they have an interest

in the business location instead of the read point as the location type of the tag. Therefore, it

is natural to use the business location as the LID predicate for tracing tag locations.

The EPCIS tag event could be modeled as the time parameterized interval in a three-

dimensional domain whose axes are LID, TID, and TIME. We denote this interval as the tag

interval (TI). The tag interval is a line segment that connects two coordinates in a three-

dimensional space when the tag enters and leaves a specific business location. In this

manner, the trajectory of a tag is represented as a set of tag intervals which are associated

with the tag.

Predicate

LID TID TIME
Query results Query types

point/set/
range

* point/range TID(s)
Observation Query

(OQ)

*
point/set/rang

e
point/range LID(s) Trajectory Query (TQ)

Table 1. Query classification for tracing tag locations

Queries for tracing tags are classified into two types according to a kind of restricted

predicate as shown in Table 1. An observation query (OQ) is used to retrieve the tag(s) that are

identified by the specified business location(s) in the specified time period. A trajectory query

(TQ) is used to retrieve the business location(s) that the specific tag(s) enters and leaves

within the specified period. Queries in Table 1 can be extended to a combined query by

performing two queries in the order OQ and TQ.

To support fast retrieving of desired trajectories of tags, it is necessary to store and search

tag trajectories by means of an index structure. Each leaf node of the index references

logically adjacent tag intervals on the data space by using minimum bounding box (MBB).

Then, tag intervals referenced by index nodes are sequentially stored and accessed in one-

www.intechopen.com

 Advanced Radio Frequency Identification Design and Applications

248

dimensional disk storage. Tag intervals on each leaf node are stored at the same disk page in

order to minimize disk seeks.

2.2 Problem of using an LID as the domain value

(a) Logical closeness between tag intervals is very important for simultaneous accessing at

the query. It gives a great influence on the performance of query processing because the cost

of disk accesses depends on the sequence of storing tag intervals on the disk. For example,

let us assume that a query, Qi, would search tag intervals by the index structure. If all tag

intervals accessed by Qi are stored in P3 as shown in Fig. 1-(a), a query processor needs to

access just one disk page, P3. If those tag intervals are dispersed to disk pages, P2, P3, and

P5 as shown in Fig. 1-(b), however, a query processor usually require the additional cost

about accessing two pages, P2 and P5. To minimize the cost of disk accesses, logical

closeness between tag intervals in the same disk page should be higher than logical

closeness to others.

(a) All tag intervals accessed by the query Qi are
stored in P3

(b) Tag intervals accessed by the query Qi

are stored in P2, P3, P5

Fig. 1. An example of different access cost of the disk

Distance between two tag intervals on the data space should be computed for measuring

logical closeness between them. If the distance measure keeps logical closeness between tag

intervals, we can say that the nearest tag interval to a specific tag interval has the shortest

distance to that tag interval. The distance is normally measured based on proximity between

domain values on the data space. Thus, we need to examine the characteristic of each

domain’s proximity in order to keep correlation between the distance and the logical

closeness.

The TIME domain in 3-dimensional space should provide chronological closeness between

tag intervals. We usually achieve this closeness with assigning timestamps based on the

temporal proximity in the TIME domain. The TID is the fixed identifier, which is related to

Electronic Product Code (EPC), for a tagged item. The EPC can be composed of three parts –

Company, Product and Serial. Since the EPC scheme assign an identifier to a tag by a

hierarchical manner with three parts, the TID can imply logical closeness between grouped

tags.

A tag produces a dynamic flow while moving between business locations. Since a query for

tracing tags would give tag’s traces, the LID domain should provide the closeness of tag

intervals about tag movements. On the contrary to the TID, the LID is not the predefined

identifier. We can assign business locations to LIDs by various numbering methods. For

example, it can be some lexicographic method for measuring the distance in an RFID

applied system. It is also possible to apply spatial distance measure such as Hilbert curve, Z-

ordering, and Row-Prime curve. Figure 2 shows an example of numbering LIDs for

describing business locations and read points.

Despite the existence of various LID numbering methods, the problem is that they do not

have an inherence property of proximity for providing logical closeness related to the

www.intechopen.com

Reordering of Location Identifiers for Indexing an RFID Tag Object Database

249

dynamic flow of tags. If LIDs are assigned to business locations without considering tag’s

flows, each leaf node of the index may reference tag intervals irrespective of their logical

closeness. This means that the index structure does not guarantee a query processor to

retrieve results with minimal cost because logically adjacent tag intervals will be stored far

away from each other at disk pages.

business location

read point

BizLoc1 BizLoc4 BizLoc7

BizLoc8BizLoc5BizLoc2

BizLoc3 BizLoc6 BizLoc9

(a) The organization of RFID locations

(b) An example of assigning identifiers to business

locations of (a)

Fig. 2. An example of numbering method for business locations

LID, TID

TIME
tnowt1 t2 t3 t4 t5

BizLoc1

BizLoc2

BizLoc3

BizLoc4

BizLoc5

BizLoc6

BizLoc7

BizLoc8

BizLoc9

t6

R1

R2

R3

Disk Pages : P1 P2 P3 P4 P5 ���P1 P2 P3

LID, TID

TIME
tnowt1 t2 t3 t4 t5

BizLoc1

BizLoc4

BizLoc2

BizLoc5

BizLoc8

BizLoc9

BizLoc3

BizLoc6

BizLoc7

t6

R1

R2

R3

Disk Pages : P1 P2 P3 P4 P5 ���P1 P2 P3

(a) Assigning LIDs by some lexicographic method (b) Assigning LIDs by the tag flow

Fig. 3. Different organization of the index according to the order of LIDs

www.intechopen.com

 Advanced Radio Frequency Identification Design and Applications

250

This situation is illustrated in Fig. 3. Assume that a tag, TIDm, passes through business

locations of Fig. 2 in BizLoc1, BizLoc4, BizLoc2, BizLoc5, BizLoc8, and BizLoc9 order. If LIDs are

arranged according to the order of Fig. 2-(b), tag intervals would be distributed on the data

space and stored at disk pages as shown in Fig. 3-(a). Let TQi = (*, TIDm, [t3├, t6┤]) be the

trajectory query for searching LIDs where TIDm stayed during the period t3 to t6. When TQi

is processed at the index organized as shown in Fig. 3-(a), a query processor should access

disk pages, P1, P2, and P3 because all tag intervals generated during the period t3 to t6 are

dispersed to all MBBs, R1, R2, and R3. However, if we make LIDs reorder based on the

order of TIDm’s movement as shown in Fig. 3-(b), tag intervals during the period t3 to t6 can

be referenced by one leaf node having R2. A query processor needs to access only the page,

P2 in order to process TQi over the index of Fig. 3-(b).

We solve this problem by defining LID proximity. LID proximity determines the distance

between two LIDs in the domain. If two LIDs have higher LID proximity than others,

corresponding tag intervals could be distributed closely on the data space. In the remainder

of this paper, we analyze factors to deduce LID proximity. Subsequently, we define the LID

proximity function based on those factors. To determine the order of LIDs with LID

proximity, we also propose the reordering scheme of LIDs.

3. Proximity between LIDs

3.1 LID proximity based on the path of tag flows

Tagged items always move between the business locations passing through the read points

placed in the entrance of each business location. If there are no read points connecting with

specified business locations, however, the tagged item cannot move directly between them.

Although read points exist, the tag movement can also be restricted because of a business

process of an applied system. According to these restrictions, there is a predefined path

which a tag is able to cross. We designate this path as the path of tag flows (FlowPath). The

items attached by the tags generate a flow of tags passing through the path. The FlowPath

from LIDi to LIDj is denoted as FlowPathi to j.

BizLoc1 BizLoc2 BizLoc3

BizLoc4BizLoc5

RP2 RP3

RP5

RP4

RP7

RP8

RP6
RP1

RP6RP9

BizLoc6

RP10

FlowPath5 to 4 represents paths through RP6, RP7

and RP8 from BizLoc4 to BizLoc5

LID1

LID5

LID2 LID3

LID4LID6

(a) A graph example for business locations
connected by their read points

(b) A generation of FlowPaths between
LIDs using the graph (a)

Fig. 4. An example of representing FlowPaths with business locations and their read points

www.intechopen.com

Reordering of Location Identifiers for Indexing an RFID Tag Object Database

251

The FlowPath is a simple method for representing the connection property between two

business locations. It is possible to generate the FlowPath with a connected graph of

business locations and read points as shown in Fig. 4. To do this, BizLoc1 to BizLoc6 in Fig. 4-

(a) are corresponding with location identifiers, LID1 to LID6 in Fig. 4-(b), respectively. If one

or more read points connect particular two business locations, they are represented as a

single line connecting two LIDs as shown in Fig. 4-(b). Properties of a FlowPath are as

follows.

1. A FlowPath is a directional path because a read point has a directional property among

three types of directions – IN, OUT, and INOUT.

2. The number of FlowPaths connecting one LID with other LIDs is more than one

because all business locations have one or more read points connecting other business

locations.

3. There may be no FlowPath which connect two particular LIDs directly. In this case, a

tag should pass through another LIDs connected with those LIDs by FlowPaths in order

to move from one to the other.

As mentioned in Section 2, a query for tracing tags is interested in a historical change of

locations for the specific tag. This means that tag intervals generated by business locations

along the specific FlowPath have higher probability of simultaneous access than others.

Therefore, it is necessary to reorder LIDs based on the properties of a FlowPath for the

efficient query processing. We first define the proximity between LIDs for applying to the

LID reordering as follows.

Definition 1. LID Proximity (LIDProx) is the closeness value between two LIDs in the LID

domain for tag intervals. We denote LID proximity between LIDi and LIDj as LIDProxij or

LIDProxji.

We also denote the LID proximity function for computing LIDProxij as LIDProx(i, j) or

LIDProx(j, i). LID proximity between two LIDs has following properties.

1. Any LIDi in the LID domain should have a LID proximity value to any LIDj where i ≠ j.

2. LIDProxij is equal to LIDProxji for all LIDs.

3. If LIDk, having the property LIDProx(i, j) < LIDProx(i, k), does not exist, the nearest LID

to LIDi is LIDj.

It is possible to represent LID proximity between all LIDs with a graph based on the

FlowPath. To do this, a graph based on the FlowPath should satisfy following conditions.

First, a graph should be a weighted graph that all edges in a graph have a weight value.

Second, a graph should be a complete graph by the property (1) of LID proximity. Third, a

graph should be an undirected graph by the property (2) of LID proximity. By these

conditions, we define the graph G based on the FlowPath as follows.

- G = (V, E, W)

• V = LIDSet = {LID1, LID2, …, LIDn} where n is the number of LIDs in the LID domain

• E = {(LIDi, LIDj) | LIDi ∈LIDSet, LIDj∈LIDSet, i ≠ j}

• w : EåR, w(i, j) = LIDProx(i, j) = LIDProx(j, i) = w(j, i)

3.2 LID proximity function

The tag movements along FlowPaths and the frequency of their related queries are changed

continuously over time. Consequently, the access probability of tag intervals generated by

any two LIDs also changes as time goes by.

www.intechopen.com

 Advanced Radio Frequency Identification Design and Applications

252

For applying dynamic properties of the FlowPath to LID proximity, we define the LID
proximity function as shown in Eq. 1; we denote T as the time to compute LID proximity,
LIDProxT(i, j) as the LID proximity function at time T, LIDProx_OQT (i, j) and LIDProx_TQ(i,
j) as proximity functions invented by properties of an observation query and a trajectory
query, respectively.

 LIDProx (,) LIDProx _ OQ (,) (1) LIDProx _ TQ (,)T T Ti j i j i jα α= × + − × (1)

LIDProx(i, j) is the time parameterized function that the closeness value between LIDi and

LIDj changes over time. To consider the closeness value for an observation query and a

trajectory query altogether, the function calculates the sum of LIDProx_OQ(i, j) and

LIDProx_TQ(i, j) with the weight value. The weight α determines the applying ratio

between two proximity functions as shown in Eq. 2; we denote OQij,t as the number of

observation queries for LIDi and LIDj at time t and TQij,t as the number of trajectory queries

for LIDi and LIDj at time t.

(), , ,
1 1

0 or 1

 i j

T T

ij t ij t ij t
t t

if no queries are processed

for LID and LID

OQ OQ TQ otherwise

α

= =

⎧
⎪
⎪= ⎨
⎪ +⎪
⎩
∑ ∑

 (2)

LID proximity for an observation query is proportionally influenced by the number of tag

intervals generated by two LIDs which are predicates of the observation query. The

function LIDProx_OQ(i, j) computes LID proximity for an observation query with the

ratio of tag intervals generated by LIDi and LIDj to all tag intervals as shown in Eq. 3; we

denote TIi,t as the number of tag intervals by LIDi at t, and OQ and OQ as weight values

for LIDProx_OQ(i, j).

 (). , ,
1 1 1

LIDProx_OQ (,)
T T n

OQ
T i t j t a t

OQ t t a

i j TI TI TI
δ
σ = = =

⎛ ⎞
= × +⎜ ⎟

⎝ ⎠
∑ ∑∑ (3)

Because of the influence of the tag’s flow on LID proximity, we should consider the
distribution of tag intervals over time. Equation 4 represents dynamic properties of the tag
interval distribution. The difference in the distribution of tag intervals in time domain can
be represented by the standard deviation of tag intervals. To apply this property to LID
proximity, the variable OQ in Eq. 4 is used as the inversely proportional weight to the
number of tag intervals. This means that the lower standard deviation indicates that
associated distribution of tag intervals is close to the uniform distribution; we denote OQ as
the standard deviation of tag intervals by LIDi and LIDj and iTI as the average number of
tag intervals by LIDi until T.

() (){ }

() ()

2

, ,
1

, , . , ,
1 1 1

1

1

T

i jOQ i t j t
t

T T T

OQ i t j t i t j t ij t
t t t

TI TI TI TI
T

STI STI TI TI OQ

σ

δ

=

= = =

= × + − +

⎛ ⎞ ⎛ ⎞
= + + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑ ∑
 (4)

www.intechopen.com

Reordering of Location Identifiers for Indexing an RFID Tag Object Database

253

The hit ratio of tag intervals for an observation query is also the factor determining the

LIDProx_OQ(i, j). As opposed to the standard deviation OQ, LID proximity for an

observation query should be proportional to the hit ratio of tag intervals. The variable OQ in

Eq. 4 computes the proportional weight – the hit ratio of tag intervals for OQij; we denote

OQij,t as the number of observation queries for LIDi and LIDj at t and STIi,t as the number of

results by LIDi for OQij,t.

 () , , , ,
1 1 1 1 1

LIDProx _ TQ (,)
T T n n n

TQ
T i to j t j to i t a to b t c to c t

TQ t t a b c

i j TM TM TM TM
δ
σ = = = = =

⎛ ⎞⎛ ⎞
= × + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑∑ ∑ (5)

LID proximity for a trajectory query uses the pattern of tag movements along the FlowPath

as the main factor because a trajectory query takes an interest in LIDs where a tag passes at

the specified time period. Equation 5 shows the LID proximity function for a trajectory

query retrieving tag intervals by LIDi and LIDj. This function, denoted by LIDProx_TQ(i, j),

obtains the simultaneous access probability of LIDi and LIDj through the ratio of tag

movements between LIDi and LIDj to the total number of tag movements for all LIDs; we

denote TMi to j,t as the amount of tag movements from LIDi to LIDj, and TQ and TQ as weight

values for LIDProx_TQ(i, j).

Similar to the LID proximity function for an observation query, both the tag interval

distribution over time and the hit ratio of tag intervals for a trajectory query have an

influence on that for a trajectory query. Different with an observation query, however, a

trajectory query should consider not the distribution of tag intervals for each individual LID

but that of tag intervals between LIDs – the movements of the specified tag. To do this, we

define the standard deviation, TQ, for computing a degree of the difference in the

distribution of tag movements between LIDi and LIDj. We also define the hit ratio of tag

intervals by LIDi and LIDj for a trajectory query as TQ.

4. Reordering scheme of LIDs

In this section, we define the reordering problem of LIDs based on the LID proximity

function and propose the reordering scheme for solving this problem.

Let us assume that there is a set of LIDs, LIDSet = {LID1, LID2, …, LIDn-1, LIDn}. To use the

LIDSet for the coordinates in the LID domain, an ordered list of LIDs, OLIDListi = (OLIDi.1,

OLIDi.2, …, OLIDi.n-1, OLIDi.n) should be determined first of all. It is possible to make n!/2

combinations of the OLIDList from OLIDList1 to OLIDListn!/2. To find out the optimal

OLIDList that LID proximity for all LIDs are maximum, we first define the linear proximity

as follows.

Definition 2. Linear Proximity (LinearProx) of OLIDLista(LinearProxa) is the sum of LIDProx

between adjacent OLIDs for all OLIDs in OLIDLista such that

1

1

LIDProx(, 1)
n

a
i

LinearProx i i
−

=

= +∑ (6)

To get the optimal distribution of tag intervals in the domain space, LID proximity between

two LIDs should be the maximum for all LIDs. That is, if a query accesses tag intervals

generated by the LIDs in the query predicate, corresponding LIDs in the OLIDList should be

www.intechopen.com

 Advanced Radio Frequency Identification Design and Applications

254

ordered closely. As a result, all of LID proximity between adjacent LIDs should also be

maximum. With the definition of the linear proximity, we can define the problem for

reordering LIDs in order to retrieve the OLIDList which has the maximum access

probability as follows.

Definition 3. LID reOrdering Problem (LOP) is to determine an OLIDListo = (OLIDo.1,

OLIDo.2, …, OLIDo.n-1, OLIDo.n) for which LinearProxo is maximum where there is LIDSet =

{LID1, LID2, …, LIDn-1, LIDn} and LID proximity for all LIDs.

To solve the LOP with LID proximity, the graph G is formed by LIDs and their LID

proximity values as shown in Fig. 5-(a). The LOP is to find out the optimal OLIDList which

has the maximum linear proximity in the graph G according to the Definition 3. In Fig. 5-(a),

the optimal OLIDListo is (LID5, LID1, LID2, LID4, LID3) or (LID3, LID4, LID2, LID1, LID5) among

60 (5!/2) OLIDLists and its LinearProxo is 0.199.

The LOP is very similar to the well-known minimal weighted Hamiltonian path problem

(MWHP) without specifying the start and termination points. The MWHP finds the

Hamiltonian cycle which has a minimal weight in the graph. To apply the LOP to the

MWHP, it is necessary to convert the LOP into a minimization problem because the LOP is a

maximization problem for finding the order of having maximum LID proximity values for

all LIDs. Therefore, the weight value for LIDi and LIDj, w(i, j) in the graph G should be

changed to 1 – LIDProx(i, j) or 1 – LIDProx(j, i). The LOP can be treated as a standard

traveling salesman problem (TSP) by Lemma 1.

0.087

0.03

0

0

0

0

0.06

0.017

0.052

0.026

LID1 LID2

LID3

LID4LID5

0.913

0.97

1

1

1

1

0.94

0.983

0.948

0.974

LID1 LID2

LID3

LID4LID5

v0

0

0

0

0

0

 (a) A weighted graph G representing LID
 proximity between LIDs

(b) The conversion of the graph G into the graph G’
for solving the LOP

Fig. 5. An example of a weighted graph for reordering LIDs based on LID proximity

Lemma 1. The LOP is equivalent to the TSP for a weighted graph G΄ = (V΄, E΄, w΄) such that

V΄ = V ∪ {v0} where v0 is an artificial vertex to solve the MWHP by the TSP

E΄ = E ∪ {(LIDi, v0) | LIDi ∈ LIDSet}

w΄ : E å R, w΄(i, j) = 1 – LIDProx(i, j) = 1 – LIDProx(j, i) = w΄(j, i), w΄(i, v0) = w΄(v0, i) = 0

Proof: The graph G΄ contains Hamiltonian cycles because G΄ is a complete and weighted

graph. Assume that a minimal weighted Hamiltonian cycle produced in G΄ is HC where HC

= ((v0, OLIDa.1), (OLIDa.1, OLIDa.2), …, (OLIDa.n-1, OLIDa.n), (OLIDa.n, v0)) and OLIDa.i ∈ LIDSet.

If two edges, (v0, OLIDa.1) and (OLIDa.n, v0), containing the vertex v0 are eliminated from HC,

we can get a minimal weighted Hamiltonian path L in G΄ from OLIDa.1 to OLIDa.n. A weight

www.intechopen.com

Reordering of Location Identifiers for Indexing an RFID Tag Object Database

255

of HC is identical with one of a path L because all of edges eliminated in order to produce

the path L contain the vertex v0 and weights of these edges are zero. The produced path L is

translated as an ordered LID list, OLIDLista where OLIDLista = (OLIDa.1, OLIDa.2, …, OLIDa.n-

1, OLIDa.n). By this reason, the reordering of LIDs can be defined as a solution of the

corresponding TSP for obtaining HC in the weighted graph G΄.
Figure 5-(b) shows an example of the weighted graph G΄ to determine the OLIDList for LIDs

in Fig. 5-(a). To apply the WMHP to the LOP, weights of edges are assigned to w΄, the

weight of an edge assigned to one minus LID proximity value. It means that the lower the

weight of an edge is, the higher the probability of simultaneously accessing tag intervals

generated by the corresponding LIDs of two vertices at each end of the edge is. Since the

start and termination points are not determined in the graph G, we insert an artificial vertex

v0 and edges from v0 to all vertices with weight 0 into the graph G΄. Each Hamiltonian cycle

is changed to a Hamiltonian path by removing vertex v0 in the Hamiltonian cycle with same

weight because the weight of all edges incident with v0 is 0.

Because the TSP is a NP-complete problem, exhaustive exploration of all cases is impractical.

To solve the TSP, there have been proposed dozens of methods based on heuristic

approaches such as Genetic Algorithms (GA), Simulated Annealing (SA), and Neural

Networks (NN). Heuristic approaches, can be used to find a solution for NP-complete

problems, takes much less time. Although it might not find the best solution, it can find a

near perfect solution – the local optima.

We have used a GA among several heuristic methods to determine the ordered LIDSet by

using the weighted graph G΄. This algorithm has been very successful in practice to solve

combinatorial optimization problems including the TSP.

5. Experimental evaluation

We have evaluated the performance of our reordering scheme by applying LIDs as domain

values of an index. We also compared it with the numerical ordering scheme of LIDs using a

lexicographic scheme. To evaluate the performance of queries, TPIR-tree, R*-tree, and TB-

tree are constructed based on the data model for tag intervals with the axes being TID, LID,

and TIME. Since indexes use original insert and/or split algorithms, it is possible to

preserve essential properties of them.

Since well-known and widely accepted RFID data sets such as the GSTD do not exist, we

conducted our experiments with synthetic data sets generated by the Tag Data Generator

(TDG). The TDG generates tag events which can be represented as the time-parameterized

interval based on the data model for tag intervals. To reflect the real RFID environment, the

TDG allows the user to configure its specific variables. All variables of the TDG are based on

properties of the FlowPath and tag movements along FlowPaths. According to user-defined

variables, tags are created and move between business locations through FlowPaths. The

TDG generates a tag interval based on a tag event occurring whenever a tag enters or leaves.

We assigned an LID to each business location by a lexicographic scheme of the TDG based
on the spatial distance. To store trajectories of tags over the index, the TDG produces tag
intervals from 100,000 to 500,000. Since the LID proximity function uses the quantity for
each query, OQ and TQ, as the variable, we should process queries during the TDG
produces tag intervals. To do this, we processed 10,000 queries for tracing tags continuously
and estimated query specific variables over all periods. Finally, the sequence of LIDs based

www.intechopen.com

 Advanced Radio Frequency Identification Design and Applications

256

on LID proximity is determined by computing the proximity value between LIDs until all
the tag events are produced.
Experiments of this paper used the TDG data set constructed with 200 business locations. To

measure average cost, all experiments were performed 10 times for the same data set. In the

figures for experimental results, we rename the index by attaching the additional word with

a parenthesis in order to distinguish each index according to the arrangement of LIDs.

“Original” means the index using the initial arrangement of LIDs on the LID domain.

“Reorder” means the index based on LID proximity.

Experiment 1: Measuring the performance of each query type
In this experiment, we attempted to evaluate the performance of queries where only one

query type is processed in order to measure the performance of each query type. To obtain

the optimized order of LIDs for each query type, we processed 10,000 OQs in Fig. 6-(a) and

10,000 TQs in Fig. 6-(b) before reordering scheme is processed.

Figure 6 shows the performance comparison between “Original” and “Reorder” for each

query type. Figure 6-(a) and 6-(b) are related to the performance of OQ and TQ, respectively.

Each query set includes 1,000 OQs or TQs. We find out that “Reorder” can retrieve the

results with lower cost of node accesses than “Original” for all comparison in Fig. 6. The

performance of most “Reorder” is slightly better than the performance of “Original” for the

data set of 100,000 tag intervals. Nevertheless, “Reorder” still outperforms “Original”

during tag intervals are generated continuously and inserted at the index.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

100,000 200,000 300,000 400,000 500,000

N
o

d
e

 A
cc

e
ss

e
s

Tag Intervals

TPIR-tree(Original)

TPIR-tree(Reorder)

TB-tree(Original)

TB-tree(Reorder)

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

100,000 200,000 300,000 400,000 500,000

N
o

d
e

 A
cc

e
ss

e
s

Tag Intervals

TPIR-tree(Original)

TPIR-tree(Reorder)

R*-tree(Original)

R*-tree(Reorder)

(a) The number of node accesses for OQ (b) The number of node accesses for TQ

Fig. 6. Performance evaluation for indexes where only one type of query is used.

The search performance of OQ and TQ are improved up to 39% and 33%, respectively. This

experiment tells us that LID proximity can measure the closeness between business

locations more precisely if tag movements and queries happen continuously.

Experiment 2: Performance comparison in case of processing OQ and TQ altogether

Regardless of better performance than an initial arrangement of LIDs, Experiment 1 only

evaluates the performance for individual query type. We need to measure the performance

in case that OQ and TQ are processed altogether. To do this, we performed the experimental

evaluation as shown in Fig. 7. Since LID proximity should reflect properties of all query

types together, we processed both of 5,000 OQs and 5,000 TQs before the proximity is

measured. Then, 1,000 OQs or TQs are processed for evaluating the performance of each

query.

www.intechopen.com

Reordering of Location Identifiers for Indexing an RFID Tag Object Database

257

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

100,000 200,000 300,000 400,000 500,000

N
o

d
e

 A
cc

e
ss

e
s

Tag Intervals

TPIR-tree(Original)

TPIR-tree(Reorder)

R*-tree(Original)

R*-tree(Reorder)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

100,000 200,000 300,000 400,000 500,000

N
o

d
e

 A
cc

e
ss

e
s

Tag Intervals

TPIR-tree(Original)

TPIR-tree(Reorder)

TB-tree(Original)

TB-tree(Reorder)

(a) The number of node accesses for OQ (b) The number of node accesses for TQ

Fig. 7. Performance evaluation for indexes when processing both queries altogether

The result of Fig. 7 shows that the number of node accesses of “Reorder” is increased as

compared with that in Fig. 6. The reason is that LIDProx_OQT(i, j) and LIDProx_TQT(i, j) in

Eq. 2 have a negative effect on the performance of a query not related to each proximity

under the condition that OQ and TQ are processed together. The performance of “Reorder”

is nevertheless better than the performance of “Original” at processing all of OQ and TQ.

6. Conclusions

This paper has addressed the problem of using the location identifier (LID) as the domain

value of the index for tag intervals and proposed the solution for solving this problem. The

basic idea is to reorder LIDs by the LID proximity function between two LIDs. The LID

proximity function determines which an LID to place closely to the specific LID in the

domain. By using the LID proximity function, we can find out the distance of two LIDs in

the domain so as to keep the logical closeness between tag intervals. Our experiments show

that the proposed reordering scheme based on LID proximity considerably improves the

performance of queries for tracing tags comparing with the previous scheme of assigning

LIDs.

Since LID proximity is computed with the time parameterized properties, it changes over

time. Therefore, it is necessary to reorder LIDs periodically or non-periodically for reflecting

the changed LID proximity between LIDs. To process queries efficiently over all the time,

the reconstruction of the tag interval index should also be required according to changing

LID proximity. We are currently developing a dynamic reordering method of LIDs and a

restructuring method of the index.

7. References

ChaeHoon , B.; BongHee, H. & DongHyun, K.(2005). Time Parameterized Interval R-tree for

Tracing Tags in RFID Systems, International Conference on DEXA, pp.503-513

Dan. L.; HichamG, E.; Elisa, B. & BengChin, O. (2007). Data Management in RFID

Applications, International Conference on DEXA, pp.434-444

Darrell, W.(1994). A Genetic Algorithm Tutorial, Statistics and Computing, Vol. 4, pp.65-85

EPCglobal.(2006). EPC Information Services (EPCIS) Specification, Ver. 1.0, EPCglobal Inc.

www.intechopen.com

 Advanced Radio Frequency Identification Design and Applications

258

EPCglobal.(2006). EPCTM Tag Data Standards, Ver. 1.3, EPCglobal Inc.

Fusheng, W. & Peiya, L.(2005). Temporal Management of RFID Data, International

Conference on VLDB, pp.1128-1139

HV,J.(1990). Linear Clustering of Objects with Multiple Attributes, ACM SIGMOD, Vol.

19(2), pp.332-342

Ibrahim, K.& Christos,F.(1993). On Packing R-trees, CIKM, pp.490-499

Mohamed F, M.; Thanaa M, G.&Walid G,A.(2003). Spatio-temporal Access Methods, IEEE

Data Engineering Bulletin, Vol. 26(2), pp.40-49

Mark, H.(2003) EPC Information Service – Data Model and Queries, Technical Report, Auto-

ID Center

Steven S, S.(1998). The Algorithm Design Manual, Springer-Verlag, New York Berlin Heidel-

berg

Yannis, T.;Jefferson R O, S.&Mario A, N.(1999). On the Generation of Spatiotemporal

Datasets, International Symposium on Spatial Databases, pp.147-164

www.intechopen.com

Advanced Radio Frequency Identification Design and Applications

Edited by Dr Stevan Preradovic

ISBN 978-953-307-168-8

Hard cover, 282 pages

Publisher InTech

Published online 22, March, 2011

Published in print edition March, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Radio Frequency Identification (RFID) is a modern wireless data transmission and reception technique for

applications including automatic identification, asset tracking and security surveillance. This book focuses on

the advances in RFID tag antenna and ASIC design, novel chipless RFID tag design, security protocol

enhancements along with some novel applications of RFID.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Sungwoo Ahn and Bonghee Hong (2011). Reordering of Location Identifiers for Indexing an RFID Tag Object

Database, Advanced Radio Frequency Identification Design and Applications, Dr Stevan Preradovic (Ed.),

ISBN: 978-953-307-168-8, InTech, Available from: http://www.intechopen.com/books/advanced-radio-

frequency-identification-design-and-applications/reordering-of-location-identifiers-for-indexing-an-rfid-tag-

object-database

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

